ATMS 310 Math Review Differential Calculus the First Derivative of Y = F(X)

Total Page:16

File Type:pdf, Size:1020Kb

ATMS 310 Math Review Differential Calculus the First Derivative of Y = F(X) ATMS 310 Math Review Differential Calculus dy The first derivative of y = f(x) = = f `(x) dx d2 x The second derivative of y = f(x) = = f ``(x) dy2 Some differentiation rules: dyn = nyn-1 dx d() uv dv du = u( ) + v( ) dx dx dx ⎛ u ⎞ ⎛ du dv ⎞ d⎜ ⎟ ⎜v − u ⎟ v dx dx ⎝ ⎠ = ⎝ ⎠ dx v2 dy ⎛ dy dz ⎞ Chain Rule If y = f(z) and z = f(x), = ⎜ *⎟ dx ⎝ dz dx ⎠ Total vs. Partial Derivatives The rate of change of something following a fluid element (e.g. change in temperature in the atmosphere) is called the Langrangian rate of change: d / dt or D / Dt The rate of change of something at a fixed point is called the Eulerian (oy – layer’ – ian) rate of change: ∂/∂t, ∂/∂x, ∂/∂y, ∂/∂z The total rate of change of a variable is the sum of the local rate of change plus the 3- dimensional advection of that variable: d() ∂( ) ∂( ) ∂( ) ∂( ) = + u + v + w dt∂ t ∂x ∂y ∂z (1) (2) (3) (4) Where (1) is the Eulerian rate of change, and terms (2) – (4) is the 3-dimensional advection of the variable (u = zonal wind, v = meridional wind, w = vertical wind) Vectors A scalar only has a magnitude (e.g. temperature). A vector has magnitude and direction (e.g. wind). Vectors are usually represented in bold font. The wind vector is specified as V or r sometimes as V i, j, and k known as unit vectors. They have a magnitude of 1 and point in the x (i), y (j), and z (k) directions. See the figure below. The Total Wind vector V = iu + jv + kw , where u,v, and w are the scalar components of the zonal, meridional, and vertical wind. Vector Mathematics Vector Addition/Subtraction – Simply add/subtract the scalars of each component together. V1+V2 = (u1+u2)i + (v1+v2)j + (w1+w2)k Graphically, draw the first vector. Place the second vector’s tail (non-arrow end) on the first vector’s head (arrow end). Draw a new vector from the tail of the first to the head of the second vector to find the sum: Vector Multiplication – There are two forms of vector multiplication – the dot product and the cross product. The dot product is defined as the product of the magnitudes of the vectors and the cosine of the smallest angle between them. It results in a scalar quantity: V1•V2 = V1V2cos(θ) = u1u2+v1v2+w1w2 Note that i•i = j•j = k•k = 1 and that the dot products between any two different unit vectors = 0. The cross product results in a third vector that points in the direction given by the “right hand” rule. It has a magnitude given by: || V1 x V2 || = V1V2sin(θ) Where || || denotes “magnitude of”, ‘x’ means cross product, and θ is the angle measured clockwise from V1 to V2. The resultant vector is perpendicular to the first two. The total cross product can be calculated as: V1 x V2 = i(v1w2 – v2w1)+j(u2w1-u1w2)+k(u1v2-u2v1) It can also be expressed as a determinant: i j k V1 x V2 = u1 v 1 w 1 u2 v 2 w 2 Note that i x i = j x j = k x k = 0 since θ = 0 and sin(0) = 0 Note also that i x j = k, j x k = i, and k x i = j The cross product is typically used in meteorology where there is rotation involved (e.g. vorticity). The “Del” or Differential Operator ∂ ∂ v ∂ ∇ = iv+ vj + k ∂x ∂y ∂z If the del operator is multiplied by a scalar (e.g. ‘a’), it is known as the “gradient of a”. ∂a ∂a v ∂a ∇a = iv+ vj + k ∂x ∂y ∂z If we dot multiply a velocity vector (V) with the del, it yields the divergence of V. ∂u ∂v ∂w ∇ •V= + + ∂x ∂y ∂z Frequently we dot the 2-dimensional (horizontal) wind with the del operator to yield the horizontal wind divergence. If we multiply a velocity vector (V) by cross product with the del, it yields the curl. v iv v j k ∂ ∂ ∂ ⎛ ∂w ∂v ⎞ ⎛ ∂u ∂w ⎞ ⎛ ∂v ∂u ⎞ ∇ x V = = i⎜ − ⎟ +j⎜ − ⎟ +k⎜ − ⎟ ∂x∂ y∂ z ⎝ ∂y ∂z ⎠ ⎝ ∂z ∂x ⎠ ⎝ ∂x ∂y ⎠ u v w (1) (2) (3) Term (3) is the rotation in the horizontal plane. This is the common expression for relative vorticity (ζ) in Cartesian coordinates. We can arrive at this expression by taking the dot product of the 3-D wind cross product with the k unit vector: ∂v ∂u ζ = k•(∇ x V) = − ∂x ∂y If we dot multiply the del operator with itself, we have the Laplacian operator (∇2 ): ∇ • ∇ = ∇2 If we apply the Laplacian to a scalar, we get: ∂2a ∂2a ∂2a ∇ • ∇a = ∇2 a = + + ∂x2 ∂y2 ∂z 2 Finally, if we dot multiply the gradient of a scalar (e.g. T for temperature) with the wind vector, we get the advection of temperature by the wind: ∂T ∂T ∂T V•∇ T = u + v + w ∂x ∂y ∂z Euler’s Relation shows how a total derivative can be broken down into a local rate of change + the advection of a quantity. For example, the total derivative of temperature (T) can be written as: dT ∂T ∂T ∂T ∂T = + u + v + w dt ∂t ∂x ∂y ∂z Substituting from the advection relationship above, we get: dT ∂T = + V•∇T dt ∂t .
Recommended publications
  • Lecture 9: Partial Derivatives
    Math S21a: Multivariable calculus Oliver Knill, Summer 2016 Lecture 9: Partial derivatives ∂ If f(x,y) is a function of two variables, then ∂x f(x,y) is defined as the derivative of the function g(x) = f(x,y) with respect to x, where y is considered a constant. It is called the partial derivative of f with respect to x. The partial derivative with respect to y is defined in the same way. ∂ We use the short hand notation fx(x,y) = ∂x f(x,y). For iterated derivatives, the notation is ∂ ∂ similar: for example fxy = ∂x ∂y f. The meaning of fx(x0,y0) is the slope of the graph sliced at (x0,y0) in the x direction. The second derivative fxx is a measure of concavity in that direction. The meaning of fxy is the rate of change of the slope if you change the slicing. The notation for partial derivatives ∂xf,∂yf was introduced by Carl Gustav Jacobi. Before, Josef Lagrange had used the term ”partial differences”. Partial derivatives fx and fy measure the rate of change of the function in the x or y directions. For functions of more variables, the partial derivatives are defined in a similar way. 4 2 2 4 3 2 2 2 1 For f(x,y)= x 6x y + y , we have fx(x,y)=4x 12xy ,fxx = 12x 12y ,fy(x,y)= − − − 12x2y +4y3,f = 12x2 +12y2 and see that f + f = 0. A function which satisfies this − yy − xx yy equation is also called harmonic. The equation fxx + fyy = 0 is an example of a partial differential equation: it is an equation for an unknown function f(x,y) which involves partial derivatives with respect to more than one variables.
    [Show full text]
  • Differentiation Rules (Differential Calculus)
    Differentiation Rules (Differential Calculus) 1. Notation The derivative of a function f with respect to one independent variable (usually x or t) is a function that will be denoted by D f . Note that f (x) and (D f )(x) are the values of these functions at x. 2. Alternate Notations for (D f )(x) d d f (x) d f 0 (1) For functions f in one variable, x, alternate notations are: Dx f (x), dx f (x), dx , dx (x), f (x), f (x). The “(x)” part might be dropped although technically this changes the meaning: f is the name of a function, dy 0 whereas f (x) is the value of it at x. If y = f (x), then Dxy, dx , y , etc. can be used. If the variable t represents time then Dt f can be written f˙. The differential, “d f ”, and the change in f ,“D f ”, are related to the derivative but have special meanings and are never used to indicate ordinary differentiation. dy 0 Historical note: Newton used y,˙ while Leibniz used dx . About a century later Lagrange introduced y and Arbogast introduced the operator notation D. 3. Domains The domain of D f is always a subset of the domain of f . The conventional domain of f , if f (x) is given by an algebraic expression, is all values of x for which the expression is defined and results in a real number. If f has the conventional domain, then D f usually, but not always, has conventional domain. Exceptions are noted below.
    [Show full text]
  • Notes for Math 136: Review of Calculus
    Notes for Math 136: Review of Calculus Gyu Eun Lee These notes were written for my personal use for teaching purposes for the course Math 136 running in the Spring of 2016 at UCLA. They are also intended for use as a general calculus reference for this course. In these notes we will briefly review the results of the calculus of several variables most frequently used in partial differential equations. The selection of topics is inspired by the list of topics given by Strauss at the end of section 1.1, but we will not cover everything. Certain topics are covered in the Appendix to the textbook, and we will not deal with them here. The results of single-variable calculus are assumed to be familiar. Practicality, not rigor, is the aim. This document will be updated throughout the quarter as we encounter material involving additional topics. We will focus on functions of two real variables, u = u(x;t). Most definitions and results listed will have generalizations to higher numbers of variables, and we hope the generalizations will be reasonably straightforward to the reader if they become necessary. Occasionally (notably for the chain rule in its many forms) it will be convenient to work with functions of an arbitrary number of variables. We will be rather loose about the issues of differentiability and integrability: unless otherwise stated, we will assume all derivatives and integrals exist, and if we require it we will assume derivatives are continuous up to the required order. (This is also generally the assumption in Strauss.) 1 Differential calculus of several variables 1.1 Partial derivatives Given a scalar function u = u(x;t) of two variables, we may hold one of the variables constant and regard it as a function of one variable only: vx(t) = u(x;t) = wt(x): Then the partial derivatives of u with respect of x and with respect to t are defined as the familiar derivatives from single variable calculus: ¶u dv ¶u dw = x ; = t : ¶t dt ¶x dx c 2016, Gyu Eun Lee.
    [Show full text]
  • Calculus Terminology
    AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential
    [Show full text]
  • CHAPTER 3: Derivatives
    CHAPTER 3: Derivatives 3.1: Derivatives, Tangent Lines, and Rates of Change 3.2: Derivative Functions and Differentiability 3.3: Techniques of Differentiation 3.4: Derivatives of Trigonometric Functions 3.5: Differentials and Linearization of Functions 3.6: Chain Rule 3.7: Implicit Differentiation 3.8: Related Rates • Derivatives represent slopes of tangent lines and rates of change (such as velocity). • In this chapter, we will define derivatives and derivative functions using limits. • We will develop short cut techniques for finding derivatives. • Tangent lines correspond to local linear approximations of functions. • Implicit differentiation is a technique used in applied related rates problems. (Section 3.1: Derivatives, Tangent Lines, and Rates of Change) 3.1.1 SECTION 3.1: DERIVATIVES, TANGENT LINES, AND RATES OF CHANGE LEARNING OBJECTIVES • Relate difference quotients to slopes of secant lines and average rates of change. • Know, understand, and apply the Limit Definition of the Derivative at a Point. • Relate derivatives to slopes of tangent lines and instantaneous rates of change. • Relate opposite reciprocals of derivatives to slopes of normal lines. PART A: SECANT LINES • For now, assume that f is a polynomial function of x. (We will relax this assumption in Part B.) Assume that a is a constant. • Temporarily fix an arbitrary real value of x. (By “arbitrary,” we mean that any real value will do). Later, instead of thinking of x as a fixed (or single) value, we will think of it as a “moving” or “varying” variable that can take on different values. The secant line to the graph of f on the interval []a, x , where a < x , is the line that passes through the points a, fa and x, fx.
    [Show full text]
  • Antiderivatives 307
    4100 AWL/Thomas_ch04p244-324 8/20/04 9:02 AM Page 307 4.8 Antiderivatives 307 4.8 Antiderivatives We have studied how to find the derivative of a function. However, many problems re- quire that we recover a function from its known derivative (from its known rate of change). For instance, we may know the velocity function of an object falling from an initial height and need to know its height at any time over some period. More generally, we want to find a function F from its derivative ƒ. If such a function F exists, it is called an anti- derivative of ƒ. Finding Antiderivatives DEFINITION Antiderivative A function F is an antiderivative of ƒ on an interval I if F¿sxd = ƒsxd for all x in I. The process of recovering a function F(x) from its derivative ƒ(x) is called antidiffer- entiation. We use capital letters such as F to represent an antiderivative of a function ƒ, G to represent an antiderivative of g, and so forth. EXAMPLE 1 Finding Antiderivatives Find an antiderivative for each of the following functions. (a) ƒsxd = 2x (b) gsxd = cos x (c) hsxd = 2x + cos x Solution (a) Fsxd = x2 (b) Gsxd = sin x (c) Hsxd = x2 + sin x Each answer can be checked by differentiating. The derivative of Fsxd = x2 is 2x. The derivative of Gsxd = sin x is cos x and the derivative of Hsxd = x2 + sin x is 2x + cos x. The function Fsxd = x2 is not the only function whose derivative is 2x. The function x2 + 1 has the same derivative.
    [Show full text]
  • Numerical Differentiation
    Jim Lambers MAT 460/560 Fall Semester 2009-10 Lecture 23 Notes These notes correspond to Section 4.1 in the text. Numerical Differentiation We now discuss the other fundamental problem from calculus that frequently arises in scientific applications, the problem of computing the derivative of a given function f(x). Finite Difference Approximations 0 Recall that the derivative of f(x) at a point x0, denoted f (x0), is defined by 0 f(x0 + h) − f(x0) f (x0) = lim : h!0 h 0 This definition suggests a method for approximating f (x0). If we choose h to be a small positive constant, then f(x + h) − f(x ) f 0(x ) ≈ 0 0 : 0 h This approximation is called the forward difference formula. 00 To estimate the accuracy of this approximation, we note that if f (x) exists on [x0; x0 + h], 0 00 2 then, by Taylor's Theorem, f(x0 +h) = f(x0)+f (x0)h+f ()h =2; where 2 [x0; x0 +h]: Solving 0 for f (x0), we obtain f(x + h) − f(x ) f 00() f 0(x ) = 0 0 + h; 0 h 2 so the error in the forward difference formula is O(h). We say that this formula is first-order accurate. 0 The forward-difference formula is called a finite difference approximation to f (x0), because it approximates f 0(x) using values of f(x) at points that have a small, but finite, distance between them, as opposed to the definition of the derivative, that takes a limit and therefore computes the derivative using an “infinitely small" value of h.
    [Show full text]
  • M.Sc. (Mathematics), SEM- I Paper - II ANALYSIS – I
    M.Sc. (Mathematics), SEM- I Paper - II ANALYSIS – I PSMT102 Note- There will be some addition to this study material. You should download it again after few weeks. CONTENT Unit No. Title 1. Differentiation of Functions of Several Variables 2. Derivatives of Higher Orders 3. Applications of Derivatives 4. Inverse and Implicit Function Theorems 5. Riemann Integral - I 6. Measure Zero Set *** SYLLABUS Unit I. Euclidean space Euclidean space : inner product < and properties, norm Cauchy-Schwarz inequality, properties of the norm function . (Ref. W. Rudin or M. Spivak). Standard topology on : open subsets of , closed subsets of , interior and boundary of a subset of . (ref. M. Spivak) Operator norm of a linear transformation ( : v & }) and its properties such as: For all linear maps and 1. 2. ,and 3. (Ref. C. C. Pugh or A. Browder) Compactness: Open cover of a subset of , Compact subsets of (A subset K of is compact if every open cover of K contains a finite subover), Heine-Borel theorem (statement only), the Cartesian product of two compact subsets of compact (statement only), every closed and bounded subset of is compact. Bolzano-Weierstrass theorem: Any bounded sequence in has a converging subsequence. Brief review of following three topics: 1. Functions and Continuity Notation: arbitary non-empty set. A function f : A → and its component functions, continuity of a function( , δ definition). A function f : A → is continuous if and only if for every open subset V there is an open subset U of such that 2. Continuity and compactness: Let K be a compact subset and f : K → be any continuous function.
    [Show full text]
  • Review of Differentiation and Integration
    Schreyer Fall 2018 Review of Differentiation and Integration for Ordinary Differential Equations In this course you will be expected to be able to differentiate and integrate quickly and accurately. Many students take this course after having taken their previous course many years ago, at another institution where certain topics may have been omitted, or just feel uncomfortable with particular techniques. Because understanding this material is so important to being successful in this course, we have put together this brief review packet. In this packet you will find sample questions and a brief discussion of each topic. If you find the material in this pamphlet is not sufficient for you, it may be necessary for you to use additional resources, such as a calculus textbook or online materials. Because this is considered prerequisite material, it is ultimately your responsibility to learn it. The topics to be covered include Differentiation and Integration. 1 Differentiation Exercises: 1. Find the derivative of y = x3 sin(x). ln(x) 2. Find the derivative of y = cos(x) . 3. Find the derivative of y = ln(sin(e2x)). Discussion: It is expected that you know, without looking at a table, the following differentiation rules: d [(kx)n] = kn(kx)n−1 (1) dx d h i ekx = kekx (2) dx d 1 [ln(kx)] = (3) dx x d [sin(kx)] = k cos kx (4) dx d [cos(kx)] = −k sin x (5) dx d [uv] = u0v + uv0 (6) dx 1 d u u0v − uv0 = (7) dx v v2 d [u(v(x))] = u0(v)v0(x): (8) dx We put in the constant k into (1) - (5) because a very common mistake to make is something d e2x like: e2x = (when the correct answer is 2e2x).
    [Show full text]
  • Just the Definitions, Theorem Statements, Proofs On
    MATH 3333{INTERMEDIATE ANALYSIS{BLECHER NOTES 55 Abbreviated notes version for Test 3: just the definitions, theorem statements, proofs on the list. I may possibly have made a mistake, so check it. Also, this is not intended as a REPLACEMENT for your classnotes; the classnotes have lots of other things that you may need for your understanding, like worked examples. 6. The derivative 6.1. Differentiation rules. Definition: Let f :(a; b) ! R and c 2 (a; b). If the limit lim f(x)−f(c) exists and is finite, then we say that f is differentiable at x!c x−c 0 df c, and we write this limit as f (c) or dx (c). This is the derivative of f at c, and also obviously equals lim f(c+h)−f(c) by setting x = c + h or h = x − c. If f is h!0 h differentiable at every point in (a; b), then we say that f is differentiable on (a; b). Theorem 6.1. If f :(a; b) ! R is differentiable at at a point c 2 (a; b), then f is continuous at c. Proof. If f is differentiable at c then f(x) − f(c) f(x) = (x − c) + f(c) ! f 0(c)0 + f(c) = f(c); x − c as x ! c. So f is continuous at c. Theorem 6.2. (Calculus I differentiation laws) If f; g :(a; b) ! R is differentiable at a point c 2 (a; b), then (1) f(x) + g(x) is differentiable at c and (f + g)0(c) = f 0(c) + g0(c).
    [Show full text]
  • MATH 162: Calculus II Differentiation
    MATH 162: Calculus II Framework for Mon., Jan. 29 Review of Differentiation and Integration Differentiation Definition of derivative f 0(x): f(x + h) − f(x) f(y) − f(x) lim or lim . h→0 h y→x y − x Differentiation rules: 1. Sum/Difference rule: If f, g are differentiable at x0, then 0 0 0 (f ± g) (x0) = f (x0) ± g (x0). 2. Product rule: If f, g are differentiable at x0, then 0 0 0 (fg) (x0) = f (x0)g(x0) + f(x0)g (x0). 3. Quotient rule: If f, g are differentiable at x0, and g(x0) 6= 0, then 0 0 0 f f (x0)g(x0) − f(x0)g (x0) (x0) = 2 . g [g(x0)] 4. Chain rule: If g is differentiable at x0, and f is differentiable at g(x0), then 0 0 0 (f ◦ g) (x0) = f (g(x0))g (x0). This rule may also be expressed as dy dy du = . dx x=x0 du u=u(x0) dx x=x0 Implicit differentiation is a consequence of the chain rule. For instance, if y is really dependent upon x (i.e., y = y(x)), and if u = y3, then d du du dy d (y3) = = = (y3)y0(x) = 3y2y0. dx dx dy dx dy Practice: Find d x d √ d , (x2 y), and [y cos(xy)]. dx y dx dx MATH 162—Framework for Mon., Jan. 29 Review of Differentiation and Integration Integration The definite integral • the area problem • Riemann sums • definition Fundamental Theorem of Calculus: R x I: Suppose f is continuous on [a, b].
    [Show full text]
  • Neural Networks Learning the Network: Backprop
    Neural Networks Learning the network: Backprop 11-785, Spring 2018 Lecture 4 1 Design exercise • Input: Binary coded number • Output: One-hot vector • Input units? • Output units? • Architecture? • Activations? 2 Recap: The MLP can represent any function • The MLP can be constructed to represent anything • But how do we construct it? 3 Recap: How to learn the function • By minimizing expected error 4 Recap: Sampling the function di Xi • is unknown, so sample it – Basically, get input-output pairs for a number of samples of input • Many samples , where – Good sampling: the samples of will be drawn from • Estimate function from the samples 5 The Empirical risk di Xi • The expected error is the average error over the entire input space • The empirical estimate of the expected error is the average error over the samples 6 Empirical Risk Minimization • Given a training set of input-output pairs 2 – Error on the i-th instance: – Empirical average error on all training data: • Estimate the parameters to minimize the empirical estimate of expected error – I.e. minimize the empirical error over the drawn samples 7 Problem Statement • Given a training set of input-output pairs • Minimize the following function w.r.t • This is problem of function minimization – An instance of optimization 8 • A CRASH COURSE ON FUNCTION OPTIMIZATION 9 Caveat about following slides • The following slides speak of optimizing a function w.r.t a variable “x” • This is only mathematical notation. In our actual network optimization problem we would
    [Show full text]