Redalyc.High Selfing Capability and Low Pollinator Visitation in the Hummingbird-Pollinated Epiphyte Pitcairnia Heterophylla

Total Page:16

File Type:pdf, Size:1020Kb

Redalyc.High Selfing Capability and Low Pollinator Visitation in the Hummingbird-Pollinated Epiphyte Pitcairnia Heterophylla Revista de Biología Tropical ISSN: 0034-7744 [email protected] Universidad de Costa Rica Costa Rica Ríos, Luis D.; Cascante-Marín, Alfredo High selfing capability and low pollinator visitation in the hummingbird-pollinated epiphyte Pitcairnia heterophylla (Bromeliaceae) at a Costa Rican mountain forest Revista de Biología Tropical, vol. 65, núm. 2, junio, 2017, pp. 735-743 Universidad de Costa Rica San Pedro de Montes de Oca, Costa Rica Available in: http://www.redalyc.org/articulo.oa?id=44950834025 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative High selfing capability and low pollinator visitation in the hummingbird-pollinated epiphyte Pitcairnia heterophylla (Bromeliaceae) at a Costa Rican mountain forest Luis D. Ríos * & Alfredo Cascante-Marín Escuela de Biología, Universidad de Costa Rica, 11501-2060 San Pedro de Montes de Oca, San José, Costa Rica; [email protected], [email protected] * Correspondence Received 16- VIII -2016. Corrected 20- I-2017. Accepted 07- II -2017. Abstract: Pitcairnioideae is the second most diverse subfamily of bromeliads (Bromeliaceae), a group exclusive to tropical regions of the New World. Pitcairnioid bromeliads have floral traits assumed to promote outcrossing through biotic pollination systems; however, the reproductive biology of most of the species of this group has not been documented. Pitcairnia heterophylla is an epiphytic (seldom saxicolous) bromeliad occurring from Southern Mexico, into the Northern Andes. We studied the pollination and breeding system of P. heterophylla in an epiphytic population at a mountain forest in Costa Rica from January to April 2013. We performed hand pollination experiments (agamospermy, autonomous self-pollination, hand self-pollination and hand cross-polli - nation) on 89 flowers from 23 individuals (3-6 flowers per individual) in 2013 flowering season. Nectar produc - tion was measured on 18 unvisited flowers of six individuals with a hand-held refractometer. Simultaneously, floral visitors were recorded on eight individuals with trail cameras for a total of 918 hours (115 ± 52 hours per individual, mean ± SE). Under natural conditions, seed set (540.4 ± 55.2) was similar to manually selfed flowers (516.3 ± 41.5) and autonomously selfed flowers (521.1 ± 29.0), but lower to manually outcrossed flow - ers (670.2 ± 31.3). The flowers of P. heterophylla are self-compatible, capable of autonomous pollination, and non-agamospermous. Intrafloral self-pollination is facilitated by adichogamy and lack of floral herkogamy. The scentless red flowers of P. heterophylla with tubular corollas and nectar production suggested ornithophilic pol - lination which was confirmed by video recording of 46 hummingbird visits. The most common floral visitor was the short-billed hummingbird Lampornis calolaemus which accounted for 78 % of the visits. However, the visitation rate during the flowering season was low (0.6 visits per day per plant). Selfing in P. heterophylla might be explained as a mechanism of reproductive assurance and to reduce interspecific pollen flow with taxonomi - cally unrelated plants. Rev. Biol. Trop. 65 (2): 735-743. Epub 2017 June 01. Key words: breeding system, hummingbird pollination, specialized pollination, reproductive assurance, selfing, autogamy, Pitcairnioideae. The Bromeliaceae family is a highly outcrossing mating system (Ackerman, 1986; diverse group of monocotyledonous plants Benzing, 2000). exclusive to the Neotropics (Benzing, 2000) The breeding systems of bromeliads have and, nearly 56 % (1 770 spp.) of their mem - been scarcely documented, particularly for bers inhabits the forest canopy as epiphytes epiphytic species. However, the few studies (Zotz, 2013). Bromeliads display specialized done so far (which represent only 2.5 % of pollination systems which involve particular the species) suggest a high incidence of self- floral traits and pollen vectors, from bees compatibility and autonomous self-pollination to hummingbirds and bats, in a relationship (reviewed by Matallana et al., 2010). Molecular intended to promote pollen exchange and an studies of the mating system of some epiphytic Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 65 (2): 735-743, June 2017 735 bromeliads have reported high selfing and pollinator visitation is infrequent or there are corroborated their ability for self-pollina - few potential mates available (Eckert, Samis, & tion and self-compatibility (Cascante-Marín Dart, 2006). Understanding the evolution and et al., 2006). maintenance of breeding systems in Pitcairnia Bromeliads of sub-family Pitcairnioideae requires further information on their reproduc - (sensu stricto; Givnish, Millam, Berry, & tive biology and pollination systems, which at Sytsma, 2007) constitute the second most present are scarcely documented. This informa - diverse group within the family (Smith & tion is also essential to explain processes such Downs, 1974) and has received less attention as gene flow and genetic structuring in epi - in studies of reproductive biology compared phytic plant populations (e.g., Cascante-Marín, to subfamilies Tillandsioideae and Bromelioi - Oostermeijer, Wolf, & Fuchs, 2014). deae (Ramírez-Morillo, Chi-May, Carnevali In this paper, we studied the pollination & May-Pat, 2009; Matallana et al., 2010). The and mating system of Pitcairnia heterophylla most diverse group within Pitcairnioideae is the (Lindl.) Beer, an epiphytic (seldom saxico - genus Pitcairnia with ca. 260 species (Smith lous) and C 3–type bromeliad (Reinert, Russo, & Downs, 1974). Pitcairnia is a monophyletic & Salles, 2003). The day-blooming flowers group native to the Amazon basin, Northern of P. heterophylla have a tubular and red Andes, Guayana Shield, Central America, and corolla, lack scent and produce nectar; floral the Caribbean (Givnish et al., 2007). Most traits that suggests bird pollination (Willmer, Pitcairnia species possess tubular and showy 2011). We examined the reproductive biology flowers, usually red or less frequently white of a population of P. heterophylla in a Costa or yellow (Smith & Downs, 1974) that are Rican mountain forest. Our research had the visited by hummingbirds (Fumero-Cabán & following objectives: 1) to describe the floral Meléndez-Ackerman, 2007; Bush & Guilbeau, biology and nectar production, 2) to determine 2009). Thus far, self-compatibility and self- the plant’s breeding system using manual polli - pollination has been documented in six Pitcair - nation treatments, and 3) to estimate pollinator nia species (Wendt, Canela, de Faria, & Rios, visitation rates. 2001; Wendt, Canela, Klein, & Rios, 2002; Fumero-Cabán & Meléndez-Ackerman, 2007; MATERIALS AND METHODS Bush & Guilbeau, 2009). Matallana et al. (2010), suggested that Study site: Field work was conducted in self-pollination and self-compatibility in bro - a mountain cloud forest in the vicinity of the meliads evolved as a mechanism to avoid Central Valley in Costa Rica, Cartago province interspecific pollen flow among congeners (09°53’20” N - 83°58’10” W), known as La in highly diverse ecosystems. Alternatively, Carpintera. The site consists of an elevated the ability to self-pollinate might also serve mountainous terrain with an altitudinal gradi - to counteract pollinator unpredictability and ent from 1 500 to 1 800 m in elevation. Mean facilitate reproductive assurance when pol - annual precipitation is 1 839.2 mm and mean linator visits are limited (Levin, 1972). The annual temperature is 16.1 °C. The annual dis - presence of reproductive traits that facilitate tribution of rainfall follows a seasonal pattern, self-pollination among plants with bisexual with a period of low precipitation or dry season flowers and specialized pollination systems (< 60 mm per month) from December to April may function as a mechanism of reproductive (IMN, undated). The forested area consists of assurance (Fenster & Martén-Rodríguez, 2007) an irregular fragment of nearly 2 400 ha that and facilitate the maintenance of a mixed mat - covers the ridge and mountain slopes and is ing system (Goodwillie, Kalisz, & Eckert, mostly composed of old secondary forest (> 2005). Such a mechanism operates in way that 50 years) interspersed with older remnant for - enables plants to produce offspring whenever est patches. Some representative forest trees 736 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 65 (2): 735-743, June 2017 are Quercus spp., Ficus spp ., and members (3-6 flowers per individual). Flowers within of Lauraceae, among others (Sánchez, Durán, a plant were assigned to the following treat - & Vega, 2008). ments: (1) agamospermy (flowers had their stigma removed at the beginning of anthesis); Study species: Pitcairnia heterophylla has (2) autonomous self-pollination (un-manipulat - a wide geographic distribution from Mexico ed bagged flowers); (3) hand self-pollination to Venezuela and Peru, between 100-2 500 m (flowers hand-pollinated with their own pollen); in elevation (Smith & Downs, 1974). Ramets (4) hand cross-pollination (previously emascu - possess dimorphic leaves: spiny-serrate modi - lated flowers hand-pollinated with pollen from fied leaves and long linear leaves that are shed another plant), and (5) natural pollination (un- previous to floral anthesis (Fig. 1 A, Fig. 1B). manipulated
Recommended publications
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • Bromeliad Society of Victoria Inc
    Bromeliad Society of Victoria Inc. VOL 34 NO 3 June – July 2017 The June General Meeting will be held on Wednesday 28th June, in the Multi-purpose Room at Phoenix Park. Details Page 5 CONTENTS 2017 Calendar of Events ................................................................................................2 Editorial ..........................................................................................................................3 BSV President’s Report ..................................................................................................4 General Meetings...........................................................................................................5 Report of the April General Meeting .............................................................................6 Discussion Group Meetings ...........................................................................................7 Nance Esmore ................................................................................................................8 Jean Nicol .......................................................................................................................8 Some Horizontally Banded Neoregelia Varieties ...........................................................9 July Field Day................................................................................................................10 May Field Day...............................................................................................................11 Learning
    [Show full text]
  • Bromeliaceae) Species from Peru
    Phytotaxa 49: 29–33 (2012) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2012 Magnolia Press Article ISSN 1179-3163 (online edition) A remarkable new Pitcairnia (Bromeliaceae) species from Peru ERIC J. GOUDA1 & RICARDO FERNÁNDEZ G.2 1Botanic Gardens, University of Utrecht (U), Budapestlaan 17, P.O.Box 80162, 3584 HD Utrecht, Netherlands. E-mail: [email protected] 2Universidad Nacional Mayor de San Marcos (USM), Museo de Historia Natural, Casilla 14-0434, Lima 14, Peru. Abstract A new species of Pitcairnia subgenus Pepinia (Pitcairnioideae) is described and illustrated here. Pitcairnia floresii sp. nov. has been found in the Department San Martín of Peru and is locally abundant. Key words: Flora of Peru, Pepinia, taxonomy Introduction This remarkable new Pitcairnia species with linear-lanceolate leaf blades and its red inflorescence with bright yellow flowers is rather common in the Central Huallaga River Valley area. The famous collector Richard Spruce was in this area in 1855 (León et al. 2003: 112), but as far as known no specimen of this species was preserved, nor was it collected afterwards. Another Pitcairnia, P. calatheoides Smith (1937: 24) has been described from the very same area, but is not closely related. The latter species has very long petiolate oblanceolate leaf blades and large orange petals. Mr. Alberto Flores, a farmer from Pucacaca, brought this beautiful species to our attention. From our study of Bromeliaceae of Peru several new species were recently described (Gouda & Manzanares 2008, Gouda 2012). The descriptive terminology of Scharf & Gouda (2008) is followed here. Taxonomy Pitcairnia floresii Gouda & Ric.Fernández, sp.nov.
    [Show full text]
  • Pitcairnia Espejoi (Bromeliaceae: Pitcairnioidea), Una Nueva Especie De La Sierra Madre De Chiapas, México
    LACANDONIA, año 13, vol. 13, núm. 1 y 2: 47-52, enero-diciembre de 2019 47 Pitcairnia espejoi (Bromeliaceae: Pitcairnioidea), una nueva especie de la Sierra Madre de Chiapas, México Carlos R. Beutelspacher1 Roberto García-Martínez1 1Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas. Libramiento Norte Pte. 1150. C.P. 29039. Tuxtla Gutiérrez, Chiapas. RESUMEN Se describe e ilustra formalmente una nueva especie del género Pitcairnia, de la Sierra Madre de Chiapas, México. Se colectaron ejemplares vivos sin estructuras fértiles en el año 2017 y florecieron en cultivo, revelando que se trata de una especie no descrita. Se le compara con Pitcairnia secundiflora Smith, con la cual comparte características morfológicas. Palabras clave: Bromeliaceae, bosque mesófilo de montaña, rupícola, Sierra Morena, Villa Corzo, Chiapas, México0. ABSTRACT A new species of genus Pitcairnia is described and ilustrated, from the Sierra Madre de Chiapas, Mexico. Some alive plants was collected without fertile structures on the year 2017 and they bloomed on culture, revealing that it is a undescribed species. It is compared to Pitcairnia secundiflora Smith, a similar species. Key words: Bromeliaceae, Mountain Cloud Forest, rupicolous, Sierra Morena, Villa Corzo, Chiapas, Mexico. INTRODUCCIÓN Espejo-Serna y López Ferrari (2018), señalan que Pitcairnia está representado en México por 51 especies, a flora de Chiapas se caracteriza por su riqueza y alto 40 de ellas endémicas al país y 18 presentes en Chiapas Lgrado de endemismo, con respecto a todos los estados (Espejo-Serna et al., 2017), y con este nuevo hallazgo, el de México (Beutelspacher, inédito; Villaseñor, 2016), número aumenta a 19.
    [Show full text]
  • Carbon Isotope Ratio and the Extent of Daily CAM
    NPH_489.fm Page 75 Tuesday, September 3, 2002 9:12 AM Research CarbonBlackwell Science, Ltd isotope ratio and the extent of daily CAM use by Bromeliaceae Simon Pierce1, Klaus Winter2 and Howard Griffiths1 1University of Cambridge, Department of Plant Sciences, Downing Street, Cambridge, CB2 3EA, UK; 2Smithsonian Tropical Research Institute, Apartado 2072, Balboa, Panama City, Republic of Panama Summary δ13 Author for correspondence: • Use of carbon isotope ratio ( C) to resolve photosynthetic pathways (C3, C4 or S. Pierce CAM) has limitations imposed by the use of intermediate photosynthetic modes by Tel: +44 114222 4702 certain plant taxa. Fax: +44 114222 0002 δ13 E-mail: [email protected] • Diel gas-exchange patterns, leaf C values and nocturnal tissue acidification were determined for 50 Bromeliaceae. Received: 21 February 2002 • δ13C values for well watered plants reflected the proportion of daily CO uptake Accepted: 17 June 2002 2 δ13 occurring at night. Thirteen per cent of species with C values typical of C3 plants (i.e. from −22.6 to −31.5‰) showed nocturnal acidification and either a small pro- portion (< 10%) of daily CO2 uptake occurring nocturnally or internal CO2 recycling during part of the night. None altered CAM expression in response to short-term drought, but the contribution of CAM to daily carbon gain became proportionally more important as C3 CO2 uptake failed. • Surveys of plant communities using solely the carbon isotope technique under- estimate the number of CAM-equipped plants. Key words: Bromeliad, carbon pathway, crassulacean acid metabolism (CAM), δ13C, epiphyte, photosynthesis. © New Phytologist (2002) 156: 75–83 (i.e.
    [Show full text]
  • FORTY YEARS of CHANGE in SOUTHWESTERN BEE ASSEMBLAGES Catherine Cumberland University of New Mexico - Main Campus
    University of New Mexico UNM Digital Repository Biology ETDs Electronic Theses and Dissertations Summer 7-15-2019 FORTY YEARS OF CHANGE IN SOUTHWESTERN BEE ASSEMBLAGES Catherine Cumberland University of New Mexico - Main Campus Follow this and additional works at: https://digitalrepository.unm.edu/biol_etds Part of the Biology Commons Recommended Citation Cumberland, Catherine. "FORTY YEARS OF CHANGE IN SOUTHWESTERN BEE ASSEMBLAGES." (2019). https://digitalrepository.unm.edu/biol_etds/321 This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Biology ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Catherine Cumberland Candidate Biology Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: Kenneth Whitney, Ph.D., Chairperson Scott Collins, Ph.D. Paula Klientjes-Neff, Ph.D. Diane Marshall, Ph.D. Kelly Miller, Ph.D. i FORTY YEARS OF CHANGE IN SOUTHWESTERN BEE ASSEMBLAGES by CATHERINE CUMBERLAND B.A., Biology, Sonoma State University 2005 B.A., Environmental Studies, Sonoma State University 2005 M.S., Ecology, Colorado State University 2014 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy BIOLOGY The University of New Mexico Albuquerque, New Mexico July, 2019 ii FORTY YEARS OF CHANGE IN SOUTHWESTERN BEE ASSEMBLAGES by CATHERINE CUMBERLAND B.A., Biology B.A., Environmental Studies M.S., Ecology Ph.D., Biology ABSTRACT Changes in a regional bee assemblage were investigated by repeating a 1970s study from the U.S.
    [Show full text]
  • Southwest Watershed, Antigua, Ridge To
    TERRESTRIAL FIELD CHARACTERISATIONS AND ASSESSMENTS For the ASSESSMENT AND MAPPING OF THE SOUTHWEST REGION OF ANTIGUA FOR THE RIDGE TO REEF DEMONSTRATION PROJECT OF THE SUSTAINABLE ISLAND RESOURCE MANAGEMENT MECHANISM SUBMITTED TO: Small Island Resource Management Mechanism (SIRMM) Project Environment Division (National Executing Agency, NEA) Government of Antigua and Barbuda SUBMITTED BY: Kevel C. Lindsay , Brian Cooper & Kimberly Baldwin With Jean-Pierre Bacle and Lucia Mings December 30, 2011 Terrestrial Characterization and Assessment: Assessment and Mapping of the Southwest Region of Antiguq December 2011 ACRONYMS AND ABBREVIATIONS Acronym/Abbreviation Meaning ABPCP Antigua and Barbuda Plant Conservation Project ANU Antigua APUA Antigua Public Utilities Authority ArcGIS Commonly used GIS software CARDI Caribbean Agricultural and Rural Development Institute CBMR Cades Bay Marine Reserve CERMES Center for Environmental Resource Management and Ecological Studies DEM Digital Elevation Model for providing contours and 3D mapping DOS Directorate of Overseas Surveys, UK – suppliers of older topological maps EAG Environmental Awareness Group ED Environment Division EEZ Exclusive Economic Zone EIA Environmental Impact Assessment EIMAS Environmental Information Management System ETC Environment Tourism Consulting FAO Food and Agriculture Organisation of the United Nations FD Fisheries Division GIS Geographic Information System GPS Global Positioning System (Also refers to the units that access this system) IRF Island Resources Foundation JPEG
    [Show full text]
  • PHYLOGENY, ADAPTIVE RADIATION, and HISTORICAL BIOGEOGRAPHY of BROMELIACEAE INFERRED from Ndhf SEQUENCE DATA
    Aliso 23, pp. 3–26 ᭧ 2007, Rancho Santa Ana Botanic Garden PHYLOGENY, ADAPTIVE RADIATION, AND HISTORICAL BIOGEOGRAPHY OF BROMELIACEAE INFERRED FROM ndhF SEQUENCE DATA THOMAS J. GIVNISH,1 KENDRA C. MILLAM,PAUL E. BERRY, AND KENNETH J. SYTSMA Department of Botany, University of Wisconsin, Madison, Wisconsin 53706, USA 1Corresponding author ([email protected]) ABSTRACT Cladistic analysis of ndhF sequences identifies eight major bromeliad clades arranged in ladderlike fashion. The traditional subfamilies Tillandsioideae and Bromelioideae are monophyletic, but Pitcair- nioideae are paraphyletic, requiring the description of four new subfamilies, recircumscription of Pit- cairnioideae and Navioideae, the sinking of Ayensua, and description of the new genus Sequencia. Brocchinioideae are basalmost, followed by Lindmanioideae, both restricted to the Guayana Shield. Next is an unresolved trichotomy involving Hechtioideae from Central America, Tillandsioideae, and the remaining bromeliads in subfamilies Navioideae, Pitcairnioideae, Puyoideae, and Bromelioideae. Bromeliads arose as C3 terrestrial plants on moist infertile sites in the Guayana Shield roughly 70 Mya, spread centripetally in the New World, and reached tropical West Africa (Pitcairnia feliciana) via long-distance dispersal about 10 Mya. Modern lineages began to diverge from each other 19 Mya and invaded drier areas in Central and South America beginning 15 Mya, coincident with a major adaptive radiation involving the repeated evolution of epiphytism, CAM photosynthesis, impounding leaves, several features of leaf/trichome anatomy, and accelerated diversification at the generic level. This ‘‘bromeliad revolution’’ occurred after the uplift of the northern Andes and shift of the Amazon to its present course. Epiphytism may have accelerated speciation by increasing ability to colonize along the length of the Andes, while favoring the occupation of a cloud-forest landscape frequently dissected by drier valleys.
    [Show full text]
  • Diversity and Evolution of Monocots
    Commelinids 4 main groups: Diversity and Evolution • Acorales - sister to all monocots • Alismatids of Monocots – inc. Aroids - jack in the pulpit • Lilioids (lilies, orchids, yams) – non-monophyletic . palms, spiderworts, bananas, and – petaloid • Commelinids pineapples . – Arecales – palms – Commelinales – spiderwort – Zingiberales –banana – Poales – pineapple – grasses & sedges Commelinids Commelinids • largest group of monocots ranging from palms to grasses Dasypogonaceae • strongly monophyletic! • bound ferulic acid in cell walls (fluoresce under UV with ammonium hydroxide added) • this feature allowed placement of Dasypogonaceae 4 genera - W Australia Commelinids *Arecaceae - palms • theme: reduction of flower, loss of • the order has one family - also nectar, loss of zoophily, evolution of called Palmae bracts • 190 genera and 2400 species of trees and shrubs • tropics, subtropics, deserts, grass Mediterranean biomes pickeral weed rapatead bromeliad *Arecaceae - palms *Arecaceae - palms Malaysia • greatest center of diversity in • Rattan palms - a plant group that honors the Wallace Malay archipelago, then Biogeographic Line Amazonia • Asian distribution with few species passing through Sulawesi • depauperate in Africa, but or New Guinea diverse in Madagascar Rattan palm & generic distributions Madagascar *Arecaceae - palms *Arecaceae - palms Great morphological diversity: in stature Great morphological diversity: largest seed of seed plants Syagrus - lilliput palm of Paraguay Jubaea - Chilean wine palm Lodoicea maldivica - Seychelles palm or double nut This genus of 1 species endemic to the Seychelles has generated interest in having the largest seed, and in that the shape of the *Arecaceae - palms seed has suggested the devil's work or aphrodisiacal properties. Great morphological diversity: largest leaf What is unusual about how this species was first discovered? Corypha Raffia - rattan Lodoicea maldivica - Seychelles palm or double nut .
    [Show full text]
  • University of Copenhagen
    Plant-hummingbird interactions in the West Indies: floral specialisation gradients associated with environment and hummingbird size Dalsgaard, Bo; Martín González, Ana M; Olesen, Jens; Ollerton, Jeff; Timmermann, Allan; Andersen, Laila Hanghøj; Tossas, Adrianne G Published in: Oecologia DOI: 10.1007/s00442-008-1255-z Publication date: 2009 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Dalsgaard, B., Martín González, A. M., Olesen, J., Ollerton, J., Timmermann, A., Andersen, L. H., & Tossas, A. G. (2009). Plant-hummingbird interactions in the West Indies: floral specialisation gradients associated with environment and hummingbird size. Oecologia, 159, 757-66. https://doi.org/10.1007/s00442-008-1255-z Download date: 23. Sep. 2021 Oecologia (2009) 159:757–766 DOI 10.1007/s00442-008-1255-z PLANT-ANIMAL INTERACTIONS - ORIGINAL PAPER Plant–hummingbird interactions in the West Indies: floral specialisation gradients associated with environment and hummingbird size Bo Dalsgaard Æ Ana M. Martı´n Gonza´lez Æ Jens M. Olesen Æ Jeff Ollerton Æ Allan Timmermann Æ Laila H. Andersen Æ Adrianne G. Tossas Received: 26 March 2008 / Accepted: 3 December 2008 / Published online: 9 January 2009 Ó Springer-Verlag 2008 Abstract Floral phenotype and pollination system of a had flowers with long corolla tube, large amounts of nectar plant may be influenced by the abiotic environment and the and showy orange-red colouration. These attracted few or local pollinator assemblage. This was investigated in seven no insect species, whereas plants pollinated by small, short- plant–hummingbird assemblages on the West Indian billed hummingbirds were frequently pollinated by insects, islands of Grenada, Dominica and Puerto Rico.
    [Show full text]
  • Phylogeny, Adaptive Radiation, and Historical Biogeography of Bromeliaceae Inferred from Ndhf Sequence Data Thomas J
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 23 | Issue 1 Article 4 2007 Phylogeny, Adaptive Radiation, and Historical Biogeography of Bromeliaceae Inferred from ndhF Sequence Data Thomas J. Givnish University of Wisconsin, Madison Kendra C. Millam University of Wisconsin, Madison Paul E. Berry University of Wisconsin, Madison Kenneth J. Sytsma University of Wisconsin, Madison Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Givnish, Thomas J.; Millam, Kendra C.; Berry, Paul E.; and Sytsma, Kenneth J. (2007) "Phylogeny, Adaptive Radiation, and Historical Biogeography of Bromeliaceae Inferred from ndhF Sequence Data," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 23: Iss. 1, Article 4. Available at: http://scholarship.claremont.edu/aliso/vol23/iss1/4 Aliso 23, pp. 3–26 ᭧ 2007, Rancho Santa Ana Botanic Garden PHYLOGENY, ADAPTIVE RADIATION, AND HISTORICAL BIOGEOGRAPHY OF BROMELIACEAE INFERRED FROM ndhF SEQUENCE DATA THOMAS J. GIVNISH,1 KENDRA C. MILLAM,PAUL E. BERRY, AND KENNETH J. SYTSMA Department of Botany, University of Wisconsin, Madison, Wisconsin 53706, USA 1Corresponding author ([email protected]) ABSTRACT Cladistic analysis of ndhF sequences identifies eight major bromeliad clades arranged in ladderlike fashion. The traditional subfamilies Tillandsioideae and Bromelioideae are monophyletic, but Pitcair- nioideae are paraphyletic, requiring the description of four new subfamilies, recircumscription of Pit- cairnioideae and Navioideae, the sinking of Ayensua, and description of the new genus Sequencia. Brocchinioideae are basalmost, followed by Lindmanioideae, both restricted to the Guayana Shield. Next is an unresolved trichotomy involving Hechtioideae from Central America, Tillandsioideae, and the remaining bromeliads in subfamilies Navioideae, Pitcairnioideae, Puyoideae, and Bromelioideae.
    [Show full text]
  • Nuclear Genes, Matk and the Phylogeny of the Poales
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2018 Nuclear genes, matK and the phylogeny of the Poales Hochbach, Anne ; Linder, H Peter ; Röser, Martin Abstract: Phylogenetic relationships within the monocot order Poales have been well studied, but sev- eral unrelated questions remain. These include the relationships among the basal families in the order, family delimitations within the restiid clade, and the search for nuclear single-copy gene loci to test the relationships based on chloroplast loci. To this end two nuclear loci (PhyB, Topo6) were explored both at the ordinal level, and within the Bromeliaceae and the restiid clade. First, a plastid reference tree was inferred based on matK, using 140 taxa covering all APG IV families of Poales, and analyzed using parsimony, maximum likelihood and Bayesian methods. The trees inferred from matK closely approach the published phylogeny based on whole-plastome sequencing. Of the two nuclear loci, Topo6 supported a congruent, but much less resolved phylogeny. By contrast, PhyB indicated different phylo- genetic relationships, with, inter alia, Mayacaceae and Typhaceae sister to Poaceae, and Flagellariaceae in a basally branching position within the Poales. Within the restiid clade the differences between the three markers appear less serious. The Anarthria clade is first diverging in all analyses, followed by Restionoideae, Sporadanthoideae, Centrolepidoideae and Leptocarpoideae in the matK and Topo6 data, but in the PhyB data Centrolepidoideae diverges next, followed by a paraphyletic Restionoideae with a clade consisting of the monophyletic Sporadanthoideae and Leptocarpoideae nested within them. The Bromeliaceae phylogeny obtained from Topo6 is insufficiently sampled to make reliable statements, but indicates a good starting point for further investigations.
    [Show full text]