Using Augmented Reality for Architecture Artifacts Visualizations

Total Page:16

File Type:pdf, Size:1020Kb

Using Augmented Reality for Architecture Artifacts Visualizations Using augmented reality for architecture artifacts visualizations Zarema S. Seidametova1, Zinnur S. Abduramanov1 and Girey S. Seydametov1 1Crimean Engineering and Pedagogical University, 8 Uchebnyi per., Simferopol, 95015, Crimea Abstract Nowadays one of the most popular trends in software development is Augmented Reality (AR). AR applications offer an interactive user experience and engagement through a real-world environment. AR application areas include archaeology, architecture, business, entertainment, medicine, education and etc. In the paper we compared the main SDKs for the development of a marker-based AR apps and 3D modeling freeware computer programs used for developing 3D-objects. We presented a concept, design and development of AR application “Art-Heritage’’ with historical monuments and buildings of Crimean Tatars architecture (XIII-XX centuries). It uses a smartphone or tablet to alter the existing picture, via an app. Using “Art-Heritage’’ users stand in front of an area where the monuments used to be and hold up mobile device in order to see an altered version of reality. Keywords Augmented Reality, smartphones, mobile-AR, architecture artifact, ARToolkit, Vuforia 1. Introduction In recent years, Augmented Reality (AR) has been named as one of the top 10 new technology trends. AR technology has primarily been used for gaming but nowadays it has also found widespread use in education, training, medicine, architecture, archeology, entertainment, mar- keting and etc. According to the International Data Corporation (IDC) [1] worldwide spending on AR and virtual reality (VR) is growing from just over $12.0 billion this year to $72.8 billion in 2024. AR as technology allows researchers, educators and visual artists to investigate a variety of AR apps possibilities using mobile AR in many areas – from education [2, 3, 4, 5, 6] to cultural heritage [7, 8, 9, 10, 11]. In the paper [12] authors provided an overview of Augmented Paper Systems use in education. Studies related to the effect of augmented reality on learning efficiency presented inpapers [13, 14], in which also discussed questions on how to combine the capabilities of augmented AREdu 2021: 4th International Workshop on Augmented Reality in Education, May 11, 2021, Kryvyi Rih, Ukraine Envelope-Open [email protected] (Z. S. Seidametova); [email protected] (Z. S. Abduramanov); [email protected] (G. S. Seydametov) GLOBE http://cepulib.ru/index.php/ru/resursy/personalii/47-s-personalii/169-sejdametova-zarema-sejdalievna (Z. S. Seidametova); https://kipu-rc.ru/sotrudniki/103-abduramanov-zinnur-shevketovich.html (Z. S. Abduramanov); https://kipu-rc.ru/fakultet-ekonomiki/kafedra-prikladnoj-informatiki.html?id=107 (G. S. Seydametov) Orcid 0000-0001-7643-6386 (Z. S. Seidametova); 0000-0002-2818-4759 (Z. S. Abduramanov); 0000-0002-1004-4141 (G. S. Seydametov) © 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). CEUR http://ceur-ws.org Workshop ISSN 1613-!!" Proceedings CEUR Workshop Proceedings (CEUR-WS.org) 131 reality and learning activities. The educational potential of augmented reality technology and benefits which AR can bring to teaching and learning discussed in the papers[15, 16, 17, 18, 19]. An experience of the successful use of AR mobile applications in learning and teaching process described in [20, 21]. There is large number of studies, which identified the future trends, affordances and challenges of AR systems in education. The papers[22, 23, 24, 25, 26] provided research on the problems that can help to improve the experience of using AR systems in education and authors of papers suggested the new AR educational tools [27, 28, 29]. Garzón et al. [30] highlighted five directions for future research: (1) design of AR systems that consider special needs of particular users; (2) integration of AR systems into unexplored fields of education; (3) inclusion of AR systems into learning processes of unexplored target groups; (4) integration of AR systems into business and industry; (5) design of pedagogically efficient AR systems. Radu [31] provided a comprehensive understanding of how the medium of augmented reality differs from other educational mediums. Research of Garzón etal. [32] identifies positive and negative effects that AR experiences can bring to learners. The authors of the papers [33, 34, 35, 36, 37, 38] proposed functional mobile augmented reality applications for different domains not only for education. In papers [39, 40] researchers discussed the effects of marketing, usability, design on augmented reality technologies and ways of the development of AR apps. Comparative analysis of augmented reality frameworks that are used to develop educational and industrial applications presented in [41, 42, 43, 44]. Mekni and Lemieux [45] introduced in the technologies that enable an augmented reality experience, clarifies the boundaries that exist between AR and Virtual Reality (VR); classified the AR-applications into distinct categories: medical, military, manufacturing, entertainment, visualization, robotics, education, marketing, geospatial, navigation and path planning, tourism, urban planning and civil engineering. The paper [46] provided an overview of 3D interaction techniques in mobile AR, authors described three main interaction technique categories that applicable in mobile AR: touch-based interaction, mid-air gestures-based interaction, and device-based interaction techniques. The paper [47] investigated the AR technology with a approach based on patent research. Authors searched the United States Patent and Trademark Office (USPTO) for AR-related granted patents in the period 1993–2018. The study found that AR technological development has especially increased in the last decade. The rest of the paper is organized and structured as follows. Section two, presents an explanation of concepts and technologies of the different new trends such as Virtual, Augmented Reality and Mixed Reality. Section three, explores 3D modeling of the “Art-Heritage” application objects. Section four, presents the “Art-Heritage” application server configuration. Conclusion and future work is presented in section five. 2. Concepts and technologies of the Extended Reality Virtual Reality (VR), Augmented Reality (AR) and Mixed Reality (MR) technologies can be described with an umbrella term Extended Reality (XR). XR covers all of the various technologies that giving additional information about the real world or creating virtual worlds: 132 • AR adds digital objects to a live view by using the camera on a smartphone (for example, Snapchat lenses, Google’s “Just a line”, Pokemon Go, etc.). AR contains following basic features: a combination of real and virtual worlds, real-time interaction, and accurate 3D registration of virtual and real objects. • VR devices such as HTC Vive Headset, Oculus Rift, Oculus Quest 2, Sony PlayStation VR, HP Reverb G2 or Google Cardboard move users into a number of real-world and imagined environments. VR is digital, computer-generated and 3D environment that allows the user to step inside the virtual world. There are main types of VR simulations used today: non-immersive, semi-immersive, and fully-immersive simulations. • MR combines elements of both AR and VR, real-world and digital objects interact. MR- technology is starting to take off with Microsoft’s HoloLens. Physical and digital elements exist and interact in real time in mixed reality (MR) applications. MR merges real and virtual worlds, and allow to produce new environments. There are a lot of MR-applications for design, entertainment, training, learning, architecture, healthcare and etc. MR is the area between the real and the virtual worlds and can be represent as augmented reality (the virtual augments the real) and as augmented virtuality (the real augments the virtual). AR software development kit (SDK) allows developers to build objects that appear toblend into the real world. The AR SDKs offer functions such as 3D object tracking, image recognition, visual search, multi-tracking, and more, which allow developers to produce digital images. There many different SDKs for creating custom AR experiences. The comparison of themost popular AR SDKs based on license type, marker, 3D object tracking, visual search and content API is presented in the table 1. For development of the “Art-Heritage” application we chose the Unity platform and Vuforia SDK because of the accessibility, availability of the necessary functionality, the possibility of connecting additional sets of development tools and the availability of peripheral (additional) services. The main benefits are that Vuforia enables to maintain tracking even when thetarget is out of view and Vuforis has cloud database for storing image targets. The “Art-Heritage” application research objective created in order to promote Crimean tatars historical monuments in the Crimea [48, 49] that are currently destroyed. The “Art-Heritage” is AR application. We recreated four models: Khan Baths (Hammam), Devlet Palace (Sarai), Mengli Geray Mosque, Yesil-Jami Mosque in the “Art-Heritage” app. The interface of the “Art-Heritage” application is presented in the figure 1. 3. 3D modeling of the “Art-Heritage” application objects 3D modeling is used in various industries like movie, animation and gaming, interior design and architecture. They are also used in the medical industry to create interactive representations of anatomy objects or
Recommended publications
  • A Review About Augmented Reality Tools and Developing a Virtual Reality Application
    Academic Journal of Science, CD-ROM. ISSN: 2165-6282 :: 03(02):139–146 (2014) $5(9,(:$%287$8*0(17('5($/,7<722/6$1' '(9(/23,1*$9,578$/5($/,7<$33/,&$7,21%$6('21 ('8&$7,21 0XVWDID8ODVDQG6DID0HUYH7DVFL )LUDW8QLYHULVLW\7XUNH\ Augmented Reality (AR) is a technology that gained popularity in recent years. It is defined as placement of virtual images over real view in real time. There are a lot of desktop applications which are using Augmented Reality. The rapid development of technology and easily portable mobile devices cause the increasing of the development of the applications on the mobile device. The elevation of the device technology leads to the applications and cause the generating of the new tools. There are a lot of AR Tool Kits. They differ in many ways such as used methods, Programming language, Used Operating Systems, etc. Firstly, a developer must find the most effective tool kits between them. This study is more of a guide to developers to find the best AR tool kit choice. The tool kit was examined under three main headings. The Parameters such as advantages, disadvantages, platform, and programming language were compared. In addition to the information is given about usage of them and a Virtual Reality application has developed which is based on Education. .H\ZRUGV Augmented reality, ARToolKit, Computer vision, Image processing. ,QWURGXFWLRQ Augmented reality is basically a snapshot of the real environment with virtual environment applications that are brought together. Basically it can be operated on every device which has a camera display and operation system.
    [Show full text]
  • Turbocad 27 CZ - Podporovné Formáty Soubor Formátu Popis Formátu Platinum Professional Deluxe Designer
    TurboCAD 27 CZ - podporovné formáty Soubor formátu Popis formátu Platinum Professional Deluxe Designer DWG AutoCAD® native format ✓ ✓ ✓ ✓ DWF Autodesk® Drawing Web Format ✓ ✓ ✓ ✓ DXF Drawing Exchange format ✓ ✓ ✓ ✓ 3DM Rhino format ✓ ✓ - - 3DS Autodesk® 3D Studio format ✓ ✓ ✓ - 3DV VRML Worlds ✓* ✓* ✓* - 3MF 3D Manufacturing Format ✓ ✓ ✓ - ASAT ACIS® ✓ - - - ASM Pro/E/Creo/Solid Edge Assembly ✓* - - - CATPART CATIA V5/V6 ✓* - - - CATPRODUCT CATIA V5/V7 ✓* - - - ASC, PCD, PCG Point Cloud Data ✓ ✓ - - BMP Bitmap ✓** ✓** ✓** ✓** CGM Windows® Bitmap format ✓ ✓ ✓ ✓ DAE COLLADA Model ✓ ✓** ✓** - DC, DCD DesignCAD® format ✓* ✓* ✓* ✓* DGN Intergraph Microstation ✓ ✓ ✓ - EPS Adobe® PostScript ✓ ✓ ✓ - FCD, FCW Fast CAD format ✓* ✓* ✓* ✓* FBX FBX® data exchange technology ✓ ✓ ✓ - GEO VRML Worlds ✓* ✓* - - GIF Graphics Interchange format (w/ Alpha Channel Support) ✓** ✓** ✓** ✓** IAM Autodesk Inventor Assembly File ✓* - - - IPT Autodesk Inventor Part File ✓* - - - IFC Industry Foundation Classes ✓ ✓ - - IGS IGES Drawing ✓ - - - JPG JPEG ✓** ✓** ✓** ✓** JPG SDK sample filter JPEG ✓** - - - KML, KMZ Google Map Format ✓* ✓* ✓* - Model CATIA V4 ✓* - - - OBJ OBJ Drawing ✓ ✓ - - PAR Solid Edge Part ✓* - - - PRT UG NX/Pro/E/Creo ✓* - - - PDF Adobe® Portable Document Format ✓** ✓** ✓** ✓** PDF Adobe® 3D Portable Document Format ✓** - - - PDF Adobe PRC Portable Document Format ✓** ✓** - - PLT Plotter file format language ✓ ✓ ✓ ✓ PNG Portable Network Graphic (w/ Alpha Channel Support) ✓** ✓** ✓** ✓** PRC Product Representation Compact (3D PDF) ✓** ✓** - -
    [Show full text]
  • Developing an Execution Plan for Scan to BIM Raghavendra Bhat Stantec
    CES469694 Developing an Execution Plan for Scan to BIM Raghavendra Bhat Stantec Joseph Huang Stantec Learning Objectives • Discover requirements for a Scan-to-BIM job • Learn how to define and set standards for level of accuracy and level of development • Learn how to save time in handling and modeling from large-size point clouds • Learn about QC workflows using Revit templates, Navisworks, and Virtual Reality Description The quality of a Scan to BIM (Building Information Modeling) model can vary, depending on the surveyor, instrument used, field conditions, especially on the requirements specified. There are, however, no industry standards templates available to follow. This class will focus on the essentials for developing a Scan to BIM execution plan. Starting form providing & clarifying scope of work to define LOD requirements shall be discussed. There are a lot of potential risks that need to be identified and highlighted when picking up a Scan to BIM job. We will discuss some of these cases with project examples. Basic tools like Revit, ReCap, Navisworks available can help us through this process of visualizing model mistakes and getting a quality product. We will learn several tips that can assist us while facing the quality control of a model replicated from a point cloud. Those tips will also help us locate where the focus should go in each case. The goal of this class is, therefore, not only to learn the available tools, but also to analyze the current gaps in setting up Scan to BIM project execution plan. The agenda we will
    [Show full text]
  • Making a Game Character Move
    Piia Brusi MAKING A GAME CHARACTER MOVE Animation and motion capture for video games Bachelor’s thesis Degree programme in Game Design 2021 Author (authors) Degree title Time Piia Brusi Bachelor of Culture May 2021 and Arts Thesis title 69 pages Making a game character move Animation and motion capture for video games Commissioned by South Eastern Finland University of Applied Sciences Supervisor Marko Siitonen Abstract The purpose of this thesis was to serve as an introduction and overview of video game animation; how the interactive nature of games differentiates game animation from cinematic animation, what the process of producing game animations is like, what goes into making good game animations and what animation methods and tools are available. The thesis briefly covered other game design principles most relevant to game animators: game design, character design, modelling and rigging and how they relate to game animation. The text mainly focused on animation theory and practices based on commentary and viewpoints provided by industry professionals. Additionally, the thesis described various 3D animation and motion capture systems and software in detail, including how motion capture footage is shot and processed for games. The thesis ended on a step-by-step description of the author’s motion capture cleanup project, where a jog loop was created out of raw motion capture data. As the topic of game animation is vast, the thesis could not cover topics such as facial motion capture and procedural animation in detail. Technologies such as motion matching, machine learning and range imaging were also suggested as topics worth covering in the future.
    [Show full text]
  • A Guide to Harvard Academics
    The 49 A Guide to Harvard Academics 2016-2017 This guide is not the College’s advising resource of record. For the most accurate and up-to-date information on concentration and secondary field requirements, please consult the undergraduate Handbook for Students. Table of Contents Welcome to Harvard .........................................................................................................................4 Fields of Concentration and the 49 Book.......................................................................................5 How to Read the Fields of Concentration in the Handbook for Students.................................6 Academic Advising at Harvard........................................................................................................7 The Advising Relationship ...............................................................................................................8 Building Your Board of Advisors ...................................................................................................9 First-Year Advising ............................................................................................................................10 Sophomore Advising .........................................................................................................................11 Concentration Advising ....................................................................................................................12 Additional Advising Resources .......................................................................................................13
    [Show full text]
  • Comparative Analysis of Human Modeling Tools Emilie Poirson, Mathieu Delangle
    Comparative analysis of human modeling tools Emilie Poirson, Mathieu Delangle To cite this version: Emilie Poirson, Mathieu Delangle. Comparative analysis of human modeling tools. International Digital Human Modeling Symposium, Jun 2013, Ann Arbor, United States. hal-01240890 HAL Id: hal-01240890 https://hal.archives-ouvertes.fr/hal-01240890 Submitted on 24 Dec 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Comparative analysis of human modeling tools Emilie Poirson & Matthieu Delangle LUNAM, IRCCYN, Ecole Centrale de Nantes, France April 25, 2013 Abstract sometimes a multitude of functions that are not suitable for his application case. Digital Human Modeling tools simulate a task performed by a human in a virtual environment and provide useful The first step of our study consisted in listing all indicators for ergonomic, universal design and represen- the comparable software and to select the comparison tation of product in situation. The latest developments criteria. Then a list of indicators is proposed, in three in this field are in terms of appearance, behaviour and major categories: degree of realism, functions and movement. With the considerable increase of power com- environment. Based on software use, literature searches puters,some of these programs incorporate a number of [7] and technical reports ([8], [9], [10], for example), the key details that make the result closer and closer to a real table of indicator is filled and coded from text to a quinary situation.
    [Show full text]
  • Openscad User Manual (PDF)
    OpenSCAD User Manual Contents 1 Introduction 1.1 Additional Resources 1.2 History 2 The OpenSCAD User Manual 3 The OpenSCAD Language Reference 4 Work in progress 5 Contents 6 Chapter 1 -- First Steps 6.1 Compiling and rendering our first model 6.2 See also 6.3 See also 6.3.1 There is no semicolon following the translate command 6.3.2 See Also 6.3.3 See Also 6.4 CGAL surfaces 6.5 CGAL grid only 6.6 The OpenCSG view 6.7 The Thrown Together View 6.8 See also 6.9 References 7 Chapter 2 -- The OpenSCAD User Interface 7.1 User Interface 7.1.1 Viewing area 7.1.2 Console window 7.1.3 Text editor 7.2 Interactive modification of the numerical value 7.3 View navigation 7.4 View setup 7.4.1 Render modes 7.4.1.1 OpenCSG (F9) 7.4.1.1.1 Implementation Details 7.4.1.2 CGAL (Surfaces and Grid, F10 and F11) 7.4.1.2.1 Implementation Details 7.4.2 View options 7.4.2.1 Show Edges (Ctrl+1) 7.4.2.2 Show Axes (Ctrl+2) 7.4.2.3 Show Crosshairs (Ctrl+3) 7.4.3 Animation 7.4.4 View alignment 7.5 Dodecahedron 7.6 Icosahedron 7.7 Half-pyramid 7.8 Bounding Box 7.9 Linear Extrude extended use examples 7.9.1 Linear Extrude with Scale as an interpolated function 7.9.2 Linear Extrude with Twist as an interpolated function 7.9.3 Linear Extrude with Twist and Scale as interpolated functions 7.10 Rocket 7.11 Horns 7.12 Strandbeest 7.13 Previous 7.14 Next 7.14.1 Command line usage 7.14.2 Export options 7.14.2.1 Camera and image output 7.14.3 Constants 7.14.4 Command to build required files 7.14.5 Processing all .scad files in a folder 7.14.6 Makefile example 7.14.6.1 Automatic
    [Show full text]
  • Cimdata Cpdm Late-Breaking News
    PLM Industry Summary James Watch, Editor Vol. 17 No 27 Friday 03 July 2015 Contents CIMdata News _____________________________________________________________________ 2 CIMdata Announces PLM Road Map 2015 for the Aerospace & Defense Industry ____________________2 CIMdata to Offer Workshop on Social Product Development & Collaboration _______________________3 Powering Value Networks with SAP – A CIMdata Commentary __________________________________3 Why Supply Chain Collaborative Practice is Paramount for Success _______________________________6 Acquisitions _______________________________________________________________________ 7 Addnode Group Acquires Transcat PLM, a German Software Provider with an Annual Turnover of SEK 450 M ________________________________________________________________________________7 Atos completes acquisition of Xerox ITO ____________________________________________________8 Company News _____________________________________________________________________ 9 3MF Consortium Signs New Members 3D Systems, Materialise, Siemens PLM Software and Stratasys ___9 Autodesk Expands Free Access to Autodesk Design Academy Curricula for Education _______________10 Autodesk and NIMS Partner to Advance the 21st Century CAM Manufacturing Workforce ____________11 IdeaScale Launches Exclusive Partnership with InnovationManagement.se _________________________12 Mastercam Announces Summer Teacher Training Schedule _____________________________________13 Michael Management Reaches A Major Milestone By Creating Its 100th SAP Training
    [Show full text]
  • Metadefender Core V4.12.2
    MetaDefender Core v4.12.2 © 2018 OPSWAT, Inc. All rights reserved. OPSWAT®, MetadefenderTM and the OPSWAT logo are trademarks of OPSWAT, Inc. All other trademarks, trade names, service marks, service names, and images mentioned and/or used herein belong to their respective owners. Table of Contents About This Guide 13 Key Features of Metadefender Core 14 1. Quick Start with Metadefender Core 15 1.1. Installation 15 Operating system invariant initial steps 15 Basic setup 16 1.1.1. Configuration wizard 16 1.2. License Activation 21 1.3. Scan Files with Metadefender Core 21 2. Installing or Upgrading Metadefender Core 22 2.1. Recommended System Requirements 22 System Requirements For Server 22 Browser Requirements for the Metadefender Core Management Console 24 2.2. Installing Metadefender 25 Installation 25 Installation notes 25 2.2.1. Installing Metadefender Core using command line 26 2.2.2. Installing Metadefender Core using the Install Wizard 27 2.3. Upgrading MetaDefender Core 27 Upgrading from MetaDefender Core 3.x 27 Upgrading from MetaDefender Core 4.x 28 2.4. Metadefender Core Licensing 28 2.4.1. Activating Metadefender Licenses 28 2.4.2. Checking Your Metadefender Core License 35 2.5. Performance and Load Estimation 36 What to know before reading the results: Some factors that affect performance 36 How test results are calculated 37 Test Reports 37 Performance Report - Multi-Scanning On Linux 37 Performance Report - Multi-Scanning On Windows 41 2.6. Special installation options 46 Use RAMDISK for the tempdirectory 46 3. Configuring Metadefender Core 50 3.1. Management Console 50 3.2.
    [Show full text]
  • Opis Biblioteki OCCT
    Opis biblioteki OCCT Open CASCADE Technology jest obiektową biblioteką klas napisaną w języku C++ stworzoną do szybkiego tworzenia specjalizowanych aplikacji wykorzystywanych do projektowania graficznego. Typowe aplikacje tworzone z wykorzystaniem OCCT umożliwiają dwu- lub trzy-wymiarowe (2D lub 3D) modelowanie geometryczne w ogólnych lub specjalizowanych systemach wspomagania projektowania CAD (Computer Aided Design), wytwarzania lub aplikacjach do analizy, symulacji lub wizualizacji. Obiektowa biblioteka OCCT pozwala na znaczne przyspieszenie projektowania tego typu aplikacji. Biblioteka OCCT posiada następujące funkcjonalności: • modelowanie geometryczne 2D i 3D, pozwalajace na tworzenie obiektów w różny sposób: • z wykorzystaniem podstawowych obiektów typu: prism, cylinder, cone i torus, • wykorzystując operacje logiczne Boolean operations (addition, subtraction and intersection) • modyfikując obiekty za pomocą operacji fillets, chamfers i drafts, • modyfikując obiekty z wykorzystaniem funkcji offsets, shelling, hollowing i sweeps, • obliczać własności takich jak surface, volume, center of gravity, curvature, • obliczać geometrię wykorzystując projection, interpolation, approximation. • Funkcje do wizualizacji umożliwiająca zarządzanie wyświetlanymi obiektami i manipulowanie widokami, np.: • rotacja 3D, • powiększanie, • cieniowanie. • Szkielety aplikacji (application framework) pozwalające na: • powiązanie pomiedzy nie-geometrycznymi danymi aplikacji i geometrią, • parametryzację modeli, • Java Application Desktop (JAD), szkielet
    [Show full text]
  • Experiences in Using Open Source Software for Teaching Electronic Engineering CAD
    Experiences in Using Open Source Software for Teaching Electronic Engineering CAD Dr Simon Busbridge1 & Dr Deshinder Singh Gill School of Computing, Engineering and Mathematics, University of Brighton, Brighton BN2 4GJ [email protected] Abstract Embedded systems and simulation distinguish modern professional electronic engineering from that learnt at school. First year undergraduates typically have little appreciation of engineering software capabilities and file handling beyond elementary word processing. This year we expedited blended teaching through the experiential based learning process via open source engineering software. Students engaged with the entire electronic engineering product creation process from inception, performance simulation, printed circuit board design, manufacture and assembly, to cabinet design and complete finished product. Currently students learn software skills using a mixture of electronic and mechanical engineering software packages. Although these have professional capability they are not available off-campus and are sometimes surprisingly poor in simulating real world devices. In this paper we report use of LTspice, FreePCB and OpenSCAD for the learning and teaching of analogue electronics simulation and manufacture. Comparison of the software options, the type of tasks undertaken, examples of student assignments and outputs, and learning achieved are presented. Examples of assignment based learning, integration between the open source packages and difficulties encountered are discussed. Evaluation of student attitudes and responses to this method of learning and teaching are also discussed, and the educational advantages of using this approach compared to the use of commercial packages is highlighted. Introduction Most educational establishments use software for simulating or designing engineering. Most commercial packages come with an academic licence which restricts access to on-site computers.
    [Show full text]
  • Development of a Coupling Approach for Multi-Physics Analyses of Fusion Reactors
    Development of a coupling approach for multi-physics analyses of fusion reactors Zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften (Dr.-Ing.) bei der Fakultat¨ fur¨ Maschinenbau des Karlsruher Instituts fur¨ Technologie (KIT) genehmigte DISSERTATION von Yuefeng Qiu Datum der mundlichen¨ Prufung:¨ 12. 05. 2016 Referent: Prof. Dr. Stieglitz Korreferent: Prof. Dr. Moslang¨ This document is licensed under the Creative Commons Attribution – Share Alike 3.0 DE License (CC BY-SA 3.0 DE): http://creativecommons.org/licenses/by-sa/3.0/de/ Abstract Fusion reactors are complex systems which are built of many complex components and sub-systems with irregular geometries. Their design involves many interdependent multi- physics problems which require coupled neutronic, thermal hydraulic (TH) and structural mechanical (SM) analyses. In this work, an integrated system has been developed to achieve coupled multi-physics analyses of complex fusion reactor systems. An advanced Monte Carlo (MC) modeling approach has been first developed for converting complex models to MC models with hybrid constructive solid and unstructured mesh geometries. A Tessellation-Tetrahedralization approach has been proposed for generating accurate and efficient unstructured meshes for describing MC models. For coupled multi-physics analyses, a high-fidelity coupling approach has been developed for the physical conservative data mapping from MC meshes to TH and SM meshes. Interfaces have been implemented for the MC codes MCNP5/6, TRIPOLI-4 and Geant4, the CFD codes CFX and Fluent, and the FE analysis platform ANSYS Workbench. Furthermore, these approaches have been implemented and integrated into the SALOME simulation platform. Therefore, a coupling system has been developed, which covers the entire analysis cycle of CAD design, neutronic, TH and SM analyses.
    [Show full text]