The Effect of Odor Enrichment on Olfactory Acuity: Olfactometric Testing In

Total Page:16

File Type:pdf, Size:1020Kb

The Effect of Odor Enrichment on Olfactory Acuity: Olfactometric Testing In bioRxiv preprint doi: https://doi.org/10.1101/2020.05.04.076604; this version posted May 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 2 3 4 The effect of odor enrichment on olfactory acuity: Olfactometric testing in 5 mice using two mirror-molecular pairs. 6 7 Alyson Blount1 and David M. Coppola1,* 8 9 10 1Department of Biology, Randolph-Macon College, Ashland, Virginia, United States of America 11 12 13 14 *Corresponding Author 15 Email: [email protected] (DMC) 16 17 18 19 20 Short Title: The effect of odor enrichment on olfactory acuity. bioRxiv preprint doi: https://doi.org/10.1101/2020.05.04.076604; this version posted May 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 21 Abstract 22 Intelligent systems in nature like the mammalian nervous system benefit from adaptable inputs 23 that can tailor response profiles to their environment that varies in time and space. Study of such 24 plasticity, in all its manifestations, forms a pillar of classical and modern neuroscience. This 25 study is concerned with a novel form of plasticity in the olfactory system referred to as 26 induction. In this process, subjects unable to smell a particular odor, or unable to differentiate 27 similar odors, gain these abilities through mere exposure to the odor(s) over time without the 28 need for attention or feedback (reward or punishment). However, few studies of induction have 29 rigorously documented changes in olfactory threshold for the odor(s) used for “enrichment.” We 30 trained 36 CD-1 mice in an operant-olfactometer (go/no go task) to discriminate a mixture of 31 stereoisomers from a lone stereoisomer using two enantiomeric pairs: limonene and carvone. 32 We also measured each subject’s ability to detect one of the stereoisomers of each odor. In order 33 to assess the effect of odor enrichment on enantiomer discrimination and detection, mice were 34 exposed to both stereoisomers of limonene or carvone for 2 to 12 weeks. Enrichment was 35 effected by adulterating the subject’s food (passive enrichment) with one pair of enantiomers or 36 by exposing them to the enantiomers in daily operant discrimination testing (active enrichment). 37 We found that neither form of enrichment altered discrimination nor detection. And this result 38 pertained using either within-subject or between-subject experimental designs. Unexpectedly, 39 our threshold measurements were among the lowest ever recorded for any species, which we 40 attributed to the relatively greater amount of practice (task replication) we allowed our mice 41 compared to other reports. Interestingly, discrimination thresholds were no greater (limonene) or 42 only modestly greater (carvone) from detection thresholds suggesting chiral-specific olfactory 43 receptors determine thresholds for these compounds. The super-sensitivity of mice, shown in 2 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.04.076604; this version posted May 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 44 this study, to the limonene and carvone enantiomers, compared to the much lesser acuity of 45 humans for these compounds, reported elsewhere, may resolve the mystery of why the former 46 group with four-fold more olfactory receptors have tended, in previous studies, to have similar 47 thresholds to the latter group. Finally, our results are consistent with the conclusion that 48 supervised-perceptual learning i.e. that involving repeated feedback for correct and incorrect 49 decisions, rather than induction, is the form of plasticity that allows animals to fully realize the 50 capabilities of their olfactory system. 51 52 53 3 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.04.076604; this version posted May 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 54 Introduction 55 The task of natural intelligence, like artificial intelligence, is to correctly interpret environmental 56 information in pursuit of certain goals. This requires sensory systems that can capture mission- 57 critical data in a world teeming with stimuli that are irrelevant, ambiguous or under-specified. 58 Universal and enduring sensory statistics, the knowledge of which can promote survival, are 59 often “hardwired” into neural systems. For example, natural scene statistics which have a 60 preponderance of cardinal contours are matched by a mammalian visual cortex with an innate 61 preponderance of neurons responsive to vertical and horizontal edges [1-3]. 62 However, it is impractical to program all needed sensory information into intelligent 63 systems, pointing to the survival advantage of learning or, more broadly, neural plasticity. One 64 of the most studied forms of plasticity, that involving “critical periods” during development, 65 enjoys the advantages of both adaptability to a unstable environment and resistance to alteration 66 after formation. Mammalian vision, again, provides a classic example in ocular dominance 67 columns of visual cortex, which are only mutable during a prescribed period of early life [4, 5]. 68 Adult plasticity, including the various forms of memory, round out the modes of information 69 processing and storage with these later forms representing the most evanescent. 70 Here we are concerned with “induction” a mode of information processing in the 71 olfactory system that has been likened to perceptual learning, a form of implicit memory by 72 which abilities in a sensory task are improved upon with or without the necessity of feedback [6- 73 8]. The classic form of induction involves anosmias. In these deficits, which are widespread in 74 humans, there is an inability to smell a particular odor in a subject that otherwise has a normal 75 sense of smell [9]. However, in certain cases non-smellers can be converted, over time, to 76 smellers by repeated exposure to the odor for which they were initially anosmic [10]. In 4 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.04.076604; this version posted May 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 77 animals, a related phenomenon has been reported in which subjects that initially are unable to 78 discriminate like-pairs of odors develop the ability to do so without feedback after several days 79 of enrichment [11]. These unsupervised forms of olfactory learning that have been associated 80 with peripheral or, at least, low-level plastic changes in the nervous system will be referred to as 81 induction in keeping with Wysocki and colleagues [10]. The modes of odor exposure that have 82 typically precipitated induction will be referred to as “enrichment.” Usually, these regimens have 83 involved one or a small number of purified odorants delivered to subjects at relatively high 84 concentrations with exposures lasting from several days to several months [10, 11]. 85 Relatively few studies have rigorously compared the effects of passive (unsupervised) 86 enrichment and active (supervised) enrichment on behavioral acuity for the enriched odor. Here 87 we combine operant olfactometric testing with extensive replication to ask if enrichment with the 88 enantiomers (mirror-molecules) of limonene and carvone cause improved behavioral acuity 89 through either heightened ability to discriminate the stereoisomers of these odors or to detect one 90 stereoisomer. Though we found no evidence of induction---no change in discrimination or 91 detection thresholds--after either active or passive enrichment, we did obtain among of the 92 lowest thresholds ever measured for any species. The implications of these data for interpreting 93 thresholds in other studies including the comparison of mice and humans and for assessing the 94 role of perceptual learning in olfactory information processing are discussed. 95 5 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.04.076604; this version posted May 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 96 Methods 97 Animals 98 All animal procedures were approved and supervised by the Randolph-Macon College 99 Institutional Animal Care and Use Committee and comply with the “Guide for the Care and Use 100 of Laboratory Animals” (8th Edition, National Academies Press USA). Mice were kept in an 101 approved animal room maintained on a 12hr/12hr light cycle with mouse chow available ad lib. 102 Subjects were females of the CD-1 outbred strain obtained from Charles River Laboratories 103 (Wilmington MA, USA) at 56-60 days of age and used in the study up to 7 months of age. This 104 strain was used because it has been the most common target of olfactometric studies, in general, 105 and thresholds have previously been obtained from the strain using similar stimuli and 106 procedures [12]. 107 Thirty-six mice completed threshold testing.
Recommended publications
  • Histology and Surface Morphology of the Olfactory Epithelium in the Freshwater Teleost Clupisoma Garua (Hamilton, 1822)
    FISHERIES & AQUATIC LIFE (2019) 27: 122 - 129 Archives of Polish Fisheries DOI 10.2478/aopf-2019-0014 RESEARCH ARTICLE Histology and surface morphology of the olfactory epithelium in the freshwater teleost Clupisoma garua (Hamilton, 1822) Saroj Kumar Ghosh Received – 07 May 2019/Accepted – 27 August 2019. Published online: 30 September 2019; ©Inland Fisheries Institute in Olsztyn, Poland Citation: Ghosh S.K. 2019 – Histology and surface morphology of the olfactory epithelium in the freshwater teleost Clupisoma garua (Hamil- ton, 1822) – Fish. Aquat. Life 27: 122-129. Abstract. The anatomical structure of the olfactory organ and Introduction the organization of various cells lining the olfactory mucosa of Clupisoma garua (Siluriformes; Schilbeidae) were The olfactory system in fishes is a notable sensory or- investigated with light and scanning electron microscopy. The olfactory organ was composed of numerous lamellae of gan because it is essentially a chemoreceptor for de- various sizes, radiating outward from both sides of the narrow tecting and identifying water-soluble compounds to midline raphe, forming an elongated rosette. Each lamella collect information about the surrounding aquatic consisted of the olfactory epithelium and a central lamellar ecosystem. Smell is one of the most significant space, the central core. The epithelium covering the surface of senses, and it drives basic patterns of behaviors in the rosette folds was differentiated into zones of sensory and most teleosts such as foraging, alarm response, pred- indifferent epithelia. The sensory part of epithelium was characterized by three types of morphologically distinct ator avoidance, social communication, reproductive receptor neurons: ciliated receptor cells, microvillous receptor activity, and homing migration (Gayoso et al.
    [Show full text]
  • The Pattern of Olfactory Innervation by W
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.9.3.101 on 1 July 1946. Downloaded from THE PATTERN OF OLFACTORY INNERVATION BY W. E. LE GROS CLARK and R. T. TURNER WARWICK From the Department of Anatomy, University of Oxford (RECEIVED 31ST JULY, 1946) IT is desirable that, from time to time, commonly Methods accepted statements regarding anatomical pathways Most of the observations recorded in this paper were and connexions in the peripheral and central nervous made on rabbit material. The fixation of the olfactory systems should be carefully reviewed in the light of mucosa presented considerable difficulty. The method modern technical methods of investigation, for it finally selected, because it gave the best results with must be admitted that not a few of these statements protargol and was also adequate for the other stains are based on old methods which are now recognized employed, was perfusion of 70 per cent. alcohol through to be too crude to permit of really accurate con- the aorta, after preliminary washing through with normal clusions. In recent years, indeed, a number of saline, as recommended by Bodian (1936). Another facts have been shown unexpected difficulty arose from the fact that a large apparently well-established number of laboratory rabbits suffer from a chronic by critical studies to be erroneous. For example, rhinitis which leads to gross pathological changes in the the so-called ventral nucleus of the lateral geniculate olfactory mucosa. Consequently, a considerable pro- Protected by copyright. body and the pulvinar are no longer accepted as portion of our material, experimental and otherwise, terminal stations of the optic tract, and the strie had to be discarded as useless.
    [Show full text]
  • Smell and Stress Response in the Brain: Review of the Connection Between Chemistry and Neuropharmacology
    molecules Review Smell and Stress Response in the Brain: Review of the Connection between Chemistry and Neuropharmacology Yoshinori Masuo 1,*, Tadaaki Satou 2 , Hiroaki Takemoto 3 and Kazuo Koike 3 1 Laboratory of Neuroscience, Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan 2 Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan; [email protected] 3 Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan; [email protected] (H.T.); [email protected] (K.K.) * Correspondence: [email protected]; Tel.: +81-47-472-5257 Abstract: The stress response in the brain is not fully understood, although stress is one of the risk factors for developing mental disorders. On the other hand, the stimulation of the olfactory system can influence stress levels, and a certain smell has been empirically known to have a stress- suppressing effect, indeed. In this review, we first outline what stress is and previous studies on stress-responsive biomarkers (stress markers) in the brain. Subsequently, we confirm the olfactory system and review previous studies on the relationship between smell and stress response by species, such as humans, rats, and mice. Numerous studies demonstrated the stress-suppressing effects of aroma. There are also investigations showing the effects of odor that induce stress in experimental animals. In addition, we introduce recent studies on the effects of aroma of coffee beans and essential oils, such as lavender, cypress, α-pinene, and thyme linalool on the behavior and the expression of stress marker candidates in the brain.
    [Show full text]
  • The Olfactory Bulb As an Independent Developmental Domain
    Cell Death and Differentiation (2002) 9, 1279 ± 1286 ã 2002 Nature Publishing Group All rights reserved 1350-9047/02 $25.00 www.nature.com/cdd Review The olfactory bulb as an independent developmental domain LLo pez-Mascaraque*,1,3 and F de Castro2,3 established. Does it awake the developmental program of the cells at the site being innervated or, does their arrival simply 1 Instituto Cajal-C.S.I.C., Madrid, Spain serve to refine the later steps of the developmental program? 2 Hospital RamoÂn y Cajal, Madrid, Spain In order to address this question, much attention has been 3 Both authors contributed equally to this work focused on the sophisticated development of the mammalian * Corresponding author: L LoÂpez-Mascaraque, Instituto Cajal, CSIC, Avenida del cerebral cortex where two different theories have been Doctor Arce 37, 28002 Madrid, Spain. Tel: 915854708; Fax: 915854754; E-mail: [email protected] proposed to explain the mechanisms underlying its formation. In the `protomap' model, cortical regions are patterned prior to Received 13.2.02; revised 30.4.02; accepted 7.5.02 the migration of the newborn neurons (intrinsic control),1 an Edited by G Melino event presumably specified by important molecular determi- nants.2 In this model, the arrival of innervating axons would Abstract merely serve to modify and refine the protomap (an important The olfactory system is a good model to study the facet of maintenance). In the second model, the `protocortex' theory, the newborn cortical neurons are a homogeneous cell mechanisms underlying guidance of growing axons to their population, that later on in corticogenesis are patterned into appropriate targets.
    [Show full text]
  • Neuropilin-1 Facilitates SARS-Cov-2 Cell Entry and Provides a Possible Pathway Into the Central Nervous System
    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.07.137802; this version posted June 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Neuropilin-1 facilitates SARS-CoV-2 cell entry and provides a possible pathway into the central nervous system Ludovico Cantuti-Castelvetri1,2*, Ravi Ojha3*, Liliana D. Pedro 1,2*, Minou Djannatian1,2*, Jonas Franz4*, Suvi Kuivanen5*, Katri Kallio3, Tuğberk Kaya1,2,6, Maria Anastasina3,7, Teemu Smura5, Lev Levanov5, Leonora Szirovicza5, Allan Tobi8, Hannimari Kallio-Kokko9, Pamela Österlund10, Merja Joensuu11, Frédéric A. Meunier11, Sarah Butcher3,7, Martin Sebastian Winkler12, Brit Mollenhauer13, Ari Helenius14, Ozgun Gokce6,19, Tambet Teesalu3,15,16, Jussi Hepojoki5,17, Olli Vapalahti5,9,18, Christine Stadelmann4, Giuseppe Balistreri3§, Mikael Simons1,2,19§ 1Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany 2German Center for Neurodegenerative Diseases (DZNE), Munich, Germany 3Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland 4 Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany 5University of Helsinki, Medicum, Department of Virology, Helsinki, Finland 6 Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany 7Helsinki Institute of Life Sciences-Institute of Biotechnology, University of Helsinki, Finland 8Laboratory of Cancer Biology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia 9University of Helsinki and Helsinki University Hospital, Department of Virology, Helsinki, Finland 10Department of Health Security, Finnish Institute for Health and Welfare (THL), Helsinki, Finland 11Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia.
    [Show full text]
  • Lecture 14 --Olfaction.Pdf
    14 Olfaction ClickChapter to edit 14 MasterOlfaction title style • Olfactory Physiology • Neurophysiology of Olfaction • From Chemicals to Smells • Olfactory Psychophysics, Identification, and Adaptation • Olfactory Hedonics • Associative Learning and Emotion: Neuroanatomical and Evolutionary Considerations ClickIntroduction to edit Master title style Olfaction: The sense of smell Gustation: The sense of taste ClickOlfactory to edit Physiology Master title style Odor: The translation of a chemical stimulus into a smell sensation. Odorant: A molecule that is defined by its physiochemical characteristics, which are capable of being translated by the nervous system into the perception of smell. To be smelled, odorants must be: • Volatile (able to float through the air) • Small • Hydrophobic (repellent to water) Figure 14.1 Odorants ClickOlfactory to edit Physiology Master title style The human olfactory apparatus • Unlike other senses, smell is tacked onto an organ with another purpose— the nose. Primary purpose—to filter, warm, and humidify air we breathe . Nose contains small ridges, olfactory cleft, and olfactory epithelium ClickOlfactory to edit Physiology Master title style The human olfactory apparatus (continued) • Olfactory cleft: A narrow space at the back of the nose into which air flows, where the main olfactory epithelium is located. • Olfactory epithelium: A secretory mucous membrane in the human nose whose primary function is to detect odorants in inhaled air. Figure 14.2 The nose ClickOlfactory to edit Physiology Master title style Olfactory epithelium: The “retina” of the nose • Three types of cells . Supporting cells: Provide metabolic and physical support for the olfactory sensory neurons. Basal cells: Precursor cells to olfactory sensory neurons. Olfactory sensory neurons (OSNs): The main cell type in the olfactory epithelium.
    [Show full text]
  • Epithelium and Glands
    EPITHELIUM AND GLANDS DR. ASHA SHIRAHATTI ASSISTANT PROFESSOR DEPARTMENT OF ANATOMY USM-KLE IMP SCHEME OF PRESENTATION • Characteristic features and functions of epithelial tissues • Classification of epithelial tissues • Surface modifications of epithelial tissue • Junctional complexes of epithelial tissue • Characteristic features and functions of glandular tissue • Classification of glandular tissue • Mode of secretion of glandular tissue Tissues • groups of cells that are similar in structure and function Epithelium • Coverings • Linings of surfaces Connective • Support • Bone, ligaments, fat Muscle • Movement Nervous • Control • Brain, nerves, spinal cord CHARACTERISTICS OF EPITHELIAL TISSUE • Cells rests on basement membrane • Avascular tissue. • Supported by connective tissue • Innervated • Highly regenerative CHARACTERISTICS OF EPITHELIAL TISSUE (cont) • Epithelium form continuous cellular sheet • Cells are closely packed together by specialized contacts known as cell junctions • Cells are extremely cohesive and relatively strong force is necessary to separate them. • It invaginates into underlying connective tissue, specializing as glands FUNCTIONS • Protection - Skin protects from sunlight & bacteria & physical damage. • Absorption - Lining of small intestine, absorbing nutrients into blood • Filtration - Lining of Kidney tubules filtering wastes from blood plasma • Secretion - Different glands produce perspiration, oil, digestive enzymes and mucus • Sensation - to receive and transduce external stimuli as taste buds of tongue, olfactory epithelium of nasal mucosa and retina of eye • Transportation - transport of materials or cells along the surface of an epithelium by mobile cilia or transport of materials across epithelium to and fro from connective tissue • Lubrication - Glands secreting mucus CLASSIFICATION OF EPITHELIUM • Cell Shape 1. Squamous – flattened like fish scales 2. Cuboidal - cubes 3. Columnar – columns • Cell Layers 1. Simple (one layer) 2.
    [Show full text]
  • Zonal Organization of the Mouse Olfactory Systems
    UMEÅ UNIVERSITY MEDICAL DISSERTATIONS NEW SERIES NO 911 ISSN 0346-6612 ISBN 91-7305-706-1 ZONAL ORGANIZATION OF THE MOUSE OLFACTORY SYSTEMS Fredrik Gussing Department of Molecular Biology Umeå University Umeå 2004 1 Cover picture: A coronal section of the mouse nasal cavity with zone-specific expression of the NQO1 gene (white signal) in the olfactory epithelium is shown. Copyright © 2004 by Fredrik Gussing ISBN 91-7305-706-1 Printed in Sweden by Solfjädern Offset AB, Umeå 2004 2 HOW DO I SMELL? 3 TABEL OF CONTENTS ABSTRACT 6 PAPERS IN THIS THESIS 7 ABBREVIATIONS 8 INTRODUCTION 9 The main olfactory system 10 Anatomy 10 The main olfactory epithelium 10 Regenerative capacity 11 The main olfactory bulb 12 The odorant receptors 13 Prereceptor events 13 Identification of the odorant receptors 13 Characteristics of odorant receptors 14 Spatial odorant receptor expression patterns 14 Signal transduction in olfactory sensory neurons 15 Downstream of the G-protein coupled receptor 15 Genomic characterization of odorant receptors 17 Functions of the odorant receptors 17 Odorant binding 17 Odorant receptor expression 18 The glomerular maps 19 Axonal convergence and neuronal specificity 19 Zonal organization of olfactory sensory neuronal projections 20 Medial and lateral maps 21 Neuropilins, ephs and ephrins 21 Olfactory bulb projections 21 The septal organ 22 The accessory olfactory system 23 Anatomy 23 The vomeronasal organ 23 Axonal projections 24 The accessory olfactory bulb 25 The vomeronasal receptors 25 Gene regulation of vomeronasal receptors
    [Show full text]
  • Respiratory System IUSM – 2016
    Lab 13 – Respiratory System IUSM – 2016 I. Introduction Respiratory System II. Learning Objectives III. Keywords IV. Slides A. Airways 1. Conducting Airways a. Extrapulmonary i. Nasal cavity ii. Larynx iii. Trachea b. Intrapulmonary i. Bronchi ii. Terminal bronchiole 2. Respiratory Airways a. Respiratory bronchiole b. Alveolar duct and sac c. Alveolus B. Vasculature 1. Pulmonary Arteries 2. Pulmonary Veins 3. Bronchial Arteries C. Pleura V. Summary SEM of alveoli in lung. Lab 13 – Respiratory System IUSM – 2016 Introduction I. Introduction II. Learning Objectives The respiratory system consists of two functional divisions with distinct structural elements that III. Keywords reflect their unique roles in the process of respiration: IV. Slides A. Airways 1. The conducting airways serve to clean, warm, moisten, and conduct air. This portion is composed 1. Conducting Airways of the nose, pharynx, larynx, trachea, bronchi, and bronchioles (terminal). In general, this portion a. Extrapulmonary is lined by respiratory epithelium (pseudostratified ciliated columnar epithelium). i. Nasal cavity ii. Larynx • Extrapulmonary air conduits are located outside of the lungs and begin with the nose, iii. Trachea pharynx and larynx. The trachea is continuous with the larynx above and the two primary bronchi below. b. Intrapulmonary i. Bronchi • Intrapulmonary air conduits are located within the lung and extend from the intralobar ii. Terminal bronchiole bronchi to the terminal bronchioles. When the bronchi enter the lung, the C-shaped 2. Respiratory Airways cartilages that characterize the trachea and primary bronchi are replaced by irregular plates a. Respiratory bronchiole of cartilage that completely surround the cylindrical muscular airway tube. Cartilage b. Alveolar duct and sac disappears in the terminal bronchioles.
    [Show full text]
  • Glossary of Olfactory Terms
    Glossary of Olfactory Terms A accessory olfactory system: present in many vertebrates, this sensory system responds to pheromones. It is distinct from the olfactory system proper, containing a separate set of receptor neurons in the nose, located in a pair of structures known as the vomeronasal organ (also known as Jacobson’s organ). It is controversial whether humans have such a system. androstenone: a steroid component present in the fat of sexually mature male boars. It is sensed by 35% of people as having a foul, urinous, sweaty-type odor, by 15% as having a mild pleasant odor and by 50% as having no odor at all (see also specific anosmia). anosmia: an olfactory disorder characterized by the complete absence of any olfactory sensation (see also partial anosmia; specific anosmia). B basal cells: cells of the olfactory epithelium that differentiate and divide to form new olfactory receptor neurons. Basal cells are located at the top of the olfactory epithelium, close to the cribiform plate. Bowman’s glands: see olfactory glands. C cacosmia: an olfactory disorder in which a normal, pleasant odor is perceived as foul or putrefactive. For example, in one form of cacosmia, a subject smells rotting meat when no such odor is present. chemical sense: a sense modality in which chemical substances attach themselves to the receptors on the sensory cells (also known as chemoreception). Olfaction (including the accessory olfactory system) and gustation are chemical senses. chemoreception: see chemical sense. chemosensory: relating to perception by a chemical sense. cribriform plate: the light and spongy bone that separates the nasal cavity from the brain (also known as the ethmoid bone).
    [Show full text]
  • Identification and Molecular Regulation of Neural Stem Cells in the Olfactory Epithelium
    Experimental Cell Research 306 (2005) 309 – 316 www.elsevier.com/locate/yexcr Review Identification and molecular regulation of neural stem cells in the olfactory epithelium Crestina L. Beites, Shimako Kawauchi, Candice E. Crocker, Anne L. Calof* Department of Anatomy and Neurobiology, University of California, 364 Med Surge II, Irvine, CA 92697-1275, USA Developmental Biology Center, University of California, Irvine, CA 92697-1275, USA Received 17 March 2005, revised version received 17 March 2005 Available online 21 April 2005 Abstract The sensory neurons that subserve olfaction, olfactory receptor neurons (ORNs), are regenerated throughout life, making the neuroepithelium in which they reside [the olfactory epithelium (OE)] an excellent model for studying how intrinsic and extrinsic factors regulate stem cell dynamics and neurogenesis during development and regeneration. Numerous studies indicate that transcription factors and signaling molecules together regulate generation of ORNs from stem and progenitor cells during development, and work on regenerative neurogenesis indicates that these same factors may operate at postnatal ages as well. This review describes our current knowledge of the identity of the OE neural stem cell; the different cell types that are thought to be the progeny (directly or indirectly) of this stem cell; and the factors that influence cell differentiation in the OE neuronal lineage. We review data suggesting that (1) the ORN lineage contains three distinct proliferating cell types—a stem cell and two populations of transit amplifying cells; (2) in established OE, these three cell types are present within the basal cell compartment of the epithelium; and (3) the stem cell that gives rise ultimately to ORNs may also generate two glial cell types of the primary olfactory pathway: sustentacular cells (SUS), which lie within OE proper; and olfactory ensheathing cells (OEC), which envelope the olfactory nerve.
    [Show full text]
  • Preferential Epithelial Expression of Type-1 Cannabinoid Receptor (CB1R
    Pirone et al. SpringerPlus (2015) 4:804 DOI 10.1186/s40064-015-1616-0 RESEARCH Open Access Preferential epithelial expression of type‑1 cannabinoid receptor (CB1R) in the developing canine embryo Andrea Pirone, Carla Lenzi, Alessandra Coli, Elisabetta Giannessi, Maria Rita Stornelli and Vincenzo Miragliotta* Abstract The use of cannabinoid receptor agonists is gaining a strong interest both in human and veterinary medicine. The potential use of cannabimimetic compounds in companion animals was reviewed in 2007 for their role in tissue inflammation and pain. A better knowledge of type-1 cannabinoid receptor (CB1R) expression on the target popula- tion may help in risk management in order to prevent unwanted side effects. We used 30-days old canine embryos to describe the distribution of CB1R by means of immunohistochemistry with a commercially available antibody. CB1R immunoreactivity was mainly epithelial and included most structures of central and peripheral nervous system, inner ear, olfactory epithelium and related structures, eye and thyroid. Further investigative research on the role of the endocannabinoid system in the developmental biology field is needed, however, we show that in the canine species we must consider pregnancy as risk condition for developmental abnormalities that may arise upon the use of CB1R receptor agonists. Keywords: Cannabinoid receptor 1, Embryo, Dog, Immunohistochemistry Background by presynaptic neurons (Elphick and Egertova 2001). Cannabinoid receptor 1 (CB1R) is a G-pro- Despite the ubiquitous expression of CB1R (Katona tein coupled receptor that mediates the effects of 2009), autoradiographic analysis of the brain distribution Δ9-tetrahydrocannabinol (Δ9THC), the most potent psy- of (3H)CP-55,940 (a potent Δ9THC developed by Pfizer chotropic constituent of cannabis sativa (Xie et al.
    [Show full text]