Mixed Physical and Virtual Design Environments for Digital Fabrication

Total Page:16

File Type:pdf, Size:1020Kb

Mixed Physical and Virtual Design Environments for Digital Fabrication Mixed Physical and Virtual Design Environments for Digital Fabrication Christian Weichel B.Sc. Hochschule Furtwangen University This dissertation is submitted for the degree of Doctor of Philosophy School of Computing and Communications Lancaster University September 2015 ❉❡❝❧❛❛✐♦♥ I hereby declare that except where specific reference is made to the work of others, the contents of this dissertation are original and have not been submitted in whole or in part for consideration for any other degree or qualification in this, or any other university. This dissertation is my own work and contains nothing which is the outcome of work done in collaboration with others, except as listed below. All of this work was done under the supervision of Hans Gellersen. Chapter 3 contains work done in collaboration with Manfred Lau. Chapter 4 contains work done in collabora- tion with Jason Alexander and Abhijit Karnik. Chapter 5 contains work done in collabora- tion with Manfred Lau and David Kim. Chapter 6 contains work done in collaboration with John Hardy and Jason Alexander. Christian Weichel September 2015 Es ist nicht nur der Künstler, der alles Größte in seinem Leben der Phantasie verdankt, sondern überhaupt jeder schöpferische Mensch. Das dynamische Prinzip der Phantasie ist das Spielerische, das auch dem Kinde eignet, und als solches ebenfalls unvereinbar mit dem Prinzip ernster Arbeit erscheint. Aber ohne dieses Spiel mit Phantasien ist noch nie ein schöpferisches Werk geboren worden. Wir verdanken dem Imagionationsspiel unabsehbar viel. It is not only the artist, who owes all great things in his life to fantasy, but indeed every creative person. The dynamic principle of fantasy is play, which also suits the child, and as such seems irreconcilable with the principle of serious work. However, without this play with fantasies, no creative work has ever been born. We owe the play with imagination incalculably. – Carl Jung [1, p. 65] ❆❝❦♥♦✇❧❡❞❣❡♠❡♥ This thesis has one author, yet it is an achievement of many. Without any one of the below mentioned – and the countless many who remain unnamed – none of this would exist. Firstly, I would like to thank my supervisor Hans Gellersen for giving me the opportu- nity to pursue this research endeavor in the first place; for giving me the freedom to engage in a topic of my own choosing. Thank you for your support, supervision and patience through- out the past four years. Second, I am indebted to my second supervisor Jason Alexander for supporting me throughout this thesis, especially during the final phase. Thank you very much for you invaluable feedback and advice. Third, thank you Manfred Lau for helping me get started in this topic. I have found all our discussions invaluable. Secondly, I am grateful to all members of the EIS group (and beyond) who I am honored to call my friends. One would be hard pressed to find an environment more welcoming, friendly, stimulating and supportive than this group. Thank you for the countless discus- sions, encouragement and support. Pauline Anthonysamy and Mélodie Vidal, thank you for becoming close friends, for the many conversations and hugs. Mélodie and Ken Pfeuffer, thank you for sharing many great hours and our house(s). John Hardy, thank you for making this stressful last build a pleasant experience through your open cordiality. Thanks to Steven Houben for introducing me to HCI theory and for our philosophy of science discussions. Also thanks to all iCareNet members who made this journey even more enjoyable. Thirdly, I am forever indebted to my family: to my sisters Agnes and Stefanie, to my partner Ioana and my parents Ruth and Bernhard. The latter two who have been, and con- tinue to be, more influential to me than anyone else. Thank you for your steady support, and believing in me. I can not overstate my gratitude. Ioana, you manage to keep me grounded when I need it most; it will be my greatest joy to spend a life with you. To my parents. To Ioana. ❆❜❛❝ Digital Fabrication (3D printing, laser-cutting or CNC milling) enables the automated fab- rication of physical objects from digital models. This technology is becoming more readily available and ubiquitous, as digital fabrication machines become more capable and afford- able. When it comes to designing the objects that are to be fabricated however, there are still barriers for novices and inconveniences for experts. Through digital fabrication, physical objects are created from digital models. The digital models are currently designed in virtual design environments, which separates the world we design in from the world we design for. This separation hampers design processes of experienced users and presents barriers to novices. For example, manipulating objects in virtual spaces is difficult, but comes naturally in the physical world. Further, in a virtual environment, we cannot easily integrate existing physical objects or experience the object we are designing in its future context (e.g., try out a game controller during design). This lack of reflection impedes designer’s spatial understanding in virtual design environments. To enable our virtual creations to become physical reality, we have to posses an ample amount of design and engineering knowledge, which further steepens the learning curve for novices. Lastly, as we are physically separated from our creation – until it is fabricated – we loose direct engagement with the material and object itself, impacting creativity. We follow a research through design approach, in which we take up the role as inter- action designers and engineers. Based on four novel interaction concepts, we explore how the physical world and design environments can be brought closer together, and address the problems caused their prior separation. As engineers, we implement each of these concepts in a prototype system, demonstrating that they can be implemented. Using the systems, we evaluate the concepts and how the concepts alleviate the aforementioned problems, and that the design systems we create are capable of producing useful objects. In this thesis, we make four main contributions to the body of digital fabrication related v Human-Computer Interaction (HCI) knowledge. Each contribution consists of an interac- tion concept which addresses a subset of the problems, caused by the separation of virtual design environment, and physical target world. We evaluate the concepts through prototype implementations, example walkthroughs and where appropriate user-studies, demonstrating how the concepts alleviate the problems they address. For each concept and system, we describe the design rationale, and present technical contributions towards their implementa- tion. The results of this thesis have implications for different user audiences, design processes, the artifacts users design and domains outside of digital fabrication. Through our concepts and systems, we lower barriers for novices to utilize digital fabrication. For experienced designers, we make existing design processes more convenient and efficient. We ease the design of artifacts that reuse existing objects, or that combine organic and geometrically structured design. Lastly, the novel interaction concepts (and on a technical level, the sys- tems) we present, which blur the lines between physical and virtual space, can serve as basis for future interaction design and HCI research. ✉❜❧✐❝❛✐♦♥ • Christian Weichel, John Hardy, Jason Alexander and Hans Gellersen. 2015. Re- Form: Integrating Physical and Digital Design through Bidirectional Fabrication. In Proceedings of the 28th annual ACM symposium on User interface software and tech- nology (UIST ’15). • Christian Weichel, Jason Alexander, Abhijit Karnik and Hans Gellersen. 2015. SPATA: Spatio-Tangible Tools for Fabrication-Aware Design. In Proceedings of the Ninth In- ternational Conference on Tangible, Embedded, and Embodied Interaction (TEI ’14). • Christian Weichel, Manfred Lau, David Kim, Nicolas Villar and Hans Gellersen. 2014. MixFab: A Mixed-Reality Environment for Personal Fabrication. In Proceed- ings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’14). • Christian Weichel, Manfred Lau and Hans Gellersen. 2013. Enclosed: A Component- Centric Interface for Designing Prototype Enclosures. In Proceedings of the 7th In- ternational Conference on Tangible, Embedded and Embodied Interaction (TEI ’13). • Christian Weichel, Jason Alexander, Abhijit Karnik and Hans Gellersen. 2015. Con- nected Tools in Digital Design. IEEE Pervasive Computing 14, 2 (April 2015), 18-21. • Christian Weichel, Jason Alexander and John Hardy. 2015. Shape Display Shader Language (SDSL): A New Programming Model for Shape Changing Displays. In Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems (CHI EA ’15). • John Hardy, Christian Weichel, Faisal Taher, John Vidler and Jason Alexander. 2015. ShapeClip: Towards Rapid Prototyping with Shape-Changing Displays for Designers. vii In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (CHI ’15). • Faisal Taher, John Hardy, Abhijit Karnik, Christian Weichel, Yvonne Jansen, Kasper Hornbæk, and Jason Alexander. 2015. Exploring Interactions with Physically Dy- namic Bar Charts. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (CHI ’15). • Manfred Lau, Christian Weichel, and Nicolas Villar. 2013. Workshop on personal and pervasive fabrication (PerFab 2013). In Proceedings of the 2013 ACM conference on Pervasive
Recommended publications
  • Openscad User Manual (PDF)
    OpenSCAD User Manual Contents 1 Introduction 1.1 Additional Resources 1.2 History 2 The OpenSCAD User Manual 3 The OpenSCAD Language Reference 4 Work in progress 5 Contents 6 Chapter 1 -- First Steps 6.1 Compiling and rendering our first model 6.2 See also 6.3 See also 6.3.1 There is no semicolon following the translate command 6.3.2 See Also 6.3.3 See Also 6.4 CGAL surfaces 6.5 CGAL grid only 6.6 The OpenCSG view 6.7 The Thrown Together View 6.8 See also 6.9 References 7 Chapter 2 -- The OpenSCAD User Interface 7.1 User Interface 7.1.1 Viewing area 7.1.2 Console window 7.1.3 Text editor 7.2 Interactive modification of the numerical value 7.3 View navigation 7.4 View setup 7.4.1 Render modes 7.4.1.1 OpenCSG (F9) 7.4.1.1.1 Implementation Details 7.4.1.2 CGAL (Surfaces and Grid, F10 and F11) 7.4.1.2.1 Implementation Details 7.4.2 View options 7.4.2.1 Show Edges (Ctrl+1) 7.4.2.2 Show Axes (Ctrl+2) 7.4.2.3 Show Crosshairs (Ctrl+3) 7.4.3 Animation 7.4.4 View alignment 7.5 Dodecahedron 7.6 Icosahedron 7.7 Half-pyramid 7.8 Bounding Box 7.9 Linear Extrude extended use examples 7.9.1 Linear Extrude with Scale as an interpolated function 7.9.2 Linear Extrude with Twist as an interpolated function 7.9.3 Linear Extrude with Twist and Scale as interpolated functions 7.10 Rocket 7.11 Horns 7.12 Strandbeest 7.13 Previous 7.14 Next 7.14.1 Command line usage 7.14.2 Export options 7.14.2.1 Camera and image output 7.14.3 Constants 7.14.4 Command to build required files 7.14.5 Processing all .scad files in a folder 7.14.6 Makefile example 7.14.6.1 Automatic
    [Show full text]
  • Experiences in Using Open Source Software for Teaching Electronic Engineering CAD
    Experiences in Using Open Source Software for Teaching Electronic Engineering CAD Dr Simon Busbridge1 & Dr Deshinder Singh Gill School of Computing, Engineering and Mathematics, University of Brighton, Brighton BN2 4GJ [email protected] Abstract Embedded systems and simulation distinguish modern professional electronic engineering from that learnt at school. First year undergraduates typically have little appreciation of engineering software capabilities and file handling beyond elementary word processing. This year we expedited blended teaching through the experiential based learning process via open source engineering software. Students engaged with the entire electronic engineering product creation process from inception, performance simulation, printed circuit board design, manufacture and assembly, to cabinet design and complete finished product. Currently students learn software skills using a mixture of electronic and mechanical engineering software packages. Although these have professional capability they are not available off-campus and are sometimes surprisingly poor in simulating real world devices. In this paper we report use of LTspice, FreePCB and OpenSCAD for the learning and teaching of analogue electronics simulation and manufacture. Comparison of the software options, the type of tasks undertaken, examples of student assignments and outputs, and learning achieved are presented. Examples of assignment based learning, integration between the open source packages and difficulties encountered are discussed. Evaluation of student attitudes and responses to this method of learning and teaching are also discussed, and the educational advantages of using this approach compared to the use of commercial packages is highlighted. Introduction Most educational establishments use software for simulating or designing engineering. Most commercial packages come with an academic licence which restricts access to on-site computers.
    [Show full text]
  • Openscad User Manual/Print Version Table of Contents Introduction First
    OpenSCAD User Manual/Print version Table of Contents 1. Introduction 2. First Steps 3. The OpenSCAD User Interface 4. The OpenSCAD Language 1. General 2. Mathematical Operators 3. Mathematical Functions 4. String Functions 5. Primitive Solids 6. Transformations 7. Conditional and Iterator Functions 8. CSG Modelling 9. Modifier Characters 10. Modules 11. Include Statement 12. Other Language Feature 5. Using the 2D Subsystem 1. 2D Primitives 2. 3D to 2D Projection 3. 2D to 2D Extrusion 4. DXF Extrusion 5. Other 2D formats 6. STL Import and Export 1. STL Import 2. STL Export 7. Commented Example Projects 8. Using OpenSCAD in a command line environment 9. Building OpenSCAD from Sources 1. Building on Linux/UNIX 2. Cross-compiling for Windows on Linux or Mac OS X 3. Building on Windows 4. Building on Mac OS X 10. Libraries 11. Glossary 12. Index Introduction OpenSCAD is a software for creating solid 3D CAD objects. It is free software (http://www.gnu.org/philosophy/free-sw.html) and available for GNU/Linux (http://www.gnu.org/) , MS Windows and Apple OS X. Unlike most free software for creating 3D models (such as the well-known application Blender (http://www.blender.org/) ), OpenSCAD does not focus on the artistic aspects of 3D modelling, but instead focuses on the CAD aspects. So it might be the application you are looking for when you are planning to create 3D models of machine parts, but probably is not what you are looking for when you are more interested in creating computer- animated movies. OpenSCAD is not an interactive modeller.
    [Show full text]
  • Development of a Coupling Approach for Multi-Physics Analyses of Fusion Reactors
    Development of a coupling approach for multi-physics analyses of fusion reactors Zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften (Dr.-Ing.) bei der Fakultat¨ fur¨ Maschinenbau des Karlsruher Instituts fur¨ Technologie (KIT) genehmigte DISSERTATION von Yuefeng Qiu Datum der mundlichen¨ Prufung:¨ 12. 05. 2016 Referent: Prof. Dr. Stieglitz Korreferent: Prof. Dr. Moslang¨ This document is licensed under the Creative Commons Attribution – Share Alike 3.0 DE License (CC BY-SA 3.0 DE): http://creativecommons.org/licenses/by-sa/3.0/de/ Abstract Fusion reactors are complex systems which are built of many complex components and sub-systems with irregular geometries. Their design involves many interdependent multi- physics problems which require coupled neutronic, thermal hydraulic (TH) and structural mechanical (SM) analyses. In this work, an integrated system has been developed to achieve coupled multi-physics analyses of complex fusion reactor systems. An advanced Monte Carlo (MC) modeling approach has been first developed for converting complex models to MC models with hybrid constructive solid and unstructured mesh geometries. A Tessellation-Tetrahedralization approach has been proposed for generating accurate and efficient unstructured meshes for describing MC models. For coupled multi-physics analyses, a high-fidelity coupling approach has been developed for the physical conservative data mapping from MC meshes to TH and SM meshes. Interfaces have been implemented for the MC codes MCNP5/6, TRIPOLI-4 and Geant4, the CFD codes CFX and Fluent, and the FE analysis platform ANSYS Workbench. Furthermore, these approaches have been implemented and integrated into the SALOME simulation platform. Therefore, a coupling system has been developed, which covers the entire analysis cycle of CAD design, neutronic, TH and SM analyses.
    [Show full text]
  • Freecad a Manual.Pdf
    Table of Contents Introduction 1.1 Discovering FreeCAD 1.2 What is FreeCAD? 1.2.1 Installing 1.2.2 Installing on Windows 1.2.2.1 Installing on Linux 1.2.2.2 Installing on Mac OS 1.2.2.3 Uninstalling 1.2.2.4 Setting basic preferences 1.2.2.5 Installing additional content 1.2.2.6 The FreeCAD interface 1.2.3 Workbenches 1.2.3.1 The interface 1.2.3.2 Customizing the interface 1.2.3.3 Navigating in the 3D view 1.2.4 A word about the 3D space 1.2.4.1 The FreeCAD 3D view 1.2.4.2 Selecting objects 1.2.4.3 The FreeCAD document 1.2.5 Parametric objects 1.2.6 Import and export to other filetypes 1.2.7 Working with FreeCAD 1.3 All workbenches at a glance 1.3.1 Traditional modeling, the CSG way 1.3.2 Traditional 2D drafting 1.3.3 Modeling for product design 1.3.4 Preparing models for 3D printing 1.3.5 Exporting to slicers 1.3.5.1 Converting objects to meshes 1.3.5.2 Using Slic3r 1.3.5.3 2 Using the Cura addon 1.3.5.4 Generating G-code 1.3.5.5 Generating 2D drawings 1.3.6 BIM modeling 1.3.7 Using spreadsheets 1.3.8 Reading properties 1.3.8.1 Writing properties 1.3.8.2 Creating FEM analyses 1.3.9 Creating renderings 1.3.10 Python scripting 1.4 A gentle introduction 1.4.1 Writing Python code 1.4.1.1 Manipulating FreeCAD objects 1.4.1.2 Vectors and Placements 1.4.1.3 Creating and manipulating geometry 1.4.2 Creating parametric objects 1.4.3 Creating interface tools 1.4.4 The community 1.5 3 Introduction A FreeCAD manual Note: The manual has been moved to the official FreeCAD wiki which is now its new home.
    [Show full text]
  • DVD-Ofimática 2014-07
    (continuación 2) Calizo 0.2.5 - CamStudio 2.7.316 - CamStudio Codec 1.5 - CDex 1.70 - CDisplayEx 1.9.09 - cdrTools FrontEnd 1.5.2 - Classic Shell 3.6.8 - Clavier+ 10.6.7 - Clementine 1.2.1 - Cobian Backup 8.4.0.202 - Comical 0.8 - ComiX 0.2.1.24 - CoolReader 3.0.56.42 - CubicExplorer 0.95.1 - Daphne 2.03 - Data Crow 3.12.5 - DejaVu Fonts 2.34 - DeltaCopy 1.4 - DVD-Ofimática Deluge 1.3.6 - DeSmuME 0.9.10 - Dia 0.97.2.2 - Diashapes 0.2.2 - digiKam 4.1.0 - Disk Imager 1.4 - DiskCryptor 1.1.836 - Ditto 3.19.24.0 - DjVuLibre 3.5.25.4 - DocFetcher 1.1.11 - DoISO 2.0.0.6 - DOSBox 0.74 - DosZip Commander 3.21 - Double Commander 0.5.10 beta - DrawPile 2014-07 0.9.1 - DVD Flick 1.3.0.7 - DVDStyler 2.7.2 - Eagle Mode 0.85.0 - EasyTAG 2.2.3 - Ekiga 4.0.1 2013.08.20 - Electric Sheep 2.7.b35 - eLibrary 2.5.13 - emesene 2.12.9 2012.09.13 - eMule 0.50.a - Eraser 6.0.10 - eSpeak 1.48.04 - Eudora OSE 1.0 - eViacam 1.7.2 - Exodus 0.10.0.0 - Explore2fs 1.08 beta9 - Ext2Fsd 0.52 - FBReader 0.12.10 - ffDiaporama 2.1 - FileBot 4.1 - FileVerifier++ 0.6.3 DVD-Ofimática es una recopilación de programas libres para Windows - FileZilla 3.8.1 - Firefox 30.0 - FLAC 1.2.1.b - FocusWriter 1.5.1 - Folder Size 2.6 - fre:ac 1.0.21.a dirigidos a la ofimática en general (ofimática, sonido, gráficos y vídeo, - Free Download Manager 3.9.4.1472 - Free Manga Downloader 0.8.2.325 - Free1x2 0.70.2 - Internet y utilidades).
    [Show full text]
  • Open Source Design Software Overview
    SEGD.org Open Source Design Software prepared by Chad Eby Herron School of Art + Design at IUPUI SEGD Academic Task Force SEGD Training Module Training SEGD Introduction to EGD Overview What is Open Source? Free and open source software (sometimes called FOSS) tools are developed “in the open” so that anyone may inspect an application’s source code—the underlying set of instructions that make the application work—that is hidden by design in proprietary tools. Not only is the source code visible, it is generally permissible to use, re- distribute and modify without restriction. This makes it free (as in freedom). As a side effect, many open source software tools are also free (as in beer), meaning image credit they are usable at no cost. Photo by Marc Mueller from Pexels Open Source Design Software Overview Why Use Open Source? An open source design software tool may be attractive to individuals and organizations due to the transparent nature of its development, the lack of restrictions on distribution and use, the suitability for a niche purpose too small for commercial viability, the low cost/no cost aspect or some combination of these factors. As good as open source tools may seem at first blush, there are some caveats. FOSS projects, especially in the early stages, may have sporadic development cycles and are sometimes abandoned entirely. Even in projects that are actively developed and well established, the documentation for the tool may lag well behind the latest released version. Finally, since some FOSS tools are passion projects of individuals or small teams, the software user interface may be quite eccentric.
    [Show full text]
  • Vlsi Cad Engineering Grace Gao, Principle Engineer, Rambus Inc
    VLSI CAD ENGINEERING GRACE GAO, PRINCIPLE ENGINEER, RAMBUS INC. AUGUST 5, 2017 Agenda • CAD (Computer-Aided Design) ◦ General CAD • CAD innovation over the years (Short Video) ◦ VLSI CAD (EDA) • EDA: Where Electronic Begins (Short Video) • Zoom Into a Microchip (Short Video) • Introduction to Electronic Design Automation ◦ Overview of VLSI Design Cycle ◦ VLSI Manufacturing • Intel: The Making of a Chip with 22nm/3D (Short Video) ◦ EDA Challenges and Future Trend • VLSI CAD Engineering ◦ EDA Vendors and Tools Development ◦ Foundry PDK and IP Reuse ◦ CAD Design Enablement ◦ CAD as Career • Q&A CAD (Computer-Aided Design) General CAD • Computer-aided design (CAD) is the use of computer systems (or workstations) to aid in the creation, modification, analysis, or optimization of a design CAD innovation over the years (Short Video) • https://www.youtube.com/watch?v=ZgQD95NhbXk CAD Tools • Commercial • Freeware and open source Autodesk AutoCAD CAD International RealCAD 123D Autodesk Inventor Bricsys BricsCAD LibreCAD Dassault CATIA Dassault SolidWorks FreeCAD Kubotek KeyCreator Siemens NX BRL-CAD Siemens Solid Edge PTC PTC Creo (formerly known as Pro/ENGINEER) OpenSCAD Trimble SketchUp AgiliCity Modelur NanoCAD TurboCAD IronCAD QCad MEDUSA • ProgeCAD CAD Kernels SpaceClaim PunchCAD Parasolid by Siemens Rhinoceros 3D ACIS by Spatial VariCAD VectorWorks ShapeManager by Autodesk Cobalt Gravotech Type3 Open CASCADE RoutCad RoutCad SketchUp C3D by C3D Labs VLSI CAD (EDA) • Very-large-scale integration (VLSI) is the process of creating an integrated circuit (IC) by combining hundreds of thousands of transistors into a single chip. • The design of VLSI circuits is a major challenge. Consequently, it is impossible to solely rely on manual design approaches.
    [Show full text]
  • COMPARISON of SUPPORT STRUCTURE GENERATION TECHNIQUES for 3D PRINTING RECOMMENDED: Dr. Glenn Chappell, Committee Member Dr. Chri
    Comparison of support structure generation techniques for 3d printing Item Type Other Authors Tupek, Ann Download date 08/10/2021 13:03:41 Link to Item http://hdl.handle.net/11122/8219 COMPARISON OF SUPPORT STRUCTURE GENERATION TECHNIQUES FOR 3D PRINTING RECOMMENDED: Dr. Glenn Chappell, Committee Member Dr. Chris Hartman, Committee Member Comparison of Support Structure Generation Techniques for 3D Printing By Ann Tupek Graduate Advisory Committee: Chair: Dr. Orion Lawlor Members: Dr. Glenn Chappell Dr. Chris Hartman M.S. Project Report Presented to the faculty of the University of Alaska Fairbanks in partial fulfillment of the requirements of Master of Science in Computer Science, 2016. Abstract As the old patents from the late 1980’s and early 1990’s expire, additive fabrication and rapid prototyping has seen a boom in recent years. Often called 3D printing, in the additive fabrication process material is deposited on previous layers. The problem of supporting overhangs in 3D printing is not one encountered in the traditional method of subtractive fabrication. This paper examines and compares three methods of generating support structures for these overhangs: a scaffolding structure, simple pillars, and the supports automatically generated by the open source slicing tool Slic3r. Our results show that both the scaffolding structure and simple pillars use less material than Slic3r’s supports. Additionally, the scaffolding structure and simple pillars print in a comparable amount of time as Slic3r’s supports and all the models have a similar visual print quality. This conservation of material without a reduction in print quality make our method of scaffolding support structures preferable to the supports automatically generated by Slic3r.
    [Show full text]
  • Fabrication of Low Cost 3-Axis Cnc Router
    International Journal of Engineering Science Invention ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726 www.ijesi.org Volume 3 Issue 6ǁ June 2014 ǁ PP.01-10 Fabrication of Low Cost 3-Axis Cnc Router Dr.B.Jayachandraiah1, O.Vamsi Krishna2, P.Abdullah Khan3, R.Ananda Reddy4 Prof of M.E &Vice-Principal1, B.Tech, Mechatronics Engineering2, B.Tech, Mechatronics Engineering3, B.Tech, Mechatronics Engineering4 Department of Mechanical Engineering SriKalahateeswara Institute of Technology, Srikalahasti,A.P, India ABSTRACT : Increase in the rapid growth of Technology significantly increased the usage and utilization of CNC systems in industries but at considerable expensive. The idea on fabrication of low cost CNC Router came forward to reduce the cost and complexity in CNC systems. This paper discusses the development of a low cost CNC router which is capable of 3-axis simultaneous interpolated operation. The lower cost is achieved by incorporating the features of a standard PC interface with micro-controller based CNC system in an Arduino based embedded system. The system also features an offline G-Code parser and then interpreted on the micro- controller from a USB. Improved procedures are employed in the system to reduce the computational overheads in controlling a 3-axis CNC machine, while avoiding any loss in overall system performance. I. INTRODUCTION: In modern CNC systems, end-to-end component design is highly automated using computer-aided design (CAD) and computer-aided manufacturing (CAM) programs. The programs produce a computer file that is interpreted to extract the commands needed to operate a particular machine via a post processor, and then loaded into the CNC machines for production.
    [Show full text]
  • Using and Citation of 3D Modeling Software for 3D Printers
    INTERNATIONAL JOURNAL OF EDUCATION AND INFORMATION TECHNOLOGIES Volume 11, 2017 Using and Citation of 3D Modeling Software for 3D Printers Radek Nemec One wants the simplest for very fast modeling. This is good Abstract—This article describes the use of 3D modeling software for beginners or for modeling in schools. Others want for 3D printers in scientific journals. The citation survey was carried professional software, where is able to model the entire out on 20 selected types of 3D modeling software in the Scholar gearbox or even the whole car. Others want to model using search engine. The survey has been conducted over the last 5 years. the programming language. Where to define code parameters The article, using clear graphs and tables, provides information on the amount of quotations of these selected types of 3D modeling and modeling software creates the resulting model. Another software include the destricption of all of them software. This one wants to combine modeling with programming. Someone overview is intended to help choose 3D Modeling Software for 3D moves to model 3D objects from a sketch in two dimensions, Printing. with the subsequent sliding of the surface. Differences are also economic. At work, a person has access to paid versions. Keywords—3D printers, 3D modeling software, 3D modeling At home, a person has to settle for freely available software for 3D printers, model, using, citation. applications. Students also have the opportunity to use professional paid software in the student license. This is very I. INTRODUCTION convenient. Sometimes, however, with restrictions. [11, 12, N recent years, there has been a huge expansion 13, 14, 15, 16, 17] See Fig.
    [Show full text]
  • Openscad Vs. Freecad
    OpenSCAD vs. FreeCAD To Code or Not to Code Alain Pelletier via YouTube) OpenSCAD and FreeCAD are both parametric computer-aided design (CAD) programs used for 2D and 3D modeling. Going further, they’re both open-source and free for anyone to download. Users can see, study, and improve their code, whether just for themselves or for the community as a whole. Although the two platforms take you to essentially the same 3D modeling destination, they take different ways to get there. OpenSCAD is a script-only based modeler and uses its own description language. That means its UI only shows code and doesn’t have literal representations of your object. FreeCAD, on the other hand, uses a more traditional CAD approach, with you building your object by directly manipulating the visual model. These and further aspects lend each of the two programs unique strengths and weaknesses. Let’s take a look a the details in order to determine what they are. OpenSCAD OpenSCAD) OpenSCAD uses constructive solid geometry to create CAD objects. As we mentioned above, it does this solely through manipulating the code of its own descriptive language. That’s why it’s advertised as a programmer-oriented solid-modeling tool; although anyone can use it, its interface will be most familiar to those who work with code. Through OpenSCAD’s script, users indicate what basic geometric shapes (for example a sphere or a cone) to use, the parameters of those shapes, and how those shapes relate to each other. Together, all those factors add up to the same type of 2D or 3D model you can make with any CAD software.
    [Show full text]