Quantum Cryptography

Total Page:16

File Type:pdf, Size:1020Kb

Quantum Cryptography Answer Key Lesson QUANTUM CRYPTOGRAPHY Created by the IQC Scientific Outreach team Contact: [email protected] Institute for Quantum Computing University of Waterloo 200 University Avenue West Waterloo, Ontario, Canada N2L 3G1 uwaterloo.ca/iqc Copyright © 2021 University of Waterloo Answer Key Outline QUANTUM CRYPTOGRAPHY ACTIVITY GOAL: Understand how the superposition and measurement principles can be used to communicate securely. LEARNING OBJECTIVES ACTIVITY OUTLINE The no-cloning theorem. We start by outlining the no-cloning theorem and how it relates to the quantum uncertainty principle. Cryptography and the one-time CONCEPT: pad. We only get to measure a quantum state once. We then take a detour into cryptography to outline the one-time pad The BB84 quantum key cryptographic scheme, and the issue of secret key distribution. A distribution protocol. potential solution to this issue is quantum key distribution (QKD). Compatible vs. incompatible CONCEPT: measurement bases. Quantum systems can carry and encode information. We show how QKD can be used to alert users to the presence of an eavesdropper, but only if we consider encodings in multiple measurement bases. CONCEPT: Measuring in one basis disturbs the information in another. PREREQUISITE KNOWLEDGE The polarization of light Superposition and measurement (the Two Golden Rules) SUPPLIES REQUIRED QKD Worksheets #1 and #2 Lesson QUANTUM CRYPTOGRAPHY PHOTONS, QUBITS, AND THE NO-CLONING THEOREM A photon is an indivisible unit of light. While it is countable like a particle is, it still has many of the same wave properties as bright beams of light do. For example, a photon may have its electromagnetic field polarized along a specific direction. We can encode information into photons using these properties. We can describe the polarization of a photon in terms of two mutually exclusive states, such as horizontal and vertical polarization. By encoding the photon as either horizontal or vertical, we can encode binary information, or bits, into the photons. For example, “0” could be encoded as horizontal polarization and “1” as vertical polarization. We can also create photons that are in a superposition of polarization states, and measure them in different measurement bases. These properties allow us to encode quantum bits, or qubits, into the polarization of a photon. Just like binary bits, qubits can take one of two values, “0” or “1”. But they can also exist in a superposition of those states as well! Say that we have one qubit, and we want to make a copy of it. While we can split a classical beam of light into two beams each with half the original intensity, a photon cannot be split in two in the same way. In fact, it can be proven that if you are given a quantum system in an unknown superposition state, there is no way to copy this state without destroying the original state. This result is the no-cloning theorem: The No-Cloning Theorem It is impossible to copy an unknown quantum state. The uncertainty principle implies that it is impossible to know everything about a quantum state; if we measure one property, we disturb the others. The Uncertainty Principle If we measure a quantum system, we disturb it. Since we disturb the system when we measure it, and we cannot make a copy of the system, we cannot learn anything about a quantum system without disturbing it in some way. In this activity, we’ll investigate how we can use this fact to create unbreakable information security tools. Using quantum mechanics to protect information is known as quantum cryptography, and the protocol we’ll study here is called Quantum Key Distribution. 3 Answer Key CRYPTOGRAPHY: THE SCIENCE OF SECRETS When you send private information over the internet, such as emails, your banking information, or torrid love letters, the information is encrypted in such a way that only the sender and the receiver can access that information, and any malicious eavesdropper is unable to decrypt that information in a reasonable amount of time. While using the internet as a communication channel, we encrypt information with security protocols based on mathematical problems that are very hard to do in reverse. This is known as computational cryptography. For example, it is very easy to multiply two numbers together, and a computer can do it quickly even for very large numbers. But finding the factors of a large number is very difficult, even for a supercomputer. The most used computational crypto-protocol is known as RSA. Attempting to break the RSA protocol would take thousands, even millions, of years for the most powerful supercomputer running the best-known algorithm. Although safe in practice, computational cryptography is vulnerable to advances in algorithms and breakthroughs in computing, such as the development of the quantum computer. In fact, we already know how to break most crypto-protocols in use today if we had a quantum computer, and none of the other computational-based protocols are proven to be secure against a quantum attack. However, there are protocols not based on computational complexity that are known to be secure against any potential attack. The most well-known is the one-time pad, also known as the Vernam Cipher. THE ONE-TIME PAD In practice, information is stored, manipulated and communicated in strings of bits (series of 0’s and 1’s). For example, using the ASCII encoding, we write the word “hi” as: “hi” = 0 1 1 0 1 0 0 0 0 1 1 0 1 0 0 1 In the one-time pad protocol, we assume that the sender (Alice) and the receiver (Bob) share two completely random, but identical and secret strings of bits that are at least as long as the message. Each string is known as the key. The protocol goes as follows: 1. Alice generates a cipher text by adding the key to her message bit-by-bit (“bitwise”). She adds the first bit of the message with the first bit of the key, then adds the second bit of message with the second bit of the key, and so on. When adding bitwise, we skip the remainder, so: 0+0=0, 0+1=1+0=1 and 1+1=0. 2. Alice sends the cipher text to Bob. 3. Bob retrieves the original message by adding his key to the cipher text bit-by-bit. Let’s now put that protocol into practice: 1. Suppose Alice and Bob share the 16-bit key below and Alice wants to secretly send the number “42” to Bob, which is “101010” in binary. Ahead of time, the shared the secret key “100111”. Fill in the table below: Alice Bob Message 101010 001101 Cipher Key 100111 100111 Key Cipher 001101 101010 Message 2. Explain why Bob can retrieve the message by adding the key again. Adding the key once scrambles the message, and adding the same key again unscrambles it. In bitwise addition, 1+1=0, so x+1+1=x+0=x for any value of x. 3. If an eavesdropper (let’s call them Eve) manages to intercept the cipher, would they be able to recover the original message? They could only recover the message if they also have the key. 4. If the eavesdropper does not know the key, what is the probability that they successfully guess it at random? What if the key was twice or three times as long? Each bit has two possible options, 0 or 1. For six bits, there are 2*2*2*2*2*2 = 26 = 64 possibilities. The probability of randomly guessing the correct key is then 1 in 64. If they message and key were twice as long (12 bits), there would be 212 = 4096 possibilities. If they were three times as long (18 bits), there would be 262,144 possibilities. This is an example of exponential growth. 5. Suppose Alice sends an encrypted five-letter word to Bob, and by chance Eve finds a key that decrypts the message to “Hello”. Can Eve know for sure that Alice was sending that word? What other possible words could Alice have sent? Eve cannot be sure that “Hello” is the correct decryption. Because the key and the message are the same length, any five-letter word could be decrypted from the scrambled cipher text. Even if Eve tries every possible key, they will be left with multiple possible decryptions and no way to tell which message was actually intended. 6. Although unbreakable, the one-time pad is not commonly used due to impracticality. What assumption made in the protocol makes it impractical in the real world? We assumed that Alice and Bob share the key in the first place, which must be done in such a way that Eve cannot steal it. 5 Answer Key QUANTUM KEY DISTRIBUTION (QKD) The one-time pad is a perfectly secure way for Alice and Bob to communicate a secret message. Think of the cipher like a locked safe that holds the message. An eavesdropper can intercept the safe, but without the key, they have no way of opening it to reveal the message. As long as Alice and Bob keep their shared key perfectly secret, there is no way for an eavesdropper to learn the message. But how do Alice and Bob share the key in the first place? Note that sharing the key is different than sharing a message. The key is a completely random binary sequence, and contains no useful information itself. But if Alice and Bob share the same random sequence, they can use it to encrypt secret messages! Quantum key distribution (QKD) uses quantum mechanics to solve the problem of establishing the secret key securely.
Recommended publications
  • Security of Quantum Key Distribution with Entangled Qutrits
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Security of Quantum Key Distribution with Entangled Qutrits. Thomas Durt,1 Nicolas J. Cerf,2 Nicolas Gisin,3 and Marek Zukowski˙ 4 1 Toegepaste Natuurkunde en Fotonica, Theoeretische Natuurkunde, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium 2 Ecole Polytechnique, CP 165, Universit´e Libre de Bruxelles, 1050 Brussels, Belgium 3 Group of Applied Physics - Optique, Universit´e de Gen`eve, 20 rue de l’Ecole de M´edecine, Gen`eve 4, Switzerland, 4Instytut Fizyki Teoretycznej i Astrofizyki Uniwersytet, Gda´nski, PL-80-952 Gda´nsk, Poland July 2002 Abstract The study of quantum cryptography and quantum non-locality have traditionnally been based on two-level quantum systems (qubits). In this paper we consider a general- isation of Ekert's cryptographic protocol[20] where qubits are replaced by qutrits. The security of this protocol is related to non-locality, in analogy with Ekert's protocol. In order to study its robustness against the optimal individual attacks, we derive the infor- mation gained by a potential eavesdropper applying a cloning-based attack. Introduction Quantum cryptography aims at transmitting a random key in such a way that the presence of an eavesdropper that monitors the communication is revealed by disturbances in the transmission of the key (for a review, see e.g. [21]). Practically, it is enough in order to realize a crypto- graphic protocol that the key signal is encoded into quantum states that belong to incompatible bases, as in the original protocol of Bennett and Brassard[4].
    [Show full text]
  • RSA: Encryption, Decryption
    Data Communications & Networks Session 11 – Main Theme Network Security Dr. Jean-Claude Franchitti New York University Computer Science Department Courant Institute of Mathematical Sciences Adapted from course textbook resources Computer Networking: A Top-Down Approach, 5/E Copyright 1996-2009 J.F. Kurose and K.W. Ross, All Rights Reserved 1 Agenda 1 Session Overview 2 Network Security 3 Summary and Conclusion 2 What is the class about? .Course description and syllabus: »http://www.nyu.edu/classes/jcf/CSCI-GA.2262-001/ »http://www.cs.nyu.edu/courses/spring15/CSCI- GA.2262-001/index.html .Textbooks: » Computer Networking: A Top-Down Approach (5th Edition) James F. Kurose, Keith W. Ross Addison Wesley ISBN-10: 0136079679, ISBN-13: 978-0136079675, 5th Edition (03/09) 3 Course Overview . Computer Networks and the Internet . Application Layer . Fundamental Data Structures: queues, ring buffers, finite state machines . Data Encoding and Transmission . Local Area Networks and Data Link Control . Wireless Communications . Packet Switching . OSI and Internet Protocol Architecture . Congestion Control and Flow Control Methods . Internet Protocols (IP, ARP, UDP, TCP) . Network (packet) Routing Algorithms (OSPF, Distance Vector) . IP Multicast . Sockets 4 Course Approach . Introduction to Basic Networking Concepts (Network Stack) . Origins of Naming, Addressing, and Routing (TCP, IP, DNS) . Physical Communication Layer . MAC Layer (Ethernet, Bridging) . Routing Protocols (Link State, Distance Vector) . Internet Routing (BGP, OSPF, Programmable Routers) . TCP Basics (Reliable/Unreliable) . Congestion Control . QoS, Fair Queuing, and Queuing Theory . Network Services – Multicast and Unicast . Extensions to Internet Architecture (NATs, IPv6, Proxies) . Network Hardware and Software (How to Build Networks, Routers) . Overlay Networks and Services (How to Implement Network Services) .
    [Show full text]
  • Progress in Satellite Quantum Key Distribution
    www.nature.com/npjqi REVIEW ARTICLE OPEN Progress in satellite quantum key distribution Robert Bedington 1, Juan Miguel Arrazola1 and Alexander Ling1,2 Quantum key distribution (QKD) is a family of protocols for growing a private encryption key between two parties. Despite much progress, all ground-based QKD approaches have a distance limit due to atmospheric losses or in-fibre attenuation. These limitations make purely ground-based systems impractical for a global distribution network. However, the range of communication may be extended by employing satellites equipped with high-quality optical links. This manuscript summarizes research and development which is beginning to enable QKD with satellites. It includes a discussion of protocols, infrastructure, and the technical challenges involved with implementing such systems, as well as a top level summary of on-going satellite QKD initiatives around the world. npj Quantum Information (2017) 3:30 ; doi:10.1038/s41534-017-0031-5 INTRODUCTION losses that increase exponentially with distance, greatly limiting Quantum key distribution (QKD) is a relatively new cryptographic the secure key rates that can be achieved over long ranges. primitive for establishing a private encryption key between two For any pure-loss channel with transmittance η, it has been parties. The concept has rapidly matured into a commercial shown that the secure key rate per mode of any QKD protocol 5, 6, 7 technology since the first proposal emerged in 1984,1 largely scales linearly with η for small η. This places a fundamental because of a very attractive proposition: the security of QKD is not limit to the maximum distance attainable by QKD protocols based on the computational hardness of solving mathematical relying on direct transmission.
    [Show full text]
  • Semi-Quantum Communication: Protocols for Key Agreement, Controlled Secure Direct Communication and Dialogue Arxiv:1702.07861V1
    Semi-quantum communication: Protocols for key agreement, controlled secure direct communication and dialogue Chitra Shuklaa;,∗ Kishore Thapliyalb;,y Anirban Pathakb;z aGraduate School of Information Science, Nagoya University, Furo-cho 1, Chikusa-ku, Nagoya, 464-8601, Japan bJaypee Institute of Information Technology, A-10, Sector-62, Noida, UP-201307, India February 28, 2017 Abstract Semi-quantum protocols that allow some of the users to remain classical are proposed for a large class of problems associated with secure communication and secure multiparty computation. Specif- ically, first time semi-quantum protocols are proposed for key agreement, controlled deterministic secure communication and dialogue, and it is shown that the semi-quantum protocols for controlled deterministic secure communication and dialogue can be reduced to semi-quantum protocols for e- commerce and private comparison (socialist millionaire problem), respectively. Complementing with the earlier proposed semi-quantum schemes for key distribution, secret sharing and deterministic secure communication, set of schemes proposed here and subsequent discussions have established that almost every secure communication and computation tasks that can be performed using fully quantum protocols can also be performed in semi-quantum manner. Further, it addresses a funda- mental question in context of a large number problems- how much quantumness is (how many quan- tum parties are) required to perform a specific secure communication task? Some of the proposed schemes are completely orthogonal-state-based, and thus, fundamentally different from the existing semi-quantum schemes that are conjugate-coding-based. Security, efficiency and applicability of the proposed schemes have been discussed with appropriate importance. arXiv:1702.07861v1 [quant-ph] 25 Feb 2017 Keywords: Semi-quantum protocol, quantum communication, key agreement, quantum dialogue, deter- ministic secure quantum communication, secure direct quantum communication.
    [Show full text]
  • Practical Quantum Key Distribution Based on the BB84 Protocol
    Practical Quantum Key Distribution based on the BB84 protocol A. Ruiz-Alba, D. Calvo, V. Garcia-Muñoz, A. Martinez, W. Amaya, J.G. Rozo, J. Mora, J. Capmany Instituto de Telecomunicaciones y Aplicaciones Multimedia, Universitat Politècnica de València, 8G Building-access D-Camino de Vera s/n-46022 Valencia (Spain) Corresponding author: [email protected] Abstract relies on photon sources and the so-called pho- ton guns are far from ready. An alternative and This paper provides a review of the most impor- also a complementary approach to increase the tant and widely used Quantum Key Distribution bit rate is to make QKD systems work in paral- systems and then describes our recently pro- lel. This simple engineering approach becomes a posed scheme based on Subcarrier Multiplexing challenge when working with quantum systems: that opens the possibility of parallel Quantum The system should work in parallel but still rely Key Distribution. We report the first-ever ex- on just one source and its security should still be perimental implementation of parallel quantum guaranteed by the principles of quantum me- key distribution using this technique showing a chanics both when Alice prepares the photons maximum multiplexing gain. and when Bob “measures” the incoming states. At the same time the multiplexing technique Keywords: Optical fiber communications, quan- should be safe to Eve gaining any information. tum information, quantum key distribution, sub- carrier multiplexing. In this context, recent progress in the literature [4] remarks that photonics is a key enabling technology for implementing commercial QKD 1. Introduction systems to become a competitive technology in Information Security.
    [Show full text]
  • Quantum Key Distribution Protocols and Applications
    Quantum Key Distribution Protocols and Applications Sheila Cobourne Technical Report RHUL{MA{2011{05 8th March 2011 Department of Mathematics Royal Holloway, University of London Egham, Surrey TW20 0EX, England http://www.rhul.ac.uk/mathematics/techreports Title: Quantum Key Distribution – Protocols and Applications Name: Sheila Cobourne Student Number: 100627811 Supervisor: Carlos Cid Submitted as part of the requirements for the award of the MSc in Information Security at Royal Holloway, University of London. I declare that this assignment is all my own work and that I have acknowledged all quotations from the published or unpublished works of other people. I declare that I have also read the statements on plagiarism in Section 1 of the Regulations Governing Examination and Assessment Offences and in accordance with it I submit this project report as my own work. Signature: Date: Acknowledgements I would like to thank Carlos Cid for his helpful suggestions and guidance during this project. Also, I would like to express my appreciation to the lecturers at Royal Holloway who have increased my understanding of Information Security immensely over the course of the MSc, without which this project would not have been possible. Contents Table of Figures ................................................................................................... 6 Executive Summary ............................................................................................. 7 Chapter 1 Introduction ...................................................................................
    [Show full text]
  • Lecture 12: Quantum Key Distribution. Secret Key. BB84, E91 and B92 Protocols. Continuous-Variable Protocols. 1. Secret Key. A
    Lecture 12: Quantum key distribution. Secret key. BB84, E91 and B92 protocols. Continuous-variable protocols. 1. Secret key. According to the Vernam theorem, any message (for instance, consisting of binary symbols, 01010101010101), can be encoded in an absolutely secret way if the one uses a secret key of the same length. A key is also a sequence, for instance, 01110001010001. The encoding is done by adding the message and the key modulo 2: 00100100000100. The one who knows the key can decode the encoded message by adding the key to the message modulo 2. The important thing is that the key should be used only once. It is exactly this way that classical cryptography works. Therefore the only task of quantum cryptography is to distribute the secret key between just two users (conventionally called Alice and Bob). This is Quantum Key Distribution (QKD). 2. BB84 protocol, proposed in 1984 by Bennett and Brassard – that’s where the name comes from. The idea is to encode every bit of the secret key into the polarization state of a single photon. Because the polarization state of a single photon cannot be measured without destroying this photon, this information will be ‘fragile’ and not available to the eavesdropper. Any eavesdropper (called Eve) will have to detect the photon, and then she will either reveal herself or will have to re-send this photon. But then she will inevitably send a photon with a wrong polarization state. This will lead to errors, and again the eavesdropper will reveal herself. The protocol then runs as follows.
    [Show full text]
  • Device-Independent Quantum Cryptography for Continuous Variables
    Device-Independent Quantum Cryptography for Continuous Variables Kevin Marshall1, ∗ and Christian Weedbrook1, 2, y 1Department of Physics, University of Toronto, Toronto, M5S 3G4, Canada 2QKD Corp., 60 St. George St., Toronto, M5S 3G4, Canada (Dated: October 8, 2018) We present the first device-independent quantum cryptography protocol for continuous variables. Our scheme is based on the Gottesman-Kitaev-Preskill encoding scheme whereby a qubit is embedded in the infinite-dimensional space of a quantum harmonic oscillator. The novel application of discrete-variable device- independent quantum key distribution to this encoding enables a continuous-variable analogue. Since the se- curity of this protocol is based on discrete-variables we inherit by default security against collective attacks and, under certain memoryless assumptions, coherent attacks. We find that our protocol is valid over the same distances as its discrete-variable counterpart, except that we are able to take advantage of high efficiency com- mercially available detectors where, for the most part, only homodyne detection is required. This offers the potential of removing the difficulty in closing the loopholes associated with Bell inequalities. PACS numbers: 03.67.Dd, 03.67.Hk, 42.50.-p, 89.70.Cf I. INTRODUCTION parties may share a private key despite having no knowledge of the inner workings of their respective devices. Conversely, Quantum key distribution (QKD) [1,2] is a method by in conventional QKD protocols it is regularly assumed that which two parties, Alice and Bob, may generate a shared both parties have a high degree of control over both state secret key over an insecure quantum channel monitored by preparation as well as measurement.
    [Show full text]
  • Analysing and Patching SPEKE in ISO/IEC
    1 Analysing and Patching SPEKE in ISO/IEC Feng Hao, Roberto Metere, Siamak F. Shahandashti and Changyu Dong Abstract—Simple Password Exponential Key Exchange reported. Over the years, SPEKE has been used in several (SPEKE) is a well-known Password Authenticated Key Ex- commercial applications: for example, the secure messaging change (PAKE) protocol that has been used in Blackberry on Blackberry phones [11] and Entrust’s TruePass end-to- phones for secure messaging and Entrust’s TruePass end-to- end web products. It has also been included into international end web products [16]. SPEKE has also been included into standards such as ISO/IEC 11770-4 and IEEE P1363.2. In the international standards such as IEEE P1363.2 [22] and this paper, we analyse the SPEKE protocol as specified in the ISO/IEC 11770-4 [24]. ISO/IEC and IEEE standards. We identify that the protocol is Given the wide usage of SPEKE in practical applications vulnerable to two new attacks: an impersonation attack that and its inclusion in standards, we believe a thorough allows an attacker to impersonate a user without knowing the password by launching two parallel sessions with the victim, analysis of SPEKE is both necessary and important. In and a key-malleability attack that allows a man-in-the-middle this paper, we revisit SPEKE and its variants specified in (MITM) to manipulate the session key without being detected the original paper [25], the IEEE 1363.2 [22] and ISO/IEC by the end users. Both attacks have been acknowledged by 11770-4 [23] standards.
    [Show full text]
  • Quantum Computing Methods for Supervised Learning Arxiv
    Quantum Computing Methods for Supervised Learning Viraj Kulkarni1, Milind Kulkarni1, Aniruddha Pant2 1 Vishwakarma University 2 DeepTek Inc June 23, 2020 Abstract The last two decades have seen an explosive growth in the theory and practice of both quantum computing and machine learning. Modern machine learning systems process huge volumes of data and demand massive computational power. As silicon semiconductor miniaturization approaches its physics limits, quantum computing is increasingly being considered to cater to these computational needs in the future. Small-scale quantum computers and quantum annealers have been built and are already being sold commercially. Quantum computers can benefit machine learning research and application across all science and engineering domains. However, owing to its roots in quantum mechanics, research in this field has so far been confined within the purview of the physics community, and most work is not easily accessible to researchers from other disciplines. In this paper, we provide a background and summarize key results of quantum computing before exploring its application to supervised machine learning problems. By eschewing results from physics that have little bearing on quantum computation, we hope to make this introduction accessible to data scientists, machine learning practitioners, and researchers from across disciplines. 1 Introduction Supervised learning is the most commonly applied form of machine learning. It works in two arXiv:2006.12025v1 [quant-ph] 22 Jun 2020 stages. During the training stage, the algorithm extracts patterns from the training dataset that contains pairs of samples and labels and converts these patterns into a mathematical representation called a model. During the inference stage, this model is used to make predictions about unseen samples.
    [Show full text]
  • Quantum Cryptography: from Theory to Practice
    Quantum cryptography: from theory to practice Eleni Diamanti Laboratoire Traitement et Communication de l’Information CNRS – Télécom ParisTech 1 with Anna Pappa, André Chailloux, Iordanis Kerenidis Two-party secure communications: QKD Alice and Bob trust each other but not the channel Primitive for message exchange: key distribution BB84 QKD protocol: possibly the precursor of the entire field 2 Jouguet, Kunz-Jacques, Leverrier, Grangier, D, Nature Photon. 2013 3 Scarani et al, Rev. Mod. Phys. 2009 Two-party secure communications: QKD Information-theoretic security is possible and feasible! Theory adapted to experimental imperfections 2000: Using laser sources opens a disastrous security loophole in BB84 photon number splitting attacks Brassard, Lütkenhaus, Mor, Sanders, Phys. Rev. Lett. 2000 Solution: Decoy state BB84 protocol, and other Lo, Ma, Chen, Phys. Rev. Lett. 2004 2010: Quantum hacking: setup vulnerabilities not taken into account in security proofs Lydersen et al, Nature Photon. 2010 Solution: Exhaustive search for side channels and updated security proofs? Device independence? Measurement device independence? 4 Two-party secure communications: beyond QKD Alice and Bob do not trust each other Primitives for joint operations: bit commitment, coin flipping, oblivious transfer Until recently relatively ignored by physicists perfect unconditionally secure protocols are impossible, but imperfect protocols with information-theoretic security exist ideal framework to demonstrate quantum advantage protocols require inaccessible
    [Show full text]
  • Quantum Information Science
    Quantum Information Science Seth Lloyd Professor of Quantum-Mechanical Engineering Director, WM Keck Center for Extreme Quantum Information Theory (xQIT) Massachusetts Institute of Technology Article Outline: Glossary I. Definition of the Subject and Its Importance II. Introduction III. Quantum Mechanics IV. Quantum Computation V. Noise and Errors VI. Quantum Communication VII. Implications and Conclusions 1 Glossary Algorithm: A systematic procedure for solving a problem, frequently implemented as a computer program. Bit: The fundamental unit of information, representing the distinction between two possi- ble states, conventionally called 0 and 1. The word ‘bit’ is also used to refer to a physical system that registers a bit of information. Boolean Algebra: The mathematics of manipulating bits using simple operations such as AND, OR, NOT, and COPY. Communication Channel: A physical system that allows information to be transmitted from one place to another. Computer: A device for processing information. A digital computer uses Boolean algebra (q.v.) to processes information in the form of bits. Cryptography: The science and technique of encoding information in a secret form. The process of encoding is called encryption, and a system for encoding and decoding is called a cipher. A key is a piece of information used for encoding or decoding. Public-key cryptography operates using a public key by which information is encrypted, and a separate private key by which the encrypted message is decoded. Decoherence: A peculiarly quantum form of noise that has no classical analog. Decoherence destroys quantum superpositions and is the most important and ubiquitous form of noise in quantum computers and quantum communication channels.
    [Show full text]