Build Your Own Particle Accelerator
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Slowing Down of a Particle Beam in the Dusty Plasmas with Kappa
arXiv:1708.04525 Slowing Down of Charged Particles in Dusty Plasmas with Power-law Kappa-distributions Jiulin Du 1*, Ran Guo 2, Zhipeng Liu3 and Songtao Du4 1 Department of Physics, School of Science, Tianjin University, Tianjin 300072, China 2 School of Science, Civil Aviation University of China, Tianjin 300300, China 3 School of Science, Tianjin Chengjian University, Tianjin 300384, China 4 College of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China Keywords: Slowing down, Kappa-distributions, Dusty plasma, Fokker-Planck collision theory Abstract We study slowing down of a particle beam passing through the dusty plasma with power-law κ-distributions. Three plasma components, electrons, ions and dust particles, can have a different κ-parameter. The deceleration factor and slowing down time are derived and expressed by a hyper-geometric κ-function. Numerically we study slowing down property of an electron beam in the κ-distributed dusty plasma. We show that the slowing down in the plasma depends strongly on the κ-parameters of plasma components, and dust particles play a dominant role in the deceleration effects. We also show dependence of the slowing down on mass and charge of a dust particle in the plasma. 1 Introduction Dusty plasmas are ubiquitous in astrophysical, space and terrestrial environments, such as the interstellar clouds, the circumstellar clouds, the interplanetary space, the comets, the planetary rings, the Earth’s atmosphere, and the lower ionosphere etc. They can also exist in laboratory plasma environments. Dusty plasma consists of three components: electrons, ions and dust particles of micron- or/and submicron-sized particulates. -
Upgrading the CMS Detector on the Large Hadron Collider
Upgrading the CMS Detector on the Large Hadron Collider Stefan Spanier Professor, Department of Physics CURRENT RESEARCH AFFILIATION Putting a diamond on the largest ring in the world The University of Tennessee, Knoxville July 4, 2012 is one of the most exciting dates to remember in modern science. On this day, EDUCATION scientists working with the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) in Switzerland discovered a particle consistent with the Ph.D., Johannes Gutenberg University, Mainz, Germany characteristics of the Higgs boson particle. This particle is predicted by the Standard Model of particle physics. The model is very successful in linking measurements made with previous RESEARCH AREAS particle accelerators, but still leaves unanswered questions about how the universe works. The model does ignores dark matter and dark energy, and while it describes the behavior of Technology, Materials Science / Physics the Higgs particle it does not predict its own mass. These mysteries indicate there must be a larger picture that includes new forces and particles, and the Standard Model is only part of FUNDING REQUEST it. Spanier is seeking $70,000 annually to fund this project. This will cover a graduate student This is where the LHC, the world’s largest and most powerful particle accelerator comes in. for one year, travel expenses to the particle beam physics laboratory, acquisition and The LHC was first conceived in 1984, and brought online in 2008. It consists of a 27-kilometer preparation of a new detector substrate from a diamond growth process batch and one ring of superconducting magnets with accelerating structures that boost protons to neutron irradiation in a nuclear reactor. -
Particle Beam Diagnostics and Control
Particle beam diagnostics and control G. Kube Deutsches Elektronen-Synchrotron DESY Notkestraße 85, 22607 Hamburg, Germany Summary. | Beam diagnostics and instrumentation are an essential part of any kind of accelerator. There is a large variety of parameters to be measured for obser- vation of particle beams with the precision required to tune, operate and improve the machine. Depending on the type of accelerator, for the same parameter the working principle of a monitor may strongly differ, and related to it also the requirements for accuracy. This report will mainly focus on electron beam diagnostic monitors presently in use at 4th generation light sources (single-pass Free Electron Lasers), and present the state-of-the-art diagnostic systems and concepts. 1. { Introduction Nowadays particle accelerators play an important role in a wide number of fields where a primary or secondary beam from an accelerator can be used for industrial or medical applications or for basic and applied research. The interaction of such beam with matter is exploited in order to analyze physical, chemical or biological samples, for a modification of physical, chemical or biological sample properties, or for fundamental research in basic subatomic physics. In order to cover such a wide range of applications different accelerator types are required. Cyclotrons are often used to produce medical isotopes for positron emission to- ⃝c Societ`aItaliana di Fisica 1 2 G. Kube mography (PET) and single photon emission computed tomography (SPECT). For elec- tron radiotherapy mainly linear accelerators (linacs) are in operation, while cyclotrons or synchrotrons are additionally used for proton therapy. Third generation synchrotron light sources are electron synchrotrons, while the new fourth generation light sources (free electron lasers) operating at short wavelengths are electron linac based accelera- tors. -
4. Particle Generators/Accelerators
Joint innovative training and teaching/ learning program in enhancing development and transfer knowledge of application of ionizing radiation in materials processing 4. Particle Generators/Accelerators Diana Adlienė Department of Physics Kaunas University of Technolog y Joint innovative training and teaching/ learning program in enhancing development and transfer knowledge of application of ionizing radiation in materials processing This project has been funded with support from the European Commission. This publication reflects the views only of the author. Polish National Agency and the Commission cannot be held responsible for any use which may be made of the information contained therein. Date: Oct. 2017 DISCLAIMER This presentation contains some information addapted from open access education and training materials provided by IAEA TABLE OF CONTENTS 1. Introduction 2. X-ray machines 3. Particle generators/accelerators 4. Types of industrial irradiators The best accelerator in the universe… INTRODUCTION • Naturally occurring radioactive sources: – Up to 5 MeV Alpha’s (helium nuclei) – Up to 3 MeV Beta particles (electrons) • Natural sources are difficult to maintain, their applications are limited: – Chemical processing: purity, messy, and expensive; – Low intensity; – Poor geometry; – Uncontrolled energies, usually very broad Artificial sources (beams) are requested! INTRODUCTION • Beams of accelerated particles can be used to produce beams of secondary particles: Photons (x-rays, gamma-rays, visible light) are generated from beams -
The Large Hadron Collider Lyndon Evans CERN – European Organization for Nuclear Research, Geneva, Switzerland
34th SLAC Summer Institute On Particle Physics (SSI 2006), July 17-28, 2006 The Large Hadron Collider Lyndon Evans CERN – European Organization for Nuclear Research, Geneva, Switzerland 1. INTRODUCTION The Large Hadron Collider (LHC) at CERN is now in its final installation and commissioning phase. It is a two-ring superconducting proton-proton collider housed in the 27 km tunnel previously constructed for the Large Electron Positron collider (LEP). It is designed to provide proton-proton collisions with unprecedented luminosity (1034cm-2.s-1) and a centre-of-mass energy of 14 TeV for the study of rare events such as the production of the Higgs particle if it exists. In order to reach the required energy in the existing tunnel, the dipoles must operate at 1.9 K in superfluid helium. In addition to p-p operation, the LHC will be able to collide heavy nuclei (Pb-Pb) with a centre-of-mass energy of 1150 TeV (2.76 TeV/u and 7 TeV per charge). By modifying the existing obsolete antiproton ring (LEAR) into an ion accumulator (LEIR) in which electron cooling is applied, the luminosity can reach 1027cm-2.s-1. The LHC presents many innovative features and a number of challenges which push the art of safely manipulating intense proton beams to extreme limits. The beams are injected into the LHC from the existing Super Proton Synchrotron (SPS) at an energy of 450 GeV. After the two rings are filled, the machine is ramped to its nominal energy of 7 TeV over about 28 minutes. In order to reach this energy, the dipole field must reach the unprecedented level for accelerator magnets of 8.3 T. -
Beam-Transport Systems for Particle Therapy
Beam-Transport Systems for Particle Therapy J.M. Schippers Paul Scherrer Institut, Villigen, Switzerland Abstract The beam transport system between accelerator and patient treatment location in a particle therapy facility is described. After some general layout aspects the major beam handling tasks of this system are discussed. These are energy selection, an optimal transport of the particle beam to the beam delivery device and the gantry, a device that is able to rotate a beam delivery system around the patient, so that the tumour can be irradiated from almost any direction. Also the method of pencil beam scanning is described and how this is implemented within a gantry. Using this method the particle dose is spread over the tumour volume to the prescribed dose distribution. Keywords Beam transport; beam optics; degrader; beam analysis; gantry; pencil beam scanning. 1 Introduction The main purpose of the beam-transport system is to aim the proton beam, with the correct diameter and intensity, at the tumour in the patient and to apply the correct dose distribution. The beam transport from the accelerator to the tumour in the patient consists of the following major sections (see Fig. 1): – energy setting and energy selection (only for cyclotrons); – transport system to the treatment room(s), including beam-emittance matching; – per treatment room—a gantry or a fixed beam line aiming the beam from the correct direction; – beam-delivery system in the treatment room, by which the dose distribution is actually being applied. These devices are combined in the so called ‘nozzle’ at the exit of the fixed beam line or of the gantry. -
00307399.Pdf
+ ASI&’rrrativc ActioIs/Eq51dS&MtSUdtyErrqsbyer < This work was supported by the National Cancer Institute, Division of Research Resources and Centers, Department of Health, Education, and Welfare. Edited by Ixruise Taylor, AT Division. DISCLAMER This report was prepared as an account of work sponsored by assagency of the Uruted States &rvcrrrment. Neither the United States Ciovernanerstnor any agency thereof, nor asryof their employru, makes any *anty, express or irnpfied, or assumesany legal liability or responsibility for the accuracy, completeness, or usefulnessof arsyirsfornsation, apparatus, product, or processdisclosed, or represents that its use would not infringe privately owned rights. References herein to any specitlc comnserciat product. process, or aer+ce by trade name, trademark, rnamafacmrer, or otherwise, does not necessady constitute or imply ita errdorsement, recommendation, or favoring by the Urdted States Government or any agency thersof. llte view and opinions of authors expressed herein do not nemsas-ity stare or reflect those of the United States Government or any agency thereof. LA-9144-MS UC-28 and UC-48 Issued: February 1982 . ● / A Linear Accelerator for Radioisotope Production L.D. Hansborough R. W. Harem J. E. Stovall i !-=-—- ‘ - I I . -.... J“’”’ .“ Los Alamos National Laboratory ~~~~la~~s Lo.Alamo.,New.exi..875.~ A LINEAR ACCELERATOR FOR RADIOISOTOPE PRODUCTION by L. D. Hansborough, R. W. Harem, and J. E. Stovall ABSTRACT A 200- to 500-uA source of 70- to 90-MeV protons would be a valuable asset to the nuclear medicine program. A linear accelerator (linac) can achieve this performance, and it can be extended to even higher energies and currents. Variable energy and current options are available. -
Beam–Material Interactions
Beam–Material Interactions N.V. Mokhov1 and F. Cerutti2 1Fermilab, Batavia, IL 60510, USA 2CERN, Geneva, Switzerland Abstract This paper is motivated by the growing importance of better understanding of the phenomena and consequences of high-intensity energetic particle beam interactions with accelerator, generic target, and detector components. It reviews the principal physical processes of fast-particle interactions with matter, effects in materials under irradiation, materials response, related to component lifetime and performance, simulation techniques, and methods of mitigating the impact of radiation on the components and environment in challenging current and future applications. Keywords Particle physics simulation; material irradiation effects; accelerator design. 1 Introduction The next generation of medium- and high-energy accelerators for megawatt proton, electron, and heavy- ion beams moves us into a completely new domain of extreme energy deposition density up to 0.1 MJ/g and power density up to 1 TW/g in beam interactions with matter [1, 2]. The consequences of controlled and uncontrolled impacts of such high-intensity beams on components of accelerators, beamlines, target stations, beam collimators and absorbers, detectors, shielding, and the environment can range from minor to catastrophic. Challenges also arise from the increasing complexity of accelerators and experimental set-ups, as well as from design, engineering, and performance constraints. All these factors put unprecedented requirements on the accuracy of particle production predictions, the capability and reliability of the codes used in planning new accelerator facilities and experiments, the design of machine, target, and collimation systems, new materials and technologies, detectors, and radiation shielding and the minimization of radiation impact on the environment. -
Tevatron Accelerator Physics and Operation Highlights A
FERMILAB-CONF-11-129-APC TEVATRON ACCELERATOR PHYSICS AND OPERATION HIGHLIGHTS A. Valishev for the Tevatron group, FNAL, Batavia, IL 60510, U.S.A. Abstract Table 1: Integrated luminosity performance by fiscal year. The performance of the Tevatron collider demonstrated FY07 FY08 FY09 FY10 continuous growth over the course of Run II, with the peak luminosity reaching 4×1032 cm-2 s-1, and the weekly Total integral (fb-1) 1.3 1.8 1.9 2.47 -1 integration rate exceeding 70 pb . This report presents a review of the most important advances that contributed to Until the middle of calendar year 2009, the luminosity this performance improvement, including beam dynamics growth was dominated by improvements of the antiproton modeling, precision optics measurements and stability production rate [2], which remains stable since. control, implementation of collimation during low-beta Performance improvements over the last two years squeeze. Algorithms employed for optimization of the became possible because of implementation of a few luminosity integration are presented and the lessons operational changes, described in the following section. learned from high-luminosity operation are discussed. Studies of novel accelerator physics concepts at the Tevatron are described, such as the collimation techniques using crystal collimator and hollow electron beam, and compensation of beam-beam effects. COLLIDER RUN II PERFORMANCE Tevatron collider Run II with proton-antiproton collisions at the center of mass energy of 1.96 TeV started in March 2001. Since then, 10.5 fb-1 of integrated luminosity has been delivered to CDF and D0 experiments (Fig. 1). All major technical upgrades of the accelerator complex were completed by 2007 [1]. -
MIT at the Large Hadron Collider—Illuminating the High-Energy Frontier
Mit at the large hadron collider—Illuminating the high-energy frontier 40 ) roland | klute mit physics annual 2010 gunther roland and Markus Klute ver the last few decades, teams of physicists and engineers O all over the globe have worked on the components for one of the most complex machines ever built: the Large Hadron Collider (LHC) at the CERN laboratory in Geneva, Switzerland. Collaborations of thousands of scientists have assembled the giant particle detectors used to examine collisions of protons and nuclei at energies never before achieved in a labo- ratory. After initial tests proved successful in late 2009, the LHC physics program was launched in March 2010. Now the race is on to fulfill the LHC’s paradoxical mission: to complete the Stan- dard Model of particle physics by detecting its last missing piece, the Higgs boson, and to discover the building blocks of a more complete theory of nature to finally replace the Standard Model. The MIT team working on the Compact Muon Solenoid (CMS) experiment at the LHC stands at the forefront of this new era of particle and nuclear physics. The High Energy Frontier Our current understanding of the fundamental interactions of nature is encap- sulated in the Standard Model of particle physics. In this theory, the multitude of subatomic particles is explained in terms of just two kinds of basic building blocks: quarks, which form protons and neutrons, and leptons, including the electron and its heavier cousins. From the three basic interactions described by the Standard Model—the strong, electroweak and gravitational forces—arise much of our understanding of the world around us, from the formation of matter in the early universe, to the energy production in the Sun, and the stability of atoms and mit physics annual 2010 roland | klute ( 41 figure 1 A photograph of the interior, central molecules. -
Introduction to Accelerators
Introduction to Accelerators Lecture 4 Basic Properties of Particle Beams William A. Barletta Director, United States Particle Accelerator School Dept. of Physics, MIT US Particle Accelerator School Homework item US Particle Accelerator School From the last lecture US Particle Accelerator School We computed the B-field from current loop with I = constant By the Biot-Savart law we found that on the z-axis I 2 2IR2 B = Rsin d zˆ = zˆ cr2 2 2 3/2 0 cR()+ z What happens if we drive the current to have a time variation? r R US Particle Accelerator School The far field B-field has a static dipole form Importantly the ring of current does not radiate US Particle Accelerator School Question to ponder: What is the field from this situation? r R We’ll return to this question in the second half of the course US Particle Accelerator School Is this really paradoxical? Let’s look at Maxwell’s equations Take the curl of xE Hence US Particle Accelerator School The dipole radiation field: note the similarity to the static dipole US Particle Accelerator School Now on to beams US Particle Accelerator School Beams: particle bunches with directed velocity Ions - either missing electrons (+) or with extra electrons (-) Electrons or positrons Plasma - ions plus electrons Source techniques depend on type of beam & on application US Particle Accelerator School Electron sources - thermionic Heated metals Some electrons have energies above potential barrier Cannot escape + HV Enough energy to escape # of electrons Work function = Electrons in a metal -
The Compact Linear E E− Collider (CLIC): Physics Potential
+ The Compact Linear e e− Collider (CLIC): Physics Potential Input to the European Particle Physics Strategy Update on behalf of the CLIC and CLICdp Collaborations 18 December 2018 1) Contact person: P. Roloff ∗ †‡ §¶ Editors: R. Franceschini , P. Roloff∗, U. Schnoor∗, A. Wulzer∗ † ‡ ∗ CERN, Geneva, Switzerland, Università degli Studi Roma Tre, Rome, Italy, INFN, Sezione di Roma Tre, Rome, Italy, § Università di Padova, Padova, Italy, ¶ LPTP, EPFL, Lausanne, Switzerland Abstract + The Compact Linear Collider, CLIC, is a proposed e e− collider at the TeV scale whose physics poten- tial ranges from high-precision measurements to extensive direct sensitivity to physics beyond the Standard Model. This document summarises the physics potential of CLIC, obtained in detailed studies, many based on full simulation of the CLIC detector. CLIC covers one order of magnitude of centre-of-mass energies from 350 GeV to 3 TeV, giving access to large event samples for a variety of SM processes, many of them for the + first time in e e− collisions or for the first time at all. The high collision energy combined with the large + luminosity and clean environment of the e e− collisions enables the measurement of the properties of Stand- ard Model particles, such as the Higgs boson and the top quark, with unparalleled precision. CLIC might also discover indirect effects of very heavy new physics by probing the parameters of the Standard Model Effective Field Theory with an unprecedented level of precision. The direct and indirect reach of CLIC to physics beyond the Standard Model significantly exceeds that of the HL-LHC. This includes new particles detected in challenging non-standard signatures.