Orbital Apex Disorders: a Case Series, Int J Oral Maxillofac Surg (2015), Dx.Doi.Org/10.1016/J.Ijom.2015.10.014

Total Page:16

File Type:pdf, Size:1020Kb

Orbital Apex Disorders: a Case Series, Int J Oral Maxillofac Surg (2015), Dx.Doi.Org/10.1016/J.Ijom.2015.10.014 YIJOM-3286; No of Pages 10 Int. J. Oral Maxillofac. Surg. 2015; xxx: xxx–xxx http://dx.doi.org/10.1016/j.ijom.2015.10.014, available online at http://www.sciencedirect.com Case Reports Trauma R. E. Warburton, C. C. D. Brookes, B. A. Golden, T. A. Turvey Orbital apex disorders: a case Department of Oral and Maxillofacial Surgery, School of Dentistry, University of North series Carolina at Chapel Hill, Chapel Hill, NC, USA R. E. Warburton, C. C. D. Brookes, B. A. Golden, T. A. Turvey: Orbital apex disorders: a case series. Int. J. Oral Maxillofac. Surg. 2015; xxx: xxx–xxx. # 2015 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved. Abstract. Orbital apex syndrome is an uncommon disorder characterized by ophthalmoplegia, proptosis, ptosis, hypoesthesia of the forehead, and vision loss. It may be classified as part of a group of orbital apex disorders that includes superior orbital fissure syndrome and cavernous sinus syndrome. Superior orbital fissure syndrome presents similarly to orbital apex syndrome without optic nerve impairment. Cavernous sinus syndrome includes hypoesthesia of the cheek and lower eyelid in addition to the signs seen in orbital apex syndrome. While historically described separately, these three disorders share similar causes, diagnostic course, and management strategies. The purpose of this study was to report three cases of orbital apex disorders treated recently and to review the Key words: orbital apex syndrome; superior literature related to these conditions. Inflammatory and vascular disorders, orbital fissure syndrome; cavernous sinus neoplasm, infection, and trauma are potential causes of orbital apex disorders. syndrome; orbital compartment syndrome; pto- Management is directed at the causative process. The cases described represent a sis; proptosis; ophthalmoplegia; optic neuropa- rare but important group of conditions seen by the maxillofacial surgeon. A review thy; maxillofacial surgery. of the clinical presentation, etiology, and management of these conditions may prompt timely recognition and treatment. Accepted for publication 16 October 2015 1 Orbital apex syndrome (OAS) is an uncom- oculosympathetic paresis, and impairment SOFS developing into OAS or CSS. For mon disorder characterized by impairment of the ophthalmic and maxillary branches the purpose of discussion OAS, SOFS, and 1 of cranial nerves III, IV, VI, and the oph- of cranial nerve V. CSS presents with CSS can be grouped together as a single thalmic branch of cranial nerve V, and optic ophthalmoplegia, ptosis, proptosis, de- condition, differentiated chiefly by the neuropathy. Patients present with ophthal- creased vision, and loss of sensation in anatomical position of the causative pa- moplegia, proptosis, ptosis, visual im- the ipsilateral forehead, eyelids, cornea, thology. 4,5 1 pairment, a fixed dilated pupil, and and cheek. CSS can present bilaterally. Three new cases of orbital apex disor- hypoesthesia of the ipsilateral forehead, Cranial nerve involvement may be com- ders are reported to illustrate the three 1 upper eyelid, and cornea. Superior orbital plete or incomplete in all three syndromes. syndromes and highlight several key caus- fissure syndrome (SOFS) presents similarly While frequently described separately ative factors. The relevant anatomy, etiol- to OAS, without the accompanying optic in the literature, these three orbital apex ogy, and available diagnostic and 2,3 nerve impairment. Cavernous sinus syn- disorders share a similar etiology, diag- treatment modalities are also described. 1,6 drome (CSS) involves palsy of cranial nostic course, and treatment. These syn- This study was reviewed by the Institu- nerves III, IV, and VI, optic neuropathy, dromes can be progressive in nature, with tional Review Board and deemed exempt. 0901-5027/000001+010 # 2015 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved. Please cite this article in press as: Warburton RE, et al. Orbital apex disorders: a case series, Int J Oral Maxillofac Surg (2015), http:// dx.doi.org/10.1016/j.ijom.2015.10.014 YIJOM-3286; No of Pages 10 2 Warburton et al. Case series clinic with a 4-day history of right mid- facial pain and swelling without orbital Case 1 involvement. He was admitted to the hos- A 16-year-old Caucasian male with pital with a presumed facial infection of marked midfacial hypoplasia, retrogenia, unknown cause for further work-up and and right-sided hemihypoplasia presented intravenous antibiotics. Shortly after ad- for a Le Fort III osteotomy modified to mission, the patient developed rapid onset maintain nasal position, right split thick- of ophthalmoplegia, proptosis, ptosis, and ness parietal bone harvest with grafting to complete vision loss OD. The right pupil the bilateral supraorbital rims and mid- was found to be fixed and dilated. Oph- face, and genioplasty. Preoperative oph- thalmology was consulted and the patient thalmic evaluation revealed normal vision was found to have an intraocular pressure (20/20 in the right eye (OD) and 20/25 in of 57 mmHg OD by handheld tonometry. the left eye (OS)) with no afferent pupil- The patient was diagnosed with an OAS lary defect or anisocoria. secondary to an orbital compartment syn- The patient was administered 125 mg of drome, and an emergency lateral canthot- methylprednisolone and 1 g of cefazolin omy with inferior cantholysis was intravenously at the start of the procedure performed bedside. Intraocular pressure and every 4 h subsequently. The midface improved to 38 mmHg OD after the pro- was mobilized and advanced without dif- cedure. Vision loss and ophthalmoplegia ficulty. The inner cortex remained intact were unchanged. Brimonidine and dorzo- during the parietal bone harvest. The or- lamide/timolol were administered topical- bital osteotomies were located within ly and an emergency CT of the face was 1 cm of the orbital rim and carried into obtained. Imaging revealed a large cystic the inferior orbital fissure. No fracture or mass in the right maxillary sinus with Fig. 1. Intraoperative CT scan revealing no extension of the osteotomies to the orbital erosion of the posterior maxillary sinus fracture or hematoma involving the right or- apex was observed. wall and right orbital cellulitis with poste- bital apex or optic canal. 7 Upon completion of the procedure, the rior globe tenting (Fig. 2). right pupil was noted to be fixed and The patient was taken as an emergency dilated with a 4-mm discrepancy when der of his neurological examination was to the operating room for drainage of the compared to the left pupil. Bilateral pupils benign. Magnetic resonance imaging right maxillary sinus via a Caldwell–Luc were non-reactive, which was attributed to (MRI) of the brain and orbits was performed, approach and further orbital decompres- the depth of anesthesia. The coronal and which revealed no signs of orbital apex sion. Otolaryngology was contacted to intraoral incisions were reopened and the compression or intracranial pathology. determine the benefit of concomitant en- right orbit was explored, with no hemato- The patient was diagnosed with a pre- doscopic sinus surgery, but the decision ma or pulsatile bleeding noted. Ophthal- sumed SOFS. Intravenous methylprednis- was made to defer additional sinus inter- mology was consulted to help evaluate for olone (125 mg) was continued every 4 h vention at that time. After drainage of the an intraorbital cause of the patient’s ani- throughout his hospitalization. A formal maxillary sinus, the right intraocular pres- socoria. Intraocular pressures were found ophthalmic evaluation at less than 24 h sure improved to 16 mmHg by handheld to be normal at 15 mmHg OD and after surgery found visual acuity to be tonometry and no additional orbital de- 20 mmHg OS by handheld tonometry. 20/40 OD, 20/20 OS. The patient under- compression was pursued. Cultures were The neurosurgery service was consulted went serial ophthalmic examinations, obtained and the maxillary sinus contents to rule out any intracranial pathology. An which showed slight improvement in pto- were sent for histopathological evaluation. emergency computed tomography (CT) of sis and continued ophthalmoplegia. The Postoperative visual acuity improved to the head and face was obtained, which patient was discharged on postoperative 20/200 OD. The right pupil was sluggishly revealed no intracranial hemorrhage, mid- day 2 with a 7-day prednisone taper. At the reactive. Ophthalmoplegia was unchanged. line shift, or brainstem compression. No time of discharge, the patient’s vision was The patient was started on vancomycin and fracture or hematoma involving the super- 20/30 OD, 20/20 OS with a 2-mm discrep- piperacillin/tazobactam. Maxillary sinus ior orbital fissure or orbital apex was noted ancy in pupillary size and minimal reac- cultures revealed no growth. The intraop- (Fig. 1). The patient’s surgical wounds tivity to light OD. erative pathology results returned as sino- were then closed and he was transferred Three weeks postoperatively, the patient nasal mucosa with features consistent with to the pediatric intensive care unit for showed improved extraocular movements acute on chronic rhinosinusitis. Serial oph- close neurological monitoring. and ptosis OD. The binocular diplopia and thalmic examinations revealed improved The patient’s postoperative ophthalmic pupillary dilation remained. Five weeks visual acuity and pupillary reactivity, al- examination revealed complete
Recommended publications
  • MR Imaging of the Orbital Apex
    J Korean Radiol Soc 2000;4 :26 9-0 6 1 6 MR Imaging of the Orbital Apex: An a to m y and Pat h o l o g y 1 Ho Kyu Lee, M.D., Chang Jin Kim, M.D.2, Hyosook Ahn, M.D.3, Ji Hoon Shin, M.D., Choong Gon Choi, M.D., Dae Chul Suh, M.D. The apex of the orbit is basically formed by the optic canal, the superior orbital fis- su r e , and their contents. Space-occupying lesions in this area can result in clinical d- eficits caused by compression of the optic nerve or extraocular muscles. Even vas c u l a r changes in the cavernous sinus can produce a direct mass effect and affect the orbit ap e x. When pathologic changes in this region is suspected, contrast-enhanced MR imaging with fat saturation is very useful. According to the anatomic regions from which the lesions arise, they can be classi- fied as belonging to one of five groups; lesions of the optic nerve-sheath complex, of the conal and intraconal spaces, of the extraconal space and bony orbit, of the cav- ernous sinus or diffuse. The characteristic MR findings of various orbital lesions will be described in this paper. Index words : Orbit, diseases Orbit, MR The apex of the orbit is a complex region which con- tains many nerves, vessels, soft tissues, and bony struc- Anatomy of the orbital apex tures such as the superior orbital fissure and the optic canal (1-3), and is likely to be involved in various dis- The orbital apex region consists of the optic nerve- eases (3).
    [Show full text]
  • Optic Disc Edema, Globe Flattening, Choroidal Folds, and Hyperopic Shifts Observed in Astronauts After Long-Duration Space Flight
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln NASA Publications National Aeronautics and Space Administration 10-2011 Optic Disc Edema, Globe Flattening, Choroidal Folds, and Hyperopic Shifts Observed in Astronauts after Long-duration Space Flight Thomas H. Mader Alaska Native Medical Center, [email protected] C. Robert Gibson Coastal Eye Associates Anastas F. Pass University of Houston Larry A. Kramer University of Texas Health Science Center Andrew G. Lee The Methodist Hospital See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/nasapub Part of the Physical Sciences and Mathematics Commons Mader, Thomas H.; Gibson, C. Robert; Pass, Anastas F.; Kramer, Larry A.; Lee, Andrew G.; Fogarty, Jennifer; Tarver, William J.; Dervay, Joseph P.; Hamilton, Douglas R.; Sargsyan, Ashot; Phillips, John L.; Tran, Duc; Lipsky, William; Choi, Jung; Stern, Claudia; Kuyumjian, Raffi; andolk, P James D., "Optic Disc Edema, Globe Flattening, Choroidal Folds, and Hyperopic Shifts Observed in Astronauts after Long-duration Space Flight" (2011). NASA Publications. 69. https://digitalcommons.unl.edu/nasapub/69 This Article is brought to you for free and open access by the National Aeronautics and Space Administration at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in NASA Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Thomas H. Mader, C. Robert Gibson, Anastas F. Pass, Larry A.
    [Show full text]
  • Eyelid and Orbital Infections
    27 Eyelid and Orbital Infections Ayub Hakim Department of Ophthalmology, Western Galilee - Nahariya Medical Center, Nahariya, Israel 1. Introduction The major infections of the ocular adnexal and orbital tissues are preseptal cellulitis and orbital cellulitis. They occur more frequently in children than in adults. In Schramm's series of 303 cases of orbital cellulitis, 68% of the patients were younger than 9 years old and only 17% were older than 15 years old. Orbital cellulitis is less common, but more serious than preseptal. Both conditions happen more commonly in the winter months when the incidence of paranasal sinus infections is increased. There are specific causes for each of these types of cellulitis, and each may be associated with serious complications, including vision loss, intracranial infection and death. Studies of orbital cellulitis and its complication report mortality in 1- 2% and vision loss in 3-11%. In contrast, mortality and vision loss are extremely rare in preseptal cellulitis. 1.1 Definitions Preseptal and orbital cellulites are the most common causes of acute orbital inflammation. Preseptal cellulitis is an infection of the soft tissue of the eyelids and periocular region that is localized anterior to the orbital septum outside the bony orbit. Orbital cellulitis ( 3.5 per 100,00 ) is an infection of the soft tissues of the orbit that is localized posterior to the orbital septum and involves the fat and muscles contained within the bony orbit. Both types are normally distinguished clinically by anatomic location. 1.2 Pathophysiology The soft tissues of the eyelids, adnexa and orbit are sterile. Infection usually originates from adjacent non-sterile sites but may also expand hematogenously from distant infected sites when septicemia occurs.
    [Show full text]
  • Extraocular Muscles Orbital Muscles
    EXTRAOCULAR MUSCLES ORBITAL MUSCLES INTRA- EXTRA- OCULAR OCULAR CILIARY MUSCLES INVOLUNTARY VOLUNTARY 1.Superior tarsal muscle. 1.Levator Palpebrae Superioris 2.Inferior tarsal muscle 2.Superior rectus 3.Inferior rectus 4.Medial rectus 5.Lateral rectus 6.Superior oblique 7.Inferior oblique LEVATOR PALPEBRAE SUPERIORIOS Origin- Inferior surface of lesser wing of sphenoid. Insertion- Upper lamina (Voluntary) - Anterior surface of superior tarsus & skin of upper eyelid. Middle lamina (Involuntary) - Superior margin of superior tarsus. (Superior Tarsus Muscle / Muller muscle) Lower lamina (Involuntary) - Superior conjunctival fornix Nerve Supply :- Voluntary part – Oculomotor Nerve Involuntary part – Sympathetic ACTION :- Elevation of upper eye lid C/S :- Drooping of upper eyelid. Congenital ptosis due to localized myogenic dysgenesis Complete ptosis - Injury to occulomotor nerve. Partial ptosis - disruption of postganglionic sympathetic fibres from superior cervical sympathetic ganglion. Extra ocular Muscles : Origin Levator palpebrae superioris Superior Oblique Superior Rectus Lateral Rectus Medial Rectus Inferior Oblique Inferior Rectus RECTUS MUSCLES : ORIGIN • Arises from a common tendinous ring knows as ANNULUS OF ZINN • Common ring of connective tissue • Anterior to optic foramen • Forms a muscle cone Clinical Significance Retrobulbar neuritis ○ Origin of SUPERIOR AND MEDIAL RECTUS are closely attached to the dural sheath of the optic nerve, which leads to pain during upward & inward movements of the globe. Thyroid orbitopathy ○ Medial & Inf.rectus thicken. especially near the orbital apex - compression of the optic nerve as it enters the optic canal adjacent to the body of the sphenoid bone. Ophthalmoplegia ○ Proptosis occur due to muscle laxity. Medial Rectus Superior Rectus Origin :- Superior limb of the tendonous ring, and optic nerve sheath.
    [Show full text]
  • Periorbital Sinuses the Periorbital Sinuses Have a Close Anatomical Relationship with the Orbits (Fig 1-8)
    12 ● Fundamentals and Principles of Ophthalmology Lacrimal nerve Frontal nerve Trochlear nerve (CN IV) Superior ophthalmic vein Superior division Ophthalmic artery of CN III Nasociliary nerve Abducens nerve (CN VI) Inferior division of CN III Inferior ophthalmic vein A Figure 1-7 A, Anterior view of the right orbital apex showing the distribution of the nerves as they enter through the superior orbital fissure and optic canal. This view also shows the annu- lus of Zinn, the fibrous ring formed by the origin of the 4 rectus muscles. (Continued) The course of the inferior ophthalmic vein is variable, and it can travel within or below the ring as it exits the orbit. The inferior orbital fissure lies just below the superior fissure, between the lateral wall and the floor of the orbit, providing access to the pterygopalatine and inferotemporal fos- sae (see Fig 1-1). Therefore, it is close to the foramen rotundum and the pterygoid canal. The inferior orbital fissure transmits the infraorbital and zygomatic branches of CN V2, an orbital nerve from the pterygopalatine ganglion, and the inferior ophthalmic vein. The inferior ophthalmic vein connects with the pterygoid plexus before draining into the cav- ernous sinus. Periorbital Sinuses The periorbital sinuses have a close anatomical relationship with the orbits (Fig 1-8). The medial walls of the orbits, which border the nasal cavity anteriorly and the ethmoid sinus and sphenoid sinus posteriorly, are almost parallel. In adults, the lateral wall of each orbit forms an angle of approximately 45° with the medial plane. The lateral walls border the middle cranial, temporal, and pterygopalatine fossae.
    [Show full text]
  • Anatomic Variations of the Nose and Paranasal Sinuses in Saudi Population
    234 Original article Anatomic variations of the nose and paranasal sinuses in saudi population: computed tomography scan analysis Nada Alshaikha, Amirah Aldhuraisb aDepartment of Otolaryngology Head & Neck Background Surgery, Rhinology Unit, Dammam Medical Knowledge of the anatomy constitutes an integral part in the total management of Complex (DMC), bDepartment of ENT, King Fahad Specialist Hospital (KFSH), Dammam, patients with sinonasal diseases. The aim of this study was to obtain the prevalence Saudi Arabia of sinonasal anatomic variations in Saudi population and to understand their importance and impact on the disease process, as well as their influence on Correspondence to Nada Alshaikh, MD, Department of Otorhinolaryngology Head and surgical management and outcome. Neck Surgery, Dammam Medical Complex, Materials and methods Dammam - 31414, Saudi Arabia This study is prospective review of retrospectively performed normal computed e-mail: [email protected] tomography (CT) scans of the nose and paranasal sinuses in adult Saudi Received 13 November 2016 population at Dammam Medical Complex. The scans were reviewed by two Accepted 23 December 2016 independent observers. The Egyptian Journal of Otolaryngology Results 2018, 34:234–241 Of all CT scans that were reviewed, 48.4% were of female patients and 51.6% were of male patients. The mean age of the study sample was 38.5±26.5 years. The most common anatomic variation after excluding agger nasi cell was pneumatized crista galli, which was seen in 73% of the scans. However, the least common variation seen in this series was hypoplasia of the maxillary sinus, which was encountered in 5% of the cases. We did not detect a single pneumatized inferior turbinate among the studied scans.
    [Show full text]
  • Septation of the Sphenoid Sinus and Its Clinical Significance
    1793 International Journal of Collaborative Research on Internal Medicine & Public Health Septation of the Sphenoid Sinus and its Clinical Significance Eldan Kapur 1* , Adnan Kapidžić 2, Amela Kulenović 1, Lana Sarajlić 2, Adis Šahinović 2, Maida Šahinović 3 1 Department of anatomy, Medical faculty, University of Sarajevo, Čekaluša 90, 71000 Sarajevo, Bosnia and Herzegovina 2 Clinic for otorhinolaryngology, Clinical centre University of Sarajevo, Bolnička 25, 71000 Sarajevo, Bosnia and Herzegovina 3 Department of histology and embriology, Medical faculty, University of Sarajevo, Čekaluša 90, 71000 Sarajevo, Bosnia and Herzegovina * Corresponding Author: Eldan Kapur, MD, PhD Department of anatomy, Medical faculty, University of Sarajevo, Bosnia and Herzegovina Email: [email protected] Phone: 033 66 55 49; 033 22 64 78 (ext. 136) Abstract Introduction: Sphenoid sinus is located in the body of sphenoid, closed with a thin plate of bone tissue that separates it from the important structures such as the optic nerve, optic chiasm, cavernous sinus, pituitary gland, and internal carotid artery. It is divided by one or more vertical septa that are often asymmetric. Because of its location and the relationships with important neurovascular and glandular structures, sphenoid sinus represents a great diagnostic and therapeutic challenge. Aim: The aim of this study was to assess the septation of the sphenoid sinus and relationship between the number and position of septa and internal carotid artery in the adult BH population. Participants and Methods: A retrospective study of the CT analysis of the paranasal sinuses in 200 patients (104 male, 96 female) were performed using Siemens Somatom Art with the following parameters: 130 mAs: 120 kV, Slice: 3 mm.
    [Show full text]
  • Clinical Characteristics and Outcomes of Paediatric Orbital Cellulitis in Hospital Universiti Sains Malaysia: a Five-Year Review
    Singapore Med J 2020; 61(6): 312-319 Original Article https://doi.org/10.11622/smedj.2019121 Clinical characteristics and outcomes of paediatric orbital cellulitis in Hospital Universiti Sains Malaysia: a five-year review Ismail Mohd-Ilham1,2, MBBS, MMed, Abd Bari Muhd-Syafi1,2, MBBS, Sonny Teo Khairy-Shamel1,2, MD, MMed, Ismail Shatriah1,2, MD, MMed INTRODUCTION Limited data is available on paediatric orbital cellulitis in Asia. We aimed to describe demographic data, clinical presentation, predisposing factors, identified microorganisms, choice of antibiotics and management in children with orbital cellulitis treated in a tertiary care centre in Malaysia. METHODS A retrospective review was performed on children with orbital cellulitis aged below 18 years who were admitted to Hospital Universiti Sains Malaysia, Kelantan, Malaysia, between January 2013 and December 2017. RESULTS A total of 14 paediatric patients fulfilling the diagnostic criteria for orbital cellulitis were included. Their mean age was 6.5 ± 1.2 years. Boys were more likely to have orbital cellulitis than girls (71.4% vs. 28.6%). Involvement of both eyes was observed in 14.3% of the patients. Sinusitis (28.6%) and upper respiratory tract infection (21.4%) were the most common predisposing causes. Staphylococcus aureus (28.6%) was the leading pathogen. Longer duration of hospitalisation was observed in those infected with methicillin-resistant Staphylococcus aureus and Burkholderia pseudomallei. 10 (71.4%) patients were treated with a combination of two or three antibiotics. In this series, 42.9% had surgical interventions. CONCLUSION Young boys were found to be more commonly affected by orbital cellulitis than young girls.
    [Show full text]
  • Preseptal and Orbital Cellulitis
    Journal of Microbiology and Infectious Diseases / 2014; 4 (3): 123-127 JMID doi: 10.5799/ahinjs.02.2014.03.0154 REVIEW ARTICLE Preseptal and orbital cellulitis Emine Akçay, Gamze Dereli Can, Nurullah Çağıl Yıldırım Beyazıt Univ. Medical Faculty Atatürk Training and Research Hospital Dept. of Ophthalmology, Ankara, Turkey ABSTRACT Preseptal cellulitis (PC) is defined as an inflammation of the eyelid and surrounding skin, whereas orbital cellulitis (OC) is an inflammation of the posterior septum of the eyelid affecting the orbit and its contents. Periorbital tissues may become infected as a result of trauma (including insect bites) or primary bacteremia. Orbital cellulitis generally occurs as a complication of sinusitis. The most commonly isolated organisms are Staphylococcus aureus, Streptococcus pneu- moniae, S. epidermidis, Haempphilus influenzae, Moraxella catarrhalis and S. pyogenes. The method for the diagnosis of OS and PS is computed tomography. Using effective antibiotics is a mainstay for the treatment of PC and OC. There is an agreement that surgical drainage should be performed in cases of complete ophthalmoplegia or significant visual impairment or large abscesses formation. This infections are also at a greater risk of acute visual loss, cavernous sinus thrombosis, meningitis, cerebritis, endo- phthalmitis, and brain abscess in children. Early diagnosis and appropriate treatment are crucial to control the infection. Diagnosis, treatment, management and complications of PC and OC are summarized in this manuscript. J Microbiol Infect Dis 2014; 4(3): 123-127 Key words: infection, cellulitis, orbita, preseptal, diagnosis, treatment Preseptal ve Orbital Sellülit ÖZET Preseptal selülit (PS) göz kapağı ve çevresindeki dokunun iltihabi reaksiyonu iken orbital selülit (OS) orbitayı ve onun içeriğini etkileyen septum arkası dokuların iltihabıdır.
    [Show full text]
  • 98796-Anatomy of the Orbit
    Anatomy of the orbit Prof. Pia C Sundgren MD, PhD Department of Diagnostic Radiology, Clinical Sciences, Lund University, Sweden Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 Lay-out • brief overview of the basic anatomy of the orbit and its structures • the orbit is a complicated structure due to its embryological composition • high number of entities, and diseases due to its composition of ectoderm, surface ectoderm and mesoderm Recommend you to read for more details Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 3 x 3 Imaging technique 3 layers: - neuroectoderm (retina, iris, optic nerve) - surface ectoderm (lens) • CT and / or MR - mesoderm (vascular structures, sclera, choroid) •IOM plane 3 spaces: - pre-septal •thin slices extraconal - post-septal • axial and coronal projections intraconal • CT: soft tissue and bone windows 3 motor nerves: - occulomotor (III) • MR: T1 pre and post, T2, STIR, fat suppression, DWI (?) - trochlear (IV) - abducens (VI) Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 Superior orbital fissure • cranial nerves (CN) III, IV, and VI • lacrimal nerve • frontal nerve • nasociliary nerve • orbital branch of middle meningeal artery • recurrent branch of lacrimal artery • superior orbital vein • superior ophthalmic vein Lund University / Faculty of Medicine / Inst. Clinical Sciences / Radiology / ECNR Dubrovnik / Oct 2018 Lund University / Faculty of Medicine / Inst.
    [Show full text]
  • Eye60. Instrumental Eye Examination.Pdf
    INSTRUMENTAL EYE EXAMINATION Eye60 (1) Instrumental Eye Examination Last updated: May 9, 2019 “BEDSIDE” EXAMINATIONS ..................................................................................................................... 1 OPHTHALMOSCOPY (FUNDUSCOPY) ........................................................................................................ 1 DIRECT OPHTHALMOSCOPY .................................................................................................................... 1 INDIRECT OPHTHALMOSCOPY ................................................................................................................. 2 OPHTHALMOSCOPIC FINDINGS ............................................................................................................... 2 Hypertensive retinopathy ................................................................................................................. 6 Diabetic retinopathy ......................................................................................................................... 7 PEDIATRIC ASPECTS ............................................................................................................................... 9 APPLANATION TONOMETRY .................................................................................................................... 9 SLIT LAMP EXAMINATION (BIOMICROSCOPY) ........................................................................................ 9 ULTRASONOGRAPHY ..............................................................................................................................
    [Show full text]
  • Anatomy and Physiology of the Afferent Visual System
    Handbook of Clinical Neurology, Vol. 102 (3rd series) Neuro-ophthalmology C. Kennard and R.J. Leigh, Editors # 2011 Elsevier B.V. All rights reserved Chapter 1 Anatomy and physiology of the afferent visual system SASHANK PRASAD 1* AND STEVEN L. GALETTA 2 1Division of Neuro-ophthalmology, Department of Neurology, Brigham and Womens Hospital, Harvard Medical School, Boston, MA, USA 2Neuro-ophthalmology Division, Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA INTRODUCTION light without distortion (Maurice, 1970). The tear–air interface and cornea contribute more to the focusing Visual processing poses an enormous computational of light than the lens does; unlike the lens, however, the challenge for the brain, which has evolved highly focusing power of the cornea is fixed. The ciliary mus- organized and efficient neural systems to meet these cles dynamically adjust the shape of the lens in order demands. In primates, approximately 55% of the cortex to focus light optimally from varying distances upon is specialized for visual processing (compared to 3% for the retina (accommodation). The total amount of light auditory processing and 11% for somatosensory pro- reaching the retina is controlled by regulation of the cessing) (Felleman and Van Essen, 1991). Over the past pupil aperture. Ultimately, the visual image becomes several decades there has been an explosion in scientific projected upside-down and backwards on to the retina understanding of these complex pathways and net- (Fishman, 1973). works. Detailed knowledge of the anatomy of the visual The majority of the blood supply to structures of the system, in combination with skilled examination, allows eye arrives via the ophthalmic artery, which is the first precise localization of neuropathological processes.
    [Show full text]