Oceanic Methane Biogeochemistry

Total Page:16

File Type:pdf, Size:1020Kb

Oceanic Methane Biogeochemistry 486 Chem. Rev. 2007, 107, 486−513 Oceanic Methane Biogeochemistry William S. Reeburgh* Department of Earth System Science, University of California, Irvine, California 92697-3100 Received June 23, 2006 Contents 10. Summary 507 11. Future Work 507 1. Introduction 486 11.1. Natural 14C Measurements on Ocean Water 507 1.1. Global Methane Budget 487 Column Methane 1.2. Role of the Ocean in the Global Methane 487 11.2. Oxidation Rate Measurements 507 Budget 11.3. Mixed Layer Maximum 508 2. Ocean Methane Measurements 488 11.4. Methane-Consuming Benthic Communities 508 2.1. Water Column 488 11.5. Hydrate Dissociation 508 2.2. Sediments 488 11.6. Molecular Genetics, Reaction Mechanism, 508 2.3. Headspace Measurements 489 and Biomarkers 2.4. Natural Isotopes 489 11.7. Sensors 509 3. Oceanic Water Column Methane Distributions 489 11.8. Mud Volcanoes 509 4. Methane Distributions in Sediments 490 12. Acknowledgments 509 5. Water Column Methane Production? 492 13. Note Added in Proof 509 5.1. Thermodynamic, Kinetic, and Physical 492 14. References 509 Constraints on Water Column Methane Production 5.2. Methanogenesis Involving Noncompetitive 493 1. Introduction Substrates Measurements of dissolved methane in the ocean have 5.3. Microenvironments and the Ocean Methane 493 been available for only about 50 years. Methane measure- Paradox ments in sediments, where concentrations are millimolar, 6. External Water Column Methane Sources 494 were first reported in the mid-1950s, while measurements 6.1. Production Processes 494 of methane in ocean waters, where concentrations are 6.1.1. Diagenesis of Organic Carbon 494 nanomolar, were first reported in the late 1960s. 6.1.2. Hydrothermal Systems and the 494 Methane is the most abundant hydrocarbon in the atmo- Serpentinization Reaction sphere, where it plays an important role in tropospheric 6.1.3. Methane Clathrate Hydrate 495 atmospheric chemistry. Further, methane is an important Decomposition greenhouse gas. Atmospheric time series observations over 6.2. Transport Processes: Scope and Scale 496 the past two decades have documented an increase in the 6.2.1. Coastal Contributions 496 atmospheric mixing ratio of methane, and a great deal of 6.2.2. Seeps and Vents 497 activity has focused on the cause and climate consequences 6.2.3. Mud Volcanoes 497 of this increase. The ocean contributes a relatively small 7. Microbially-Mediated Oxidation of Ocean Methane 498 amount of methane to the global net atmospheric budget, 7.1. Aerobic Oxidation of Methane 498 and it cannot be expected to play a role in the contemporary atmospheric methane increase. Our interest in methane in 7.2. Anaerobic Oxidation of Methane 498 the ocean is understanding the balance between the enormous 7.2.1. Early Observations and the Methane/ 498 reported methane additions from continental shelf and slope Sulfate Connection sediments and the microbial oxidation reactions that must 7.2.2. Rate Measurements 500 occur in sediments and the water column to produce the low 7.2.3. Natural Isotope Studies 501 nanomolar concentrations observed in the bulk of the ocean 7.2.4. Reaction and Mechanism 503 volume. 7.2.5. Isotopically Light Carbonates 503 A number of poorly quantified external sources contribute 8. New Tools and Recent Developments 504 methane to the ocean water column. The source processes 8.1. Biomarkers 504 include microbially-mediated diagenesis of sediment organic 8.2. Physiological and Culture-Independent 504 matter, abiotic production of methane through the serpenti- Phylogenetic Studies nization reaction, a rock/water reaction occurring in hydro- 8.3. Methane-Utilizing Communities 505 thermal systems associated with the midocean ridges and 9. Summary of Ocean Methane Sources and Sinks 505 spreading centers, leaks from near-surface petroleum depos- its, and decomposition of methane clathrate hydrates. These * E-mail: [email protected]. Telephone: 949-824-2986. Fax: 949-824- contributions enter the ocean water column through coastal 3874. runoff, by diffusion from organic-rich anoxic sediments, and 10.1021/cr050362v CCC: $65.00 © 2007 American Chemical Society Published on Web 01/30/2007 Oceanic Methane Biogeochemistry Chemical Reviews, 2007, Vol. 107, No. 2 487 effective methane consumer or sink fueled by external sources. Since oxidation is so nearly quantitative, aerobic and especially anaerobic methane oxidation rates are sum- marized and integrated to estimate methane fluxes from the external sources outlined above. This paper also covers recent developments in biomarker molecules, genomics, and benthic communities apparently sustained by methanotrophy, and it outlines fruitful areas for future research. Recent reviews on global methane biogeochemistry1-4 emphasize contributions from a number of sources, the use of natural stable and radioisotopes in quantifying and constraining the sources, and processes contributing to the atmospheric methane increase. Reviews of methane geochem- istry have emphasized several areas: aquatic environments,5,6 anaerobic oxidation of methane,7,8 and recent advances in Bill Reeburgh was born and raised in Port Arthur, Texas. He earned a anaerobic oxidation of methane,9,10 as well as microbiological B.S. in Chemistry at the University of Oklahoma in 1961, and M.A. and aspects of methanogenesis (methane production)11 and Ph.D. degrees in Oceanography at The Johns Hopkins University in 1964 12-14 and 1967. He was on the faculty of the Institute of Marine Science at the methanotrophy (methane consumption) and the role University of Alaska, Fairbanks from 1968 until 1993, when he joined the microbial methane consumption plays in controlling methane University of California Irvine as one of the founding faculty of the Program fluxes to the atmosphere. Methane biogeochemistry is in Geosciences, now the Department of Earth System Science. He was covered in microbial ecology texts,15 but it has received editor of Global Biogeochemical Cycles from 1998 to 2004 and was elected limited attention in chemical oceanography and marine AGU Fellow in 2001. His research focus has been on methane geochemistry texts16-20 and reviews.21 geochemistry, particularly documenting the occurrence and extent of anaerobic oxidation of methane, and recent measurements of natural stable 2 13 14 isotopes ( H-CH4, C-CH4) and radiocarbon ( C-CH4) in methane from 1.1. Global Methane Budget anoxic marine sediments and waters. Any discussion of oceanic methane biogeochemistry through seeps, vents, and mud volcanoes emitting methane- should place the ocean in the context of the global methane rich fluids or methane-rich bubbles. Despite these large and budget. A geochemical budget is a flux balance (or a mass poorly quantified methane additions to the ocean water balance) that provides a useful means of partitioning and column, microbially-mediated aerobic and anaerobic oxida- estimating the magnitudes of sources and sinks. Budgets are tion reactions effectively consume the added methane to low very useful in exposing our ignorance, but they have no nanomolar levels, so that most of the ocean volume is predictive power. undersaturated with respect to the atmosphere. The first global methane budget, a net atmospheric budget, was based on available flux measurements and estimates Methane is produced within ocean waters at only one 22,23 14 location: the nearly ubiquitous surface mixed layer methane from a variety of sources. The natural radiocarbon ( C) maximum, where methane concentrations are ∼5 nM, content of atmospheric methane was used to partition the supersaturated with respect to the atmosphere. Methanogen- budget between recent biogenic and fossil sources. Oxidation esis is mediated by strict anaerobes, and since the vast by OH in the troposphere and destruction in the stratosphere were considered sinks. majority of the ocean water column contains oxygen, the 24-27 presence of this methane maximum presents “the ocean Time series observations beginning in the late 1970s methane paradox”. Anoxic environments in digestive tracts showed that the atmospheric methane mixing ratio was increasing by ∼1% year-1, and methane measurements in and leakage from freshly released fecal pellets have been 28-31 suggested as the major contributor to this enigmatic methane polar ice cores showed that the atmospheric increase maximum. There is no evidence, even in anoxic basins, of started long before it was documented by the atmospheric large-scale methanogenesis at other locations in the water time series observations. The atmospheric mixing ratio increase and recent field measurements were reviewed by column. Curiously, the enigmatic surface mixed layer 1 methane maximum, which also receives contributions from Cicerone and Oremland, who concluded that the atmospheric coastal runoff, amounts to about 25% of the ocean source increase was genuine and proposed a revised methane budget term to the atmosphere in the global methane budget because based on new information on sources and sinks. On the basis of its proximity to the atmosphere. of a framework of constraints involving the global methane Instead of thinking of an ocean methane cycle, where burden, turnover rates, and isotopes, we have high confidence methane participates in a geochemical cycle involving linked in the total budget, the rate of change, the fraction of modern production, utilization, and regeneration reactions, it is more biogenic methane, and the total source (or sink). How to correct to think of the ocean as a large reactor that very apportion the individual sources is less certain. By constrain- effectively oxidizes methane from a wide range of sediment ing the magnitude of the total, this budget served to limit sources. With the exception of the mixed layer methane proliferation of source estimates. Seasonal time series maximum, the ocean methane is produced in sediments and observations at fixed stations were used as a constraint in an inverse model, and several likely global methane budget has a benthic source. Methane is oxidized under anoxic 32 conditions in marine sediments and waters; it is oxidized scenarios were proposed by Fung et al. under oxic conditions at the benthic boundary layer and in the water column.
Recommended publications
  • Biogeochemistry of Mediterranean Wetlands: a Review About the Effects of Water-Level Fluctuations on Phosphorus Cycling and Greenhouse Gas Emissions
    water Review Biogeochemistry of Mediterranean Wetlands: A Review about the Effects of Water-Level Fluctuations on Phosphorus Cycling and Greenhouse Gas Emissions Inmaculada de Vicente 1,2 1 Departamento de Ecología, Universidad de Granada, 18071 Granada, Spain; [email protected]; Tel.: +34-95-824-9768 2 Instituto del Agua, Universidad de Granada, 18071 Granada, Spain Abstract: Although Mediterranean wetlands are characterized by extreme natural water level fluctu- ations in response to irregular precipitation patterns, global climate change is expected to amplify this pattern by shortening precipitation seasons and increasing the incidence of summer droughts in this area. As a consequence, a part of the lake sediment will be exposed to air-drying in dry years when the water table becomes low. This periodic sediment exposure to dry/wet cycles will likely affect biogeochemical processes. Unexpectedly, to date, few studies are focused on assessing the effects of water level fluctuations on the biogeochemistry of these ecosystems. In this review, we investigate the potential impacts of water level fluctuations on phosphorus dynamics and on greenhouse gases emissions in Mediterranean wetlands. Major drivers of global change, and specially water level fluctuations, will lead to the degradation of water quality in Mediterranean wetlands by increasing the availability of phosphorus concentration in the water column upon rewetting of dry sediment. CO2 fluxes are likely to be enhanced during desiccation, while inundation is likely to decrease cumulative CO emissions, as well as N O emissions, although increasing CH emissions. Citation: de Vicente, I. 2 2 4 Biogeochemistry of Mediterranean However, there exists a complete gap of knowledge about the net effect of water level fluctuations Wetlands: A Review about the Effects induced by global change on greenhouse gases emission.
    [Show full text]
  • 8.4 the Significance of Ocean Deoxygenation for Continental Margin Mesopelagic Communities J
    8.4 The significance of ocean deoxygenation for continental margin mesopelagic communities J. Anthony Koslow 8.4 The significance of ocean deoxygenation for continental margin mesopelagic communities J. Anthony Koslow Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia and Scripps Institution of Oceanography, University of California, SD, La Jolla, CA 92093 USA. Email: [email protected] Summary • Global climate models predict global warming will lead to declines in midwater oxygen concentrations, with greatest impact in regions of oxygen minimum zones (OMZ) along continental margins. Time series from these regions indicate that there have been significant changes in oxygen concentration, with evidence of both decadal variability and a secular declining trend in recent decades. The areal extent and volume of hypoxic and suboxic waters have increased substantially in recent decades with significant shoaling of hypoxic boundary layers along continental margins. • The mesopelagic communities in OMZ regions are unique, with the fauna noted for their adaptations to hypoxic and suboxic environments. However, mesopelagic faunas differ considerably, such that deoxygenation and warming could lead to the increased dominance of subtropical and tropical faunas most highly adapted to OMZ conditions. • Denitrifying bacteria within the suboxic zones of the ocean’s OMZs account for about a third of the ocean’s loss of fixed nitrogen. Denitrification in the eastern tropical Pacific has varied by about a factor of 4 over the past 50 years, about half due to variation in the volume of suboxic waters in the Pacific. Continued long- term deoxygenation could lead to decreased nutrient content and hence decreased ocean productivity and decreased ocean uptake of carbon dioxide (CO2).
    [Show full text]
  • The Potential of Mangroves in the Treatment of Shrimp Aquaculture Effluent on the Eastern Coast of Thailand
    The Potential of Mangroves in the Treatment of Shrimp Aquaculture Effluent on the Eastern Coast of Thailand 7 Nina Fancy B. Sc.(Horn), Queen's University, 1999 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in the Department of Geography O Nina Fancy, 2004 University of Victoria AII rights reserved. This thesis may not be reproduced in whole or in part, by photocopy or other means, without the permission of the author. Supervisor: Dr. Mark Flaherty ABSTRACT This thesis examines the potential of low-cost, low-maintenance mangroves in the treatment of nutrient-rich effluent originating from a shnmp fmon the coast of Thailand's Chanthaburi province. The objective of this thesis is to identify the environmental impact of shnmp aquaculture effluent and to determine if mangrove wetlands can be used as effective biofiltration areas to remove significant quantities of nitrate, ammonia and nitrite from shrimp wastewater. The study mangrove was found to remove an average of 44.5% of nitrate, 46.6% of ammonia and 59.0% of nitrite from shrimp effluent. The ratio of mangrove treatment area to shrimp fmrequired to adequately treat daily effluxes of wastewater from shrimp fmswas calculated to . be 1: 14. This ratio is significantly less spatially demanding than ratios calculated by .-: P 0 previous researchers and reveals the potential of mangroves to be used as large-scale wastewater treatment areas in shrimp-producing nations. TABLE OF CONTENTS .. ABSTRACT ..............................................................................................................11
    [Show full text]
  • Linking Biodiversity Above and Below the Marine Sediment–Water Interface
    Articles Linking Biodiversity Above and Below the Marine Sediment–Water Interface PAUL V. R. SNELGROVE, MELANIE C. AUSTEN, GUY BOUCHER, CARLO HEIP, PATRICIA A. HUTCHINGS, GARY M. KING, ISAO KOIKE, P. JOHN D. LAMBSHEAD, AND CRAIG R. SMITH hanges in the marine environment are evident on Ca global scale (McGowan et al. 1998), and although bio- THE ORGANISMS LIVING ON THE OCEAN diversity in the oceans is poorly described, abundances and FLOOR ARE LINKED TO THOSE LIVING IN distributions of both commercially exploited (Safina 1998) and nonexploited (Pearson and Rosenberg 1978) species have THE OCEAN ABOVE, BUT WHETHER OR changed. Not only have major changes occurred but the rate of alteration of marine ecosystems appears to be accelerating HOW THE BIODIVERSITY IN THESE TWO (e.g., Cohen and Carlton 1998). Unfortunately, the impact of these changes in biodiversity on the basic functioning of ma- REALMS IS LINKED REMAINS LARGELY rine ecosystems remains uncertain, as does the oceans’ capacity UNKNOWN to withstand multiple human disturbances (Snelgrove et al. 1997). The dynamics of many marine ecosystems, as well as of important fisheries, depend on close coupling between benthic (bottom living) and pelagic (water column) organ- The sediment–water interface (SWI) in marine ecosystems isms (Steele 1974). Our knowledge of the natural history of is one of the most clearly defined ecological boundaries on these systems remains limited, and scientific interest in map- Earth. Many organisms in the water column, such as salps ping the diversity of organisms and how they live has been and jellyfish, have flimsy and attenuated morphologies that marginalized in recent years.
    [Show full text]
  • Mixing Between Oxic and Anoxic Waters of the Black Sea As Traced by Chernobyl Cesium Isotopes
    Deep-Sea Research, Vol 38. Suppl 2. pp S72>-S745. 1991. 019~149191 53.00 + 0.00 Pnnted 10 Great Bntam © 1991Pergamon Press pic Mixing between oxic and anoxic waters of the Black Sea as traced by Chernobyl cesium isotopes KEN O. BUESSELER, * HUGH D. LIVINGSTON* and SUSAN A. CASSO* (Received 14 August 1989; in revised form 16 November 1990; accepted 28 November 1990) Abstract-The Chernobyl nuclear power station accident in 1986 released readily measureable quantities of fallout 134CS and 137Cs to Black Sea surface waters. This pulse-like input of tracers can be used to follow the physical mixing of the surface oxic waters, now labeled with the Chemobyl tracers, and the deeper anoxic waters, which were initially Chemobyl free. By 1988, there is clear evidence of Chernobyl Cs penetration below the oxic/anoxic interface at deep water stations in the western and eastern basins of the Black Sea. This rapid penetration of surface waters across the pycnocline cannot be explained by vertical mixing processes alone. Data from profiles at the mouth of the Bosporus suggest that significant ventilation of intermediate depths can occur as the outflowmg Black Sea waters are entrained with the inflowing Mediterranean waters, forming a sub-surface water mass which is recognized by its surface water characteristics, i.e. initially a relatively high oxygen content and Chernobyl Cs signal. The lateral propagation ofthis signal along isopycnals into the basin interior would provide a rapid and effective mechanism for ventilating intermediate depths of the Black Sea. This process could also account for the lateral injection of resuspended margin sediments into the basin interior.
    [Show full text]
  • Scientific Assessment of Hypoxia in U.S. Coastal Waters
    Scientific Assessment of Hypoxia in U.S. Coastal Waters 0 Dissolved oxygen (mg/L) 6 0 Depth (m) 80 32 Salinity 34 Interagency Working Group on Harmful Algal Blooms, Hypoxia, and Human Health September 2010 This document should be cited as follows: Committee on Environment and Natural Resources. 2010. Scientific Assessment of Hypoxia in U.S. Coastal Waters. Interagency Working Group on Harmful Algal Blooms, Hypoxia, and Human Health of the Joint Subcommittee on Ocean Science and Technology. Washington, DC. Acknowledgements: Many scientists and managers from Federal and state agencies, universities, and research institutions contributed to the knowledge base upon which this assessment depends. Many thanks to all who contributed to this report, and special thanks to John Wickham and Lynn Dancy of NOAA National Centers for Coastal Ocean Science for their editing work. Cover and Sidebar Photos: Background Cover and Sidebar: MODIS satellite image courtesy of the Ocean Biology Processing Group, NASA Goddard Space Flight Center. Cover inset photos from top: 1) CTD rosette, EPA Gulf Ecology Division; 2) CTD profile taken off the Washington coast, project funded by Bonneville Power Administration and NOAA Fisheries; Joseph Fisher, OSU, was chief scientist on the FV Frosti; data were processed and provided by Cheryl Morgan, OSU); 3) Dead fish, Christopher Deacutis, Rhode Island Department of Environmental Management; 4) Shrimp boat, EPA. Council on Environmental Quality Office of Science and Technology Policy Executive Office of the President Dear Partners and Friends in our Ocean and Coastal Community, We are pleased to transmit to you this report, Scientific Assessment ofHypoxia in u.s.
    [Show full text]
  • Diversité Phylogénétique Et Fonctionnelle Des Eumycètes Dans Les Écosystèmes Pélagiques Marlène Jobard-Portas
    Diversité phylogénétique et fonctionnelle des Eumycètes dans les écosystèmes pélagiques Marlène Jobard-Portas To cite this version: Marlène Jobard-Portas. Diversité phylogénétique et fonctionnelle des Eumycètes dans les écosystèmes pélagiques. Sciences agricoles. Université Blaise Pascal - Clermont-Ferrand II, 2010. Français. NNT : 2010CLF22090. tel-00769938 HAL Id: tel-00769938 https://tel.archives-ouvertes.fr/tel-00769938 Submitted on 4 Jan 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE BLAISE PASCAL Année 2010 N°D.U. 2090 ECOLE DOCTORALE DES SCIENCES DE LA VIE, SANTE, AGRONOMIE, ENVIRONNEMENT N° d’ordre 535 Thèse Présentée à l’Université Blaise Pascal pour l’obtention du grade de DOCTEUR D’UNIVERSITE (Spécialité : Ecologie Microbienne) Soutenue le 14 Décembre 2010 Marlène JOBARD Diversité phylogénétique et fonctionnelle des Eumycètes dans les écosystèmes pélagiques Président : Pr Gilles Bourdier, Université Blaise Pascal, Clermont-Fd, France Invité Institutionnel : Dr Henry-Michel Cauchie, CRP, Belvaux, Luxembourg Directeur de
    [Show full text]
  • Methane Hydrate Stability and Anthropogenic Climate Change
    Biogeosciences, 4, 521–544, 2007 www.biogeosciences.net/4/521/2007/ Biogeosciences © Author(s) 2007. This work is licensed under a Creative Commons License. Methane hydrate stability and anthropogenic climate change D. Archer University of Chicago, Department of the Geophysical Sciences, USA Received: 20 March 2007 – Published in Biogeosciences Discuss.: 3 April 2007 Revised: 14 June 2007 – Accepted: 19 July 2007 – Published: 25 July 2007 Abstract. Methane frozen into hydrate makes up a large 1 Methane in the carbon cycle reservoir of potentially volatile carbon below the sea floor and associated with permafrost soils. This reservoir intu- 1.1 Sources of methane itively seems precarious, because hydrate ice floats in water, and melts at Earth surface conditions. The hydrate reservoir 1.1.1 Juvenile methane is so large that if 10% of the methane were released to the at- Methane, CH , is the most chemically reduced form of car- mosphere within a few years, it would have an impact on the 4 bon. In the atmosphere and in parts of the biosphere con- Earth’s radiation budget equivalent to a factor of 10 increase trolled by the atmosphere, oxidized forms of carbon, such as in atmospheric CO . 2 CO , the carbonate ions in seawater, and CaCO , are most Hydrates are releasing methane to the atmosphere today in 2 3 stable. Methane is therefore a transient species in our at- response to anthropogenic warming, for example along the mosphere; its concentration must be maintained by ongoing Arctic coastline of Siberia. However most of the hydrates release. One source of methane to the atmosphere is the re- are located at depths in soils and ocean sediments where an- duced interior of the Earth, via volcanic gases and hydrother- thropogenic warming and any possible methane release will mal vents.
    [Show full text]
  • 77-84 Distribution of Phototrophxc
    /i mar. biol. Ass. India, 19!>0.32 (1 & 2): 77-84 DISTRIBUTION OF PHOTOTROPHXC THIONIC BACTERIA IN THE ANAJSROBIC AND MICRO-AEROPHUJC STRATA OF MANGROVE ECOSYSTEM OF COCHIN * V. CHANDRIKiiv, P. V. RAMACHANDRAN NAIR AND L. R. KHAMBHADKAR Central Marine Fisheries Research Institute, Cochin-6S2 031, India ABSTRACT Dense population of epipelic photoautotrophic bacteria were found in the surface sediments during April 1984 to October 1984 in tbe mangrove ecosystem of Cochin. Pigment analysis by Spectio- photometric techniques ri:vealed the structure and relative abundance of the populations. Maximum bacterio-chlorophyll 'a' was encountered in May (1650.6 mg/m-') whereas bacteriochloroplvll *c'and'd'werefoundtobemoreduring April 1984(1069.2mg/m-' and 510mg/m-° respectively). The bacterial pigments developed in the anoxic cultures in the present investigation showed absorp' tion maximum at 662 nm, therefore it can be classified as ' Chlorobium dilorophyll 660'. The predominant bacteria were identified as members of the genera Chloronema, Chromatium, Begggiatoa, Thiopedia an d Leucothiobacterla. Unidentified brown Chlorobiaceae were present. Maximal develop­ ment of the population was found during April 1984. The distribution of oxygen, temperature salinity, pH and Eh profiles were determined. Phototrophic sulfur bacteria ranged from 4.2-19.4% of the total anaerobes isolated. The main factors determining the growth of green sulfur bacteria were light and high sulfide concentration whereas the growth of purple sulfUr bacteria was mainly con- trolled by subdued light and low sulfide concentration during the experimental period. iNTRODUCriON in microbial ecosystems under anaerobic condi­ tions (Skyring et al, 1979; Sweeney and THE DISTRIBUTION of photosynthetic thionic Kaplan, 1980).
    [Show full text]
  • Abbreviations
    Abbreviations AfDD Acriflavine direct detection AODC Acridine orange direct count ARA Arachidonic acid BPE Bleach plant effluent Bya Billion years ago CFU Colony forming unit DGGE Denaturing gradient gel electrophoresis DHA Docosahexaenoic acid DOC Dissolved organic carbon DOM Dissolved organic matter DSE Dark septate endophyte EN Ectoplasmic net EPA Eicosapentaenoic acid FITC Fluorescein isothiocyanate GPP Gross primary production ITS Internal transcribed spacer LDE Lignin-degrading enzyme LSU Large subunit MAA Mycosporine-like amino acid MBSF Metres below surface Mpa Megapascal MPN Most probable number MSW Molasses spent wash MUFA Monounsaturated fatty acid Mya Million years ago NPP Net primary production OMZ Oxygen minimum zone OUT Operational taxonomic unit PAH Polyaromatic hydrocarbon PCR Polymerase chain reaction © Springer International Publishing AG 2017 345 S. Raghukumar, Fungi in Coastal and Oceanic Marine Ecosystems, DOI 10.1007/978-3-319-54304-8 346 Abbreviations POC Particulate organic carbon POM Particulate organic matter PP Primary production Ppt Parts per thousand PUFA Polyunsaturated fatty acid QPX Quahog parasite unknown SAR Stramenopile Alveolate Rhizaria SFA Saturated fatty acid SSU Small subunit TEPS Transparent Extracellular Polysaccharides References Abdel-Waheb MA, El-Sharouny HM (2002) Ecology of subtropical mangrove fungi with empha- sis on Kandelia candel mycota. In: Kevin D (ed) Fungi in marine environments. Fungal Diversity Press, Hong Kong, pp 247–265 Abe F, Miura T, Nagahama T (2001) Isolation of highly copper-tolerant yeast, Cryptococcus sp., from the Japan Trench and the induction of superoxide dismutase activity by Cu2+. Biotechnol Lett 23:2027–2034 Abe F, Minegishi H, Miura T, Nagahama T, Usami R, Horikoshi K (2006) Characterization of cold- and high-pressure-active polygalacturonases from a deep-sea yeast, Cryptococcus liquefaciens strain N6.
    [Show full text]
  • Phytoplankton Associated with Seasonal Oxygen Depletion in Waters of the Western Continental Shelf of India
    1 Author version of : Journal of Marine Systems, vol.204; 2020; Article no: 103308 Phytoplankton associated with seasonal oxygen depletion in waters of the western continental shelf of India a, b a a a a M. Gauns *, S. Mochemadkar , A. Pratihary , G.Shirodkar , P. V. Narvekar , S.W.A. Naqvi aNational Institute of Oceanography (Council of Scientific & Industrial Research), Dona Paula, Goa, 403 004, India bDepartment of Fisheries Directorate of Fisheries, Govt.of Goa, Panaji – Goa, India *Corresponding author: [email protected] (M. Gauns). Abstract We report here results of a time series study carried out to understand seasonal variability of phytoplankton in relation to changes in dissolved oxygen based on observations at the Candolim Time Series (CaTS) station located in coastal waters of Goa, Central West Coast of India. The water column remains well oxygenated during the non-southwest (SW) monsoon period (November-May). However, upwelling of water already depleted in dissolved oxygen during the SW monsoon, coupled with degradation of copious amounts of locally produced organic matter, leads to severe oxygen depletion including sulphate reduction beneath a thin surface layer during late summer-early autumn (August-October). The onset of oxygen-deficient conditions greatly alters the community structure of water-column phytoplankton.Pico-autotrophs and pennate diatoms were found to dominatethe autotrophic biomass in such oxygen depleted waters. Keywords: Phytoplankton, Coastal upwelling, Dissolved oxygen, Picoplankton ,West coast of India 2 1. Introduction Biological productivity in the Arabian Sea is regulated mainly by nutrient inputs from subsurface waters via upwelling in summer and convective mixing in winter (Banse and Mc Clain, 1986, Madhupratap et al., 1996;Barber et al., 2001).
    [Show full text]
  • Methane Clathrate: General Idea and Overview
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 07 Issue: 09 | Sep 2020 www.irjet.net p-ISSN: 2395-0072 Methane Clathrate: General Idea and Overview Tanmay Tatu1, Ajinkya Mandlik2, Aniruddha Kambekar3, Prof.Rupali Karande4 1,2,3BE, Department of Chemical Engineering, Dwarkadas J Sanghvi College of Engineering, Mumbai, India 4Assistant Professor, Department of Chemical Engineering, Dwarkadas J Sanghvi College of Engineering, Mumbai, India ---------------------------------------------------------------------***---------------------------------------------------------------------- Abstract -The demand for energy has grown significantly releases the innate water or ice(if the temperature is over the past few years and to meet the ever increasing below the freezing point) and the guest gas. demand, we have increased the rate of power consumption by amping up the extraction of energy from their respective Methane Clathrate (4CH4.23H2O) is a compound formed sources. This has caused the drying up of the current major when a large number of methane molecules coalesce sources of energy to the heavy industries or powerplants, together and get trapped inside a water molecule under thus requiring an alternate source of energy which can be low temperature and high pressure to form an ice-like utilized once the major sources such as Oil, Natural Gas, substance. Such conditions are commonly found at a few Coal, etc. get diminished. Renewable sources of energy such metres of depth below the waterbodies or beneath the as solar energy, wind energy, tidal energy, geothermal permafrost or in deep ocean sediments where methane energy etc. are being researched upon for maximum clathrates exist naturally and is called as gas hydrate exploitation but the main problem of these sources is that stability zone(GHSZ).
    [Show full text]