Local Loop Unbundling a View from Opal Telecom Networks & The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Introduction to Digital Subscriber's Line (DSL) Chapter 2 Telephone
Introduction to Digital Subscriber’s Line (DSL) Professor Fu Li, Ph.D., P.E. © Chapter 2 Telephone Infrastructure · Telephone line dates back to Bell in 1875 · Digital Transmission technology using complex algorithm based on DSP and VLSI to compensate impairments common to phone lines. · Phone line carries the single voice signal with 3.4 KHz bandwidth, DSL conveys 100 Compressed voice signals or a video signals. 1 · 15% phones require upgrade activities. · Phone company spent approximately 1 trillion US dollars to construct lines; · 700 millions are in service in 1997, 900 millions by 2001. · Most lines will support 1 Mb/s for DSL and many will support well above 1Mb/s data rate. Typical Voice Network 2 THE ACCESS NETWORK • DSL is really an access technology, and the associated DSL equipment is deployed in the local access network. • The access network consists of the local loops and associated equipment that connects the service user location to the central office. • This network typically consists of cable bundles carrying thousands of twisted-wire pairs to feeder distribution interfaces (FDIs). Two primary ways traditionally to deal with long loops: • 1.Use loading coils to modify the electrical characteristics of the local loop, allowing better quality voice-frequency transmission over extended distances (typically greater than 18,000 feet). • Loading coils are not compatible with the higher frequency attributes of DSL transmissions and they must be removed before DSL-based services can be provisioned. 3 Two primary ways traditionally to deal with long loops • 2. Set up remote terminals where the signals could be terminated at an intermediate point, aggregated and backhauled to the central office. -
Local-Loop and DSL REFERENCE GUIDE Table of Contents
Local-Loop and DSL REFERENCE GUIDE Table of Contents Prologue ............................................................................ 2 2.3.9.3 REIN ....................................................................32 2.3.9.4 SHINE..................................................................32 1. Introduction ................................................................. 5 2.3.9.5 PEIN ....................................................................32 2. What is DSL? ................................................................ 6 2.3.10 Bonding...............................................................33 2.3.11 Vectoring ............................................................35 2.1 Pre-DSL Delivery of Data ........................................................... 6 2.3.12 G.Fast ..................................................................36 2.1.1 Dial-Up ................................................................................ 6 2.1.2 ISDN .................................................................................... 7 3. DSL Deployment Issues ...........................................38 2.2 xDSL Overview ............................................................................. 8 3.1 Determining the Nature of the Problem ...............................39 2.3 DSL In-Depth .............................................................................12 3.2 Performing a Visual Inspection ..............................................44 2.3.1 ISDN ..................................................................................13 -
Controlpoint™
White Paper on MDF Management ControlPoint™ MDF/IDF Line Management in an ILEC Central Office or Remote Environment February 2001 Introduction The deregulation of telecommunications services and recent FCC rulings has changed the dynamics of the local loop. Collocation is an everyday reality in most central offices and potentially in many remotes. Connection management, as customers migrate between providers, is challenging and presents a "service strain" to the service provider. "Line sharing" rulings are expected to accelerate demand and pose new line-qualification challenges to the ILEC. The dramatic increase in competition for the local loop increased the level of activity centering on connection, maintenance, and management of copper wire and wireline services. Given these high levels of activity in the loop, the traditional labor- intensive manual approach to cross-connect management is no longer viable via manual labor and processes. “Truck rolls” are too slow and expensive to be effective in today's competitive industry. The obvious answer: automate the provisioning process and provide intelligent wireline management at the physical layer. NHC's innovative ControlPoint Cross-Connect System replaces labor intensive wiring, reducing operating costs and maintenance, improving service delivery cycles. ControlPoint dramatically reduces labor, space, and time of service versus conven- tional MDF/IDF and OSP distribution frames that require on-site wiring by experi- enced technicians. The NHC solution provides the ILEC with complete control over the entire service deployment cycle, and ensures quality of service (QoS) via fallback switching. ControlPoint works with all copper based services including POTS, ISDN, T1, xDSL and other voice and data protocols. -
Connecting Australia! Wireless Broadband
The Parliament of the Commonwealth of Australia CONNECTING AUSTRALIA! WIRELESS BROADBAND HOUSE OF REPRESENTATIVES STANDING COMMITTEE ON COMMUNICATIONS, INFORMATION TECHNOLOGY AND THE ARTS NOVEMBER 2002 © Commonwealth of Australia 2002 Printed by CanPrint Communications Pty Ltd ii Foreword Wireless broadband has an important role to play in extending the reach of broadband services to all Australians. There is no one particular wireless broadband technology that can solve all telecommunications problems. The future will see a mix of various technologies and the market should be permitted to determine, over time, which ones best suit particular applications. The government should maintain a general regulatory policy of ‘technology-neutrality’ (not favouring any particular technology, whether it be wireless or wire-line). Specific measures should be put in place to extend the understanding and takeup of wireless broadband. The recommendations contained in this report reflect the broad observations and statements of principle set out above. If they are adopted by the government, they would greatly facilitate the expansion of wireless broadband services in metropolitan, regional and rural areas. The Committee also has made recommendations to assist the hearing-impaired gain access to wireless broadband services, to improve the regulatory framework and to preserve the power of police and intelligence services to protect the community against illegal activities. Many people contributed to this inquiry and, in particular, the Committee benefited from the 60 submissions and many witnesses who addressed us at our eight public hearings. Also, the Committee acknowledges the invaluable assistance of Professor Harris and Dr Borg (of the Plasma Research Laboratory of the ANU) who were contracted to produce a draft report. -
Digital Loop Carrier (DLC)
Digital Loop Carrier (DLC) Definition The local loop is the physical connection between the main distribution frame in the user's premises to the telecommunications network provider. Digital loop carrier (DLC) technology makes use of digital techniques to bring a wide range of services to users via twisted-pair copper phone lines Overview The telecommunications infrastructure has undergone a great deal of change recently, and it seems that the rate of change increases exponentially as time passes. For example, DLC technology and the local loop will become more important in the future in delivering the new services that customers will require. This tutorial first addresses the history of subscriber carriers because it is important in providing clues to the future. It will then discuss some of the early next-generation digital loop carriers (NGDLC) that began to appear in the 1980s, as well as the NGDLC as a cost-effective solution for suburban and rural applications. Finally, it will explore the likely direction that loop technology will take in the future and how to enable the market for some of the more advanced services that are expected. Topics 1. History of Subscriber Carriers 2. Early Next-Generation Digital Loop Carriers 3. Next-Generation Digital Loop Carriers for Rural and Suburban Applications 4. NGDLC Applications 5. Future Directions 6. Economics 7. The Multiservice DLC Self Test Answers Acronym Guide Web ProForum Tutorials Copyright © 1/19 http://www.iec.org The International Engineering Consortium 1. History of Subscriber Carriers The history of subscriber and loop carriers is based on the initial deployment of loop electronics, which was driven primarily by transmission needs (i.e., trying to obtain better-quality transmission over longer distances). -
Powerline an Alternative Technology in the Local Loop
Powerline an alternative technology in the local loop - Presentation to IEEE - March, 2004 Agenda 1 PLC Utilities Alliance 2 Power Line Communications 3 Access PLC competitive solutions 4 Endesa’s PLC project IEEE_040308 1 PLC Utilities Alliance – Objectives and Introduction to the PUA The “PLC Utilities Alliance” (PUA) is an organization supporting Power Line Communications (PLC) development in Europe Members Objectives Achievements Develop a common Awareness & Promotion position among PUA • White Paper on PLC and its Members members Impact on the Development of Work with national Broadband in Europe and EU bodies to • Communication with EU bodies, obtain a favourable NAs, and other stakeholders environment for PLC development Standardization & Regulation Raise Awareness • Measurement campaign in five about the PLC European countries opportunity • Work in different standardisation bodies Technical reference • ETSI, CENELEC, CISPR, point JWG Help standardisation process International Cooperation More than 100 Million Support PLC equipment Research electrical customers in and Development 23 countries IEEE_040308 2 PLC Utilities Alliance – PUA Objectives for 2004 In 2004, the Awareness and Promotion Task Force of the PUA will have a special focus to boost the PLC market and to obtain a progress in key markets and utilities Maintain relationship with European Commission and National Authorities 2003 tasks follow-up Consolidate as industry reference point Keep collaborating with standardization and regulatory organizations Focus -
Line Card Codec/Filter Combo System/Design
PCM Codec/Filter Combo Family Device Design-In and Application Data Design Considerations SLWA006 August 1996 Printed on Recycled Paper IMPORTANT NOTICE Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current. TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage (“Critical Applications”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office. In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. -
Analysis on Fixed and Mobile Wimax
THESIS REPORT Analysis on Fixed and Mobile WiMAX By Umar Tariq Umer Naeem Jilani Tauseef Ahmad Siddiqui MS in Electrical Engineering majors in Telecommunications Blekinge Institute of Technology Blekinge Institute of Technology 2007 THESIS REPORT Analysis on Fixed and Mobile WiMAX By Umar Tariq Umer Naeem Jilani Tauseef Ahmed Siddiqui MS in Electrical Engineering majors in Telecommunications Project Advisor: Tommy Hult Deliverable: Report: 1 Volume Blekinge Institute of Technology 2007 I Submission Performa Name University Number Email Umar Tariq 830321-P372 [email protected] Umer Naeem Jilani 830318-P138 [email protected] Tauseef Ahmad Siddiqui 810802-P356 [email protected] Title of Project: Analysis of Fixed and Mobile WiMAX Supervisor: Tommy Hult This report is submitted as required for the Project in accordance with the rules laid down by the Blekinge Institute of Technology as part of the requirements for the award of the degree of Masters of Engineering. I declare that the work presented in this report is my own except where due reference or acknowledgement is given to the work of others. Signature of students Date (1)…………………………….. ……………………. (2)……………………………. ……………………. (3)…………………………….. ……………………. Signature of Supervisor Date …………………………. ………………………. Analysis of Fixed WiMAX and Mobile WiMAX II Acknowledgements We first would like to thank our honorable Supervisor Tommy Hult for his devotion of time to our project and to provide the facility. Secondly we appreciate the valuable comments and suggestions from Miss Kim Ngan and who helped us in our project as well as sharing their expertise and their knowledge of the subject which allowed us to complete our project effectively and efficiently in time. -
Developments in Local Loop Unbundling”, OECD Digital Economy Papers, No
Please cite this paper as: OECD (2003-06-02), “Developments in Local Loop Unbundling”, OECD Digital Economy Papers, No. 74, OECD Publishing, Paris. http://dx.doi.org/10.1787/233065827862 OECD Digital Economy Papers No. 74 Developments in Local Loop Unbundling OECD Unclassified DSTI/ICCP/TISP(2002)5/FINAL Organisation de Coopération et de Développement Economiques Organisation for Economic Co-operation and Development 10-Sep-2003 ___________________________________________________________________________________________ English - Or. English DIRECTORATE FOR SCIENCE, TECHNOLOGY AND INDUSTRY COMMITTEE FOR INFORMATION, COMPUTER AND COMMUNICATIONS POLICY Unclassified DSTI/ICCP/TISP(2002)5/FINAL Cancels & replaces the same document of 07 August 2003 Working Party on Telecommunication and Information Services Policies DEVELOPMENTS IN LOCAL LOOP UNBUNDLING English - Or. English JT00148819 Document complet disponible sur OLIS dans son format d'origine Complete document available on OLIS in its original format DSTI/ICCP/TISP(2002)5/FINAL FOREWORD This report was presented to the Working Party on Telecommunications and Information Services Policy (TISP) in June 2002 and was declassified by the Committee for Information, Computer and Communications Policy in March 2003. The report was prepared by Mr. Atsushi Umino of the OECD's Directorate for Science, Technology and Industry. It is published on the responsibility of the Secretary-General of the OECD. Copyright OECD, 2003 Applications for permission to reproduce or translate all or part of this material should be made to: Head of Publications Service, OECD, 2 rue André-Pascal, 75775 Paris Cedex 16, France. 2 DSTI/ICCP/TISP(2002)5/FINAL TABLE OF CONTENTS FOREWORD 2 SUMMARY AND CONCLUSIONS 4 I. LOCAL LOOP UNBUNDLING IN OECD COUNTRIES 6 1.1. -
Wireless WAN: WLL & Wimax Module W.Wan.5 WLL: Wireless Local Loop
W.wan.5-2 WLL: Wireless Local Loop Access network Æ Local loop (subscriber loop) Wired systems Wireless WAN: WLL & WiMax ¾ Twisted pair Æ coaxial cable Æ optical fiber Wireless systems Module W.wan.5 ¾ WLL (Wireless Local Loop) Dr.M.Y.Wu@CSE Dr.W.Shu@ECE Shanghai Jiaotong University University of New Mexico Shanghai, China Albuquerque, NM, USA WLL architecture: Last-mile solution Source: Stalling2nd © by Dr.Wu@SJTU & Dr.Shu@UNM 1 W.wan.5-3 W.wan.5-4 WLL: Wireless Local Loop WLL: Why better? Scope of wireless coverage Lower cost ¾ PAN, 10m, 1Mbps are less expensive due to cost of cable installation that’s ¾ LAN, 100m, 10Mbps avoided ¾ MAN, 25km, 1-75Mbps Easy to install WLL = Wireless + MAN can be installed in a small fraction of the time required for a new wired system Narrowband – offers a replacement for existing telephony services Selective installation Broadband – provides high-speed two-way voice and data radio units installed for subscribers who want service at a service given time Stationary or mobile? ¾ while with a wired system, cable is laid out in anticipation of serving every subscriber in a given area Fixed Æ Portable Æ Mobil © by Dr.Wu@SJTU & Dr.Shu@UNM © by Dr.Wu@SJTU & Dr.Shu@UNM W.wan.5-5 W.wan.5-6 WLL: physical characteristics Channel requirements: LOS & NLOS WLL mainly uses millimeter wave frequencies (2 GHz LOS: Line-of-sight to about 30 GHz) Higher Frequencies range: up to 66 GHz Good things Fixed dish antenna points straight at WiMax tower from a rooftop or pole. -
Telecom Acronym Guide
Telecom Acronym Guide Fourth Edition Telecom Acronym Guide Fourth Edition Numerics ACAC Actual Call Admission Control 2F Two-fiber ACEG Alternating Current Equipment Ground 10 GbE 10 Gigabit Ethernet ACK Acknowledge 10 GFC 10 Gigabit Fibre Channel (Same as FC1200) ACL Active Control List; Access Control List 100G 100 Gigabits ACO Alarm Cutoff 16-QAM 16 (points) Quadrature Amplitude Modulation ACQ Acquire 3D Three-dimensional ACR Allowed Cell Rate 3G Third Generation ACS Automatic Channel Shutdown; Alarm Correlation and Suppression 3GPP Third Generation Partnership Project ACSE Association Control Service Element 40G 40 Gigabits ACSS Automatic Channel Shutdown Suppression; 4C Consortium of Intel, IBM, Matsushita, and Toshiba Automatic Channel Shutdown State 4F Four-fiber ACT Active 4G Fourth Generation ADC Analog-to-Digital Converter; Add/Drop Coupler 5C Consortium of Intel, Sony, Matsushita, Toshiba, ADI Asset Distribution Interface and Hitachi ADM Add/Drop Multiplexer 5G Fifth Generation ADP Actual Departure Potential; Automatic A Data Processing ADSL Asymmetric Digital Subscriber Line A/D Analog-to-digital ADT Actual Departure Time; Automatic AAL ATM Adaptation Layer Data Transmission AAL0 ATM Adaptation Layer Type 0 AE Automation Engine; Automation Environment A AL1 ATM Adaptation Layer Type 1 AES Advanced Encryption Standard; AAL2 ATM Adaptation Layer 2 Transport Application Environment Specific AAL3/4 ATM Adaptation Layer Types 3 and 4 AESA ATM End System Address; ATM End Station AAL5 ATM Adaptation Layer 5 Address ABR Available Bit -
Appendix 3: Handbook on Telecommunication Outside Plant in Areas Frequently Exposed to Natural Disasters
Q22-1/2: Utilization of telecommunications/ICTs for disaster preparedness, mitigation and response Appendix 3: Handbook on Telecommunication Outside Plant in Areas Frequently Exposed to Natural Disasters I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n ITU HANDBOOK ON TELECOMMUNICATION OUTSIDE PLANTS IN AREAS FREQUENTLY EXPOSED TO NATURAL DISASTERS (online edition 2013) Q22-1/2: Utilization of telecommunications/ICTs for disaster preparedness, mitigation and response Table of Contents Page Table of Contents ........................................................................................................................ 2 Chapter 1: Natural disasters and their management ..................................................................... 7 1 Introduction ...................................................................................................................... 7 1.1 Hazards/emergencies/disasters/catastrophes ................................................................. 7 1.2 Natural hazards: types, intensity, caused damages and critical areas/countries ............. 8 1.2.1 Meteorological hazards ......................................................................................... 9 1.2.2 Hydrological hazards .............................................................................................. 13 1.2.3 Geological hazards ................................................................................................. 15 1.3 Disaster management activities ......................................................................................