Simulation of Reactor Transient and Design Criteria of Sodium- Cooled Fast Reactors
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Breeder Reactors: a Renewable Energy Source Bernard L
Am. J. Phys. 51(1), Jan. 1983 Breeder reactors: A renewable energy source Bernard L. Cohen Department of Physics. University of Pittsburgh, Pittsburgh, Pennsylvania 15260 Since energy sources derived from the sun are called “renew- giving an equilibrium Q = S/8. Assuming that equilibrium has been able,” that adjective apparently means that they will be available in reached, 8–1 = Q/S = (4.6×109 tonne)/ (3.2×104 tonne/yr) = 140 000 undiminished quantity at present costs for as long as the current yr. Since this is such a short time geologically, it is reasonable to relationship between the sun and Earth persists, about 5 billion assume that equilibrium has been reached, and that the value of Q years. It is the purpose of this note to show that breeder reactors at t = 0 is immaterial to the discussion. Moreover, the fact that 8–1 using nuclear fission fulfill this definition of a renewable energy is so much longer than the time for dilution of material through the source, and in fact can supply all the world’s energy needs at world’s oceans, less than 1000 yr,5 means that nonuniformity of present costs for that time period. uranium concentration is not a long-term problem. The world’s uranium resources are sufficient to fuel light-water If we were to withdraw uranium at a rate R, the differential reactors for only a few tens of years, and since uranium is used equation for Q would become about 100 times more efficiently as an energy source in breeder dQ/dt = S – R – 8Q, 8 reactors than in light-water reactors, it is frequently said that the leading to an equilibrium Q = (S – R)/ = Q00(1 – R/S), where Q is amount of uranium available can support the world’s energy needs the present value of Q. -
NUCLEAR INSTALLATIONS in the COUNTRIES of the EUROPEAN ATOMIC ENERGY COMMUNITY (Second Edition)
!:£k2üi.ïK!lr*Üfa"HÏ mm h«tk .-Vi»,····» WWÍM This document was prepared under the sponsorship of the Commission of the European Atomic Energy Community (EURATOM). Jfc* Mmm Neither the EURATOM Commission, its contractors nor any person acting on their behalf m tf t * iiii «lai OCR r Uli íj ;QJRÌ m Io — Make any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this document, or that the ï H use of any information, apparatus, method, or process disclosed in this document mav not infringe privately owned rights; or 2o — Assume any liability with respect to the use of, or for damages resulting from t'. any information, apparatus, method or process disclosed in this document. EUR 1 8 3 .e NUCLEAR INSTALLATIONS IN THE COUNTRIES OF THE EUROPEAN ATOMIC ENERGY COMMUNITY (Second Edition). European Atomic Energy Community - EURATOM Directorate-General for Industry and Economy Brussels, 1 January 1963 - 43 pages This survey features all the specifically nuclear installations which already exist, which are under construction, the construction of which has been decided or which are being planned in the member countries of Euratom. It comprises, for each installation, a short description limited to its main characteristics; it also mentions the more important enterprises which are known to have participated in the building of these installations. EUR 1 8 3 . e NUCLEAR INSTALLATIONS IN THE COUNTRIES OF THE EUROPEAN ATOMIC ENERGY COMMUNITY (Second Edition). European Atomic Energy Community - EURATOM Directorate-General for Industry and Economy Brussels, 1 January 1963 - 43 pages This survey features all the specifically nuclear installations which already exist, which are under construction, the construction of which has been decided or which are being planned in the member countries of Euratom. -
The Jules Horowitz Reactor Project, a Driver for Revival of the Research Reactor Community
THE JULES HOROWITZ REACTOR PROJECT, A DRIVER FOR REVIVAL OF THE RESEARCH REACTOR COMMUNITY P. PERE, C. CAVAILLER, C. PASCAL AREVA TA CEA Cadarache - Etablissement d'AREVA TA - Chantier RJH - MOE - BV2 - BP n° 9 – 13115 Saint Paul lez Durance - France CS 50497 - 1100, rue JR Gauthier de la Lauzière, 13593 Aix en Provence cedex 3 – France ABSTRACT The first concrete of the nuclear island for the Jules Horowitz Reactor (JHR) was poured at the end of July 2009 and construction is ongoing. The JHR is the largest new platform for irradiation experiments supporting Generation II and III reactors, Generation IV technologies, and radioisotope production. This facility, composed of a unique grouping of workshops, hot cells and hot laboratories together with a first -rate MTR research reactor, will ensure that the process, from preparations for irradiation experiments through post-irradiation non-destructive examination, is completed expediently, efficiently and, of course, safely. In addition to the performance requirements to be met in terms of neutron fluxes on the samples (5x1014 n.cm-2/sec-1 E> 1 MeV in core and 3,6x1014 n.cm-2/sec-1 E<0.625 eV in the reflector) and the JHR’s considerable irradiation capabilities (more than 20 experiments and one-tenth of irradiation area for simultaneous radioisotope production), the JHR is the first MTR to be built since the end of the 1960s, making this an especially challenging project. The presentation will provide an overview of the reactor, hot cells and laboratories and an outline of the key milestones in the project schedule, including initial criticality in early 2014 and radioisotope production in 2015. -
Cadarache, Marcoule, Saclay
2020 INTERNATIONAL SCHOOL IN NUCLEAR ENGINEERING Neutronics and thermal-hydraulics coupling for SFR simulation Cadarache, Marcoule, Saclay - France 6 Doctoral-level Courses in Nuclear Engineering From January 13 to February 7, 2020 COURTESY OF: CEA/DEN, AREVA • GÉOLANE • AREVA CEA/DEN, OF: COURTESY Please visit our website: http://www-instn.cea.fr Computer simulation of displacement cascade Pin-type fuel element of Gas Fast-cooled Reactor (GFR) Neutronics calculation of EPR core with APOLLO3 Actinide complex solvated by extraction molecule Large scale bubble simulation ABOUT THE SCHOOL • The National Institute for Nuclear Science and Technology (INSTN) is organizing the International School in Nuclear Engineering, promoting knowledge in the field of nuclear sciences at a high education level. • The 2020 edition will offer 6 one-week advanced courses in nuclear engineering to be held in France (Cadarache, Marcoule, or Saclay), in January and February 2020. • The courses are designed for young researchers, PhD students, post-doctorates and engineers, already having a Master of Science in nuclear engineering as a background. They present the international state-of-the-art in the main topics of nuclear engineering: reactor core physics, thermal hydraulics, materials, fuels, fuel cycle, nuclear waste. 3 ECTS will be awarded for each successfully completed course (one week). • Lecturers are internationally known experts mostly from CEA, the leading research organisation in France for nuclear energy. OUTLINE PROGRAMME OF COURSES For each course, technical visits of CEA facilities are planned. n Reactor Core Physics: Deterministic and Monte Carlo Methods (C. Diop, J. Tommasi, J-F. Vidal) • Chain reaction and neutron balance • Neutron slowing-down and resonance absorption, self-shielding modelling • The neutron transport equation and calculation schemes: the steady-state integro- differential transport equation. -
Fast-Spectrum Reactors Technology Assessment
Clean Power Quadrennial Technology Review 2015 Chapter 4: Advancing Clean Electric Power Technologies Technology Assessments Advanced Plant Technologies Biopower Clean Power Carbon Dioxide Capture and Storage Value- Added Options Carbon Dioxide Capture for Natural Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells U.S. DEPARTMENT OF Supercritical Carbon Dioxide Brayton Cycle ENERGY Wind Power Clean Power Quadrennial Technology Review 2015 Fast-spectrum Reactors Chapter 4: Technology Assessments Background and Current Status From the initial conception of nuclear energy, it was recognized that full realization of the energy content of uranium would require the development of fast reactors with associated nuclear fuel cycles.1 Thus, fast reactor technology was a key focus in early nuclear programs in the United States and abroad, with the first usable nuclear electricity generated by a fast reactor—Experimental Breeder Reactor I (EBR-I)—in 1951. Test and/or demonstration reactors were built and operated in the United States, France, Japan, United Kingdom, Russia, India, Germany, and China—totaling about 20 reactors with 400 operating years to date. These previous reactors and current projects are summarized in Table 4.H.1.2 Currently operating test reactors include BOR-60 (Russia), Fast Breeder Test Reactor (FBTR) (India), and China Experimental Fast Reactor (CEFR) (China). The Russian BN-600 demonstration reactor has been operating as a power reactor since 1980. -
The Environmental and Regulatory Aspects of the Breeder Reactor, 2 B.C
Boston College Environmental Affairs Law Review Volume 2 | Issue 1 Article 13 5-1-1972 The nE vironmental and Regulatory Aspects of the Breeder Reactor William O. Doub Follow this and additional works at: http://lawdigitalcommons.bc.edu/ealr Part of the Energy and Utilities Law Commons, and the Environmental Law Commons Recommended Citation William O. Doub, The Environmental and Regulatory Aspects of the Breeder Reactor, 2 B.C. Envtl. Aff. L. Rev. 237 (1972), http://lawdigitalcommons.bc.edu/ealr/vol2/iss1/13 This Article is brought to you for free and open access by the Law Journals at Digital Commons @ Boston College Law School. It has been accepted for inclusion in Boston College Environmental Affairs Law Review by an authorized editor of Digital Commons @ Boston College Law School. For more information, please contact [email protected]. THE ENVIRONMENTAL AND REGULATORY ASPECTS OF THE BREEDER REACTOR By William O. Doub* On January 14,1972, in Washington, D.C., the Chairman of the Atomic Energy Commission (AEC), Dr. James R. Schlesinger, announced that the Commission had accepted, "as a basis for de tailed negotiation, a joint proposal of the Commonwealth Edison Company of Chicago and the Tennessee Valley Authority for the construction and operation of the nation's first demonstration liq uid metal fast breeder reactor plant."l The plant, a joint industry Government effort, is to be built in Eastern Tennessee at a specific location still to be designated. Work was scheduled to begin within the year. The plant is expected to go on the line by 1980.2 Nationwide attention had been focused on the breeder reactor as a result of the President's Energy Message to Congress on June 4, 1971. -
Molten Plutonium Chloride Fast Breeder Reactor Cooled by Molten Uranium Chloride
Annals of Nuclear Science and Engineering, Vol. 1, pp. 277 to 281. Pergamon Press 1974. Printed in Northern Ireland MOLTEN PLUTONIUM CHLORIDE FAST BREEDER REACTOR COOLED BY MOLTEN URANIUM CHLORIDE MIECZYSLAW TAUBE and J LIGOU Swiss Federal Institute of Reactor Research, Würenlingen, Switzerland Abstract—A fast breeder reactor of 2000 ~MWt output using molten chlorides as fuel and coolant is discussed. Some of the most significant characteristics are: The liquid fuel contains only PuCl3/NaCl. The coolant is molten UCl3/NaCl and also forms the fertile material along with the blanket system, again UCl3/NaCl: the coolant blanket system is divided into 2 or more independent circuits. The fuel circulates through the core by forced convection; the core is not divided. The thermal stability of the reactor is very good. Power excursions or fuel temperature transients are quickly damped by the phenomena of fuel expansion pushing part of the fissile material out of the critical zone. The loss of coolant accident results in a loss of half (or ⅓, ⅔) of blanket which, without relying on a reactor scram, results in an automatic adjustment of the reactor power level. Corrosion effects form the most difficult problem. Thermodynamic studies suggest the use of molybdenum alloys as structural materials. Breeder reactors differ from other reactor types in that The coolant blanket circuits are in the form of at they are not only power-producing devices but also a least two independent systems: the core vessel is not source of fissile material and therefore should be divided. considered as part of a complex “breeding system” The core is directly connected with: overflow buffer which includes both the power reactor (producing vessel (for thermal expansion of fuel), emergency fuel electricity and heat) and the reprocessing and fuel drainage tank, reprocessing and fuel preparation plant, preparation plant. -
Nuclear France Abroad History, Status and Prospects of French Nuclear Activities in Foreign Countries
Mycle Schneider Consulting Independent Analysis on Energy and Nuclear Policy 45, allée des deux cèdres Tél: 01 69 83 23 79 91210 Draveil (Paris) Fax: 01 69 40 98 75 France e-mail: [email protected] Nuclear France Abroad History, Status and Prospects of French Nuclear Activities in Foreign Countries Mycle Schneider International Consultant on Energy and Nuclear Policy Paris, May 2009 This research was carried out with the support of The Centre for International Governance Innovation (CIGI) in Waterloo, Ontario, Canada (www.cigionline.org) V5 About the Author Mycle Schneider works as independent international energy nuclear policy consultant. Between 1983 and April 2003 Mycle Schneider was executive director of the energy information service WISE-Paris. Since 2000 he has been an advisor to the German Ministry for the Environment, Nature Conservation and Reactor Safety. Since 2004 he has also been in charge of the Environment and Energy Strategies Lecture of the International Master of Science for Project Management for Environmental and Energy Engineering at the French Ecole des Mines in Nantes, France. In 2007 he was appointed as a member of the International Panel on Fissile Materials (IPFM), based at Princeton University, USA (www.fissilematerials.org). In 2006-2007 Mycle Schneider was part of a consultants’ consortium that assessed nuclear decommissioning and waste management funding issues on behalf of the European Commission. In 2005 he was appointed as nuclear security specialist to advise the UK Committee on Radioactive Waste Management (CoRWM). Mycle Schneider has given evidence and held briefings at Parliaments in Australia, Belgium, France, Germany, Japan, South Korea, Switzerland, UK and at the European Parliament. -
Operational and Decommissioning Experience with Fast Reactors
IAEA-TECDOC-1405 Operational and decommissioning experience with fast reactors Proceedings of a technical meeting held in Cadarache, France, 11–15 March 2002 August 2004 IAEA-TECDOC-1405 Operational and decommissioning experience with fast reactors Proceedings of a technical meeting held in Cadarache, France, 11–15 March 2002 August 2004 The originating Section of this publication in the IAEA was: Nuclear Power Technology Development Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria OPERATIONAL AND DECOMMISSIONING EXPERIENCE WITH FAST REACTORS IAEA, VIENNA, 2004 IAEA-TECDOC-1405 ISBN 92–0–107804–8 ISSN 1011–4289 © IAEA, 2004 Printed by the IAEA in Austria August 2004 FOREWORD The fast reactor, which can generate electricity and breed additional fissile material for future fuel stocks, is a resource that will be needed when economic uranium supplies for the advanced water cooled reactors or other thermal-spectrum options diminish. Further, the fast-fission fuel cycle in which material is recycled offers the flexibility needed to contribute decisively towards solving the problem of growing ‘spent’ fuel inventories by greatly reducing the volume of high level waste that must be disposed of in long term repositories. This is a waste management option that also should be retained for future generations. The fast reactor has been the subject of research and development programmes in a number of countries for more than 50 years. Now, despite early sharing and innovative worldwide research and development, ongoing work is confined to China, France, India, Japan, the Republic of Korea, and the Russian Federation. Information generated worldwide will be needed in the future. -
Plutonium Disposition in the BN-800 Fast Reactor: an Assessment of Plutonium Isotopics and Breeding
Science & Global Security, 22:188–208, 2014 Copyright C Taylor & Francis Group, LLC ISSN: 0892-9882 print / 1547-7800 online DOI: 10.1080/08929882.2014.952578 Plutonium Disposition in the BN-800 Fast Reactor: An Assessment of Plutonium Isotopics and Breeding Moritz Kutt,¨ Friederike Frieß, and Matthias Englert Interdisciplinary Research Group Science, Technology and Security, Technische Universitat¨ Darmstadt, Alexanderstraße, Darmstadt, Germany According to the Plutonium Management and Disposition Agreement, which was signed in 2000 and amended in 2010, Russia and the United States agree to dispose of 34 tons of excess weapon plutonium each. Russia plans to use the plutonium as fuel in its sodium-cooled fast reactors BN-600 and BN-800. This article analyzes BN-800 core models with and without breeding blankets for the plutonium isotopic vector in spent fuel, plutonium production in breeding blankets, breeding ratios for different plutonium concentrations in fuel, and possible annual material throughput. It finds that any spent fuel in the core contains less than 90 wt% plutonium-239, but using breeding blankets the reactor can be configured to be a net producer of plutonium, even with a breeding ratio below one, and that plutonium produced in blankets will be weapon-grade. INTRODUCTION In 1998, U.S. president Bill Clinton and Russian president Boris Yeltsin re- leased a joint statement offering to withdraw 50 metric tons (MT) of plutonium each from their respective military stockpiles.1 It was agreed that this pluto- nium should be rendered unusable for nuclear weapons either by irradiation in existing commercial reactors or by immobilization.2 In 2000, Russia and the United States agreed on the “Plutonium Manage- ment and Disposition Agreement” (PMDA). -
Oversight of Research Reactors in the Southeast of France: ASN Regulatory Experience
Oversight of Research Reactors in the Southeast of France: ASN Regulatory Experience Julien Vieuble, Carole Dormant, Pierre Perdiguier Autorité de Sûreté Nucléaire (French Nuclear Safety Authority), Division de Marseille, 67/69 Avenue du Prado, 13 286 Marseille Cedex 6, France Email of the corresponding author: [email protected] The French Nuclear Safety Authority (ASN), which is an independent administrative authority, is in charge of regulating nuclear safety and radiation protection in order to protect workers, patients, the public and the environment from the risks associated with nuclear activities. ASN also contributes to the public information and the promotion of transparency and openness among stakeholders. The key values of ASN are independence, competence, rigor and transparency, enabling its 450 staff to perform their various duties with the needed legitimacy. ASN’s oversight covers more than 160 civil basic nuclear installations all over France. These installations are of very different varieties and sizes: nuclear power plants, research reactors, nuclear laboratories, fuel cycle facilities, and at different stages in their lives: conception, construction, operation, dismantling. ASN also oversees the safety of radioactive material transport. The ASN division of Marseille oversees the nuclear civil activities in the southeast area of France, which covers, inter alia, the nuclear site of Marcoule (4 civil nuclear installations) and the nuclear site of Cadarache (20 civil nuclear installations). The French public Atomic Energy Commission (CEA) has nine research reactors currently in operation: six of them are located in the southeast of France, and a new one, the Jules Horowitz reactor (JHR), is under construction on the nuclear site of Cadarache. -
ASTRID - LESSONS LEARNED Gilles Rodriguez CEA 30 July 2018
ASTRID - LESSONS LEARNED Gilles Rodriguez CEA 30 July 2018 Meet the presenter Dr. John E. Kelly is the Deputy Assistant Secretary for Nuclear Reactor Technologies in the U.S. Department of Energy’s Office of Nuclear Energy.is aHis senior office is expertresponsible engineer for the civilian at nuclearthe CEA/CADARACHE reactor research and Mrdevelopment. Gilles portfolio, Rodriguez which includes programs on Small Modular Reactors, Light Water Reactor Sustainability, and (FrenchAdvanced (GenerationAtomic Energy IV) Reactors Commission/Cadarache. His office also is responsible for center the design,) and development has been, and productionin the of positionradioisotope of power deputy systems, head principally of the for ASTRID missions of theProject U.S. National team Aeronautics since 2016. and Space He Administration. In the international arena, Dr. Kelly is the immediate past chair of the Generation IV International Forum (GIF) and the graduatedformer chair of fromthe International the University Atomic Energy of Lyon, Agency’s France Standing inAdvisory 1990 Group with on an Nuclear engineering Energy. degreePrior to joining in Chemistry the Department and of Energy earned in 2010, a Master Dr. Kelly spentof Science 30 years at in Sandia process National engineering Laboratories, where he was engaged in a broad spectrum of research programs in nuclear reactor safety, advanced nuclear energy fromtechnology, the andPolytechnic national security. University In the reactor of Toulouse,safety field, he France, led efforts toin establish 1991. the His scientific areas basis of for expertiseassessing the include risks of nuclear fast powerreactor plant technology, operation and specifically liquid metal those risks processes, associated with and potential process severe accident scenarios.