Alcohols on the Rocks

Total Page:16

File Type:pdf, Size:1020Kb

Alcohols on the Rocks This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes. Article Cite This: ACS Earth Space Chem. 2019, 3, 986−999 http://pubs.acs.org/journal/aesccq Alcohols on the Rocks: Solid-State Formation in a H3CC CH + OH Cocktail under Dark Cloud Conditions † ‡ § † # † ∥ Danna Qasim,*, Gleb Fedoseev, Thanja Lamberts, Ko-Ju Chuang, , Jiao He, Sergio Ioppolo, ⊥ † Johannes Kastner,̈ and Harold Linnartz † Sackler Laboratory for Astrophysics, Leiden Observatory, Leiden University, P. O. Box 9513, NL-2300 RA Leiden, The Netherlands ‡ INAF−Osservatorio Astrofisico di Catania, via Santa Sofia 78, 95123 Catania, Italy § Leiden Institute of Chemistry, Leiden University, P. O. Box 9502, NL-2300 RA Leiden, The Netherlands ∥ School of Electronic Engineering and Computer Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom ⊥ Institute for Theoretical Chemistry, University of Stuttgart, 70569 Stuttgart, Germany *S Supporting Information ABSTRACT: A number of recent experimental studies have shown that solid-state complex organic molecules (COMs) can form under conditions that are relevant to the CO freeze- out stage in dense clouds. In this work, we show that alcohols can be formed well before the CO freeze-out stage (i.e., during the very early stage of the H2O-rich ice phase). This joint experimental and computational investigation shows that isomers n-propanol and isopropanol (H3CCH2CH2OH and H3CCHOHCH3)andn-propenol and isopropenol (H3CCH CHOH and H3CCOH CH2) can be formed in radical-addition reactions starting from propyne (H3CC CH) + OH at the low temperature of 10 K, where H3CC CH is one of the simplest representatives of stable carbon chains already identified in the interstellar medium (ISM). The resulting average abundance ratio of 1:1 for n- propanol:isopropanol is aligned with the conclusions from the computational work that the geometric orientation of strongly interacting species is influential to the extent of which “mechanism” is participating and that an assortment of Downloaded via LEIDEN UNIV on September 30, 2019 at 20:56:11 (UTC). geometries leads to an averaged-out effect. Three isomers of fi propanediol are also tentatively identi ed in the experiments. It is also shown that propene and propane (H3CCH CH2 and fi H3CCH2CH3) are formed from the hydrogenation of H3CC CH. This experimental nding falls in line with the lower See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles. activation barrier of hydrogenation of a C C bond in comparison to a C C bond. Reactants and products are probed by temperature-programmed desorption−quadrupole mass spectrometry (TPD-QMS) and reflection absorption infrared spectroscopy (RAIRS). Product relative abundances are determined from TPD-QMS data. Computationally derived activation barriers give additional insight into what types of reactions and mechanisms are more likely to occur in the laboratory and in the ISM. Our findings not only suggest that the alcohols studied here share common chemical pathways and therefore can show up − simultaneously in astronomical surveys but also that their extended counterparts that derive from polyynes containing H3C − (C C)n H structures may exist in the ISM. Such larger species, such as fatty alcohols, are the possible constituents of simple lipids that primitive cell membranes on the early Earth are thought to be partially composed of. continued... Special Issue: Complex Organic Molecules (COMs) in Star- Forming Regions Received: March 18, 2019 Revised: April 28, 2019 Accepted: April 30, 2019 Published: April 30, 2019 © 2019 American Chemical Society 986 DOI: 10.1021/acsearthspacechem.9b00062 ACS Earth Space Chem. 2019, 3, 986−999 ACS Earth and Space Chemistry Article KEYWORDS: astrochemistry, astrobiology, solid-state, interstellar, ice, complex organic molecules, infrared, mass spectrometry 1. INTRODUCTION The mechanism proposed in this work results in the formation The origin of cosmic carbon lies in the outflows of carbon-rich of alcohols already in H O-rich ices, meaning, the alcohols can stars.1,2 How carbon evolves into hydrocarbon species, from 2 be synthesized before the CO freeze-out stage, well below small molecules such as methane (CH4) and acetylene (C2H2) 32 extinctions (AV) of 9 in dense atomic/molecular cores. In the to polycyclic aromatic hydrocarbons (PAHs), to carbon literature, most solid-state laboratory experiments report the nanoparticles, or other carbon-containing species such as formation of simple alcohols (e.g., methanol (CH OH) and alcohols, is far from understood. In addition to “bottom-up” 3 ethanol (H3CCH2OH)) and polyalcohols (e.g., ethylene glycol approaches, which merge smaller precursors into larger species (HOCH CH OH), glycerol (HOCH CHOHCH OH), and “ ” 2 2 2 2 (in the gas-phase or solid-state), also top-down approaches methoxymethanol (H COCH OH)) in the context where much 3 2 − have been proposed. Both scenarios are considered as likely road CO has already been frozen out.33 40 These experiments can be maps toward molecular complexity in space, but as mentioned, divided into two subgroups: “energetic” and “non-energetic” 3,4 many details are lacking. processing, where “non-energetic” refers to a radical-induced From a bottom-up perspective, simple species such as C2H2 process without the involvement of UV, cosmic rays, and/or 5,6 41 can polymerize to form polyacetylene ([C2H2]n). The other “energetic” particles. In the “energetic”-induced studies, complexity can increase by addition of a methyl (-CH3) group CH3OH- and/or CO-containing ices are irradiated to form to form methylpolyacetylene. Such species can eventually alcohols, and CH OH is either mixed with CO or explicitly 3 − accrete onto carbonaceous dust grains that were formed from stated to be a product of CO hydrogenation.33 36 In nucleation of PAHs.2,7 An alternative is that these species form experiments that focus on “non-energetic” processes, alcohols through surface reactions in the ice layers that are on top of dust are formed by reactions that involve the hydrogenation of a CO- − grains. In this article, we focus on the simplest representative of rich ice.37 40 the latter row of species: methylacetylene, also known as Many of the icy alcohols that have been formed in the propyne (H CCCH). H CCCH has been detected in laboratory have also been detected as gas-phase species in the − 3 3 space.8 16 Not only is it reported to be observed toward carbon- interstellar medium (ISM). This includes the detection of 13 rich stars, as expected, but it is also reported to be detected CH3OH, H3CCH2OH, vinyl alcohol (H2CCHOH), 9,12 fi toward cold, dark, and dense clouds, where it has a column HOCH2CH2OH, and H3COCH2OH, which were rst reported − × 13 −2 9 by Ball et al.,42 Zuckerman et al.,43 Turner and Apponi,44 Hollis density of (4 8) 10 cm in TMC-1. Assuming an H2 − 3 45 46 abundance of ∼1021 cm 2, this leads to <1% with respect to et al., and McGuire et al., respectively. CH3OH also has been detected in the solid-state.47 Much effort has been recently put H2O ice following the calculation from Herbst and van Dishoeck.17 into explaining the transition from frozen to gas-phase CH3OH − H O ice is formed on dust grains.18 23 Laboratory experi- to explain, for example, CH3OH abundances observed in 2 protoplanetary disks.48 Other alcohols are still elusive, such as n- ments show that every formed H2O molecule, in the solid-state and gas-phase, has an OH radical and/or ion as an propanol (H3CCH2CH2OH) (Qasim et al., submitted for 24 publication). intermediate. In the ice, OH radicals have the chance to react with other species that are in direct proximity prior to This work overviews the reaction of solid-state H3CC CH with H and OH under conditions relevant to the dense cloud hydrogenation to yield H2O, as the accretion of an H atom onto − stage. Section 2 provides details on the experimental and a dust grain of radius 10 5 cm happens once a day.25 An example computational parameters used for this study. Section 3 presents of this is the formation of CO2 from CO and OH in H2O-rich fi 26 the ndings from the laboratory experiments. Section 4 reports ices. Thus, the interaction between OH radicals and H3CC the computationally derived energies that are applicable to the CH is a valid topic to be addressed in astrochemical laboratories. reactions taking place in the experiments. These results are This interaction may result in the formation of simple alcohols combined with the laboratory work to uncover the products and polyalcohols. formed and their formation pathways. Section 5 discusses how The formation of alcohols is particularly intriguing as they the formation of such icy alcohols can take place at the interface may have a role in astrobiology, assuming that alcohols can be 27 of astrochemical and astrobiological environments. Finally, the delivered to planetary bodies such as the early Earth. Simple conclusions of this study are summarized in section 6. alcohols are amphiphilic molecules, i.e., both sides of the Given the many different species that will be discussed in the ff ffi 28 molecule have di erent a nities from each other. Because next sections, Table 1 is added and summarizes the names and they are composed of a polar head (-OH group) and a chemical structure formulas of all relevant species. A majority of hydrophobic tale (aliphatic group), they can take part in the the listed chemicals are the expected products of solid-state formation of micelles in primordial oceans. More complex H3CC CH hydrogenation or hydroxylation.
Recommended publications
  • Simple Models for the Quick Estimation of Ground State Hydrogen Tunneling Splittings in Alcohols Cite This: Phys
    PCCP View Article Online PAPER View Journal | View Issue Simple models for the quick estimation of ground state hydrogen tunneling splittings in alcohols Cite this: Phys. Chem. Chem. Phys., 2021, 23, 17591 and other compounds† Robert Medel Models for the quick estimation of energy splittings caused by coherent tunneling of hydrogen atoms are evaluated with available experimental data for alcohols and improvements are proposed. The discussed models are mathematically simple and require only results from routine quantum chemical computations, i.e. hybrid DFT calculation of the equilibrium geometry and the transition state within the harmonic approximation. A benchmark of experimental splittings spanning four orders of magnitude for 27 alcohol species is captured by three evaluated models with a mean symmetric deviation factor of 1.7, 1.5 and 1.4, respectively, i.e. the calculated values deviate on average by this factor in either direction. Limitations of the models are explored with alcohols featuring uncommon Creative Commons Attribution 3.0 Unported Licence. properties, such as an inverted conformational energy sequence, a very light molecular frame, an elevated torsional frequency, or a coupling with a second internal degree of freedom. If the splitting of either the protiated or deuterated form of an alcohol is already experimentally determined, the one of the second isotopolog can be estimated by three additional models with a mean symmetric deviation factor of 1.14, 1.19 and 1.15, respectively. It is shown that this can be achieved with a novel approach without any quantum chemical calculation by directly correlating experimental splittings of isotopologs across related species.
    [Show full text]
  • Standard Methods for the Examination of Water and Wastewater
    Standard Methods for the Examination of Water and Wastewater Part 1000 INTRODUCTION 1010 INTRODUCTION 1010 A. Scope and Application of Methods The procedures described in these standards are intended for the examination of waters of a wide range of quality, including water suitable for domestic or industrial supplies, surface water, ground water, cooling or circulating water, boiler water, boiler feed water, treated and untreated municipal or industrial wastewater, and saline water. The unity of the fields of water supply, receiving water quality, and wastewater treatment and disposal is recognized by presenting methods of analysis for each constituent in a single section for all types of waters. An effort has been made to present methods that apply generally. Where alternative methods are necessary for samples of different composition, the basis for selecting the most appropriate method is presented as clearly as possible. However, samples with extreme concentrations or otherwise unusual compositions or characteristics may present difficulties that preclude the direct use of these methods. Hence, some modification of a procedure may be necessary in specific instances. Whenever a procedure is modified, the analyst should state plainly the nature of modification in the report of results. Certain procedures are intended for use with sludges and sediments. Here again, the effort has been to present methods of the widest possible application, but when chemical sludges or slurries or other samples of highly unusual composition are encountered, the methods of this manual may require modification or may be inappropriate. Most of the methods included here have been endorsed by regulatory agencies. Procedural modification without formal approval may be unacceptable to a regulatory body.
    [Show full text]
  • Surface Science 652 (2016) 26 –32
    Surface Science 652 (2016) 26 –32 Contents lists available at ScienceDirect Surface Science journal homepage: www.elsevier.com/locate/susc The role of low-energy ( ≤20 eV) electrons in astrochemistry Michael C. Boyer a,NathalieRivas b,AudreyA.Tran b, Clarissa A. Verish b, Christopher R. Arumainayagam b,⁎ aDepartment of Physics, Clark University, Worcester, MA 01610, United States bDepartment of Chemistry, Wellesley College, Wellesley, MA 02481, United States article info abstract Article history: UV photon-driven condensed phase cosmic ice reactions have been the main focus in understanding the extra- Received 7 January 2016 terrestrial synthesis of complex organic molecules. Low-energy ( ≤20 eV) electron-induced reactions, on the Received in revised form 2 March 2016 other hand, have been largely ignored. In this article, we review studies employing surface science techniques Accepted 8 March 2016 to study low-energy electron-induced condensed phase reactions relevant to astrochemistry. In particular, we Available online 12 March 2016 show that low-energy electron irradiation of methanol ices leads to the synthesis of many of the same complex Keywords: molecules formed through UV irradiation. Moreover, our results are qualitatively consistent with the hypothesis Astrochemistry that high-energy condensed phase radiolysis is mediated by low-energy electron-induced reactions. In addition, Low-energy electrons due to the numbers of available low-energy secondary electrons resulting from the interaction of high-energy Temperature programmed desorption radiation with matter as well as differences between electron- and photon-induced processes, low-energy Infrared re flection absorption spectroscopy electron-induced reactions are perhaps as, or even more, effective than photon-induced reactions in initiating Cosmic ices condensed-phase chemical reactions in the interstellar medium.
    [Show full text]
  • Characterizing and Predicting the Antimicrobial Properties of Lignin Derivatives
    University of Kentucky UKnowledge Theses and Dissertations--Biosystems and Agricultural Engineering Biosystems and Agricultural Engineering 2020 CHARACTERIZING AND PREDICTING THE ANTIMICROBIAL PROPERTIES OF LIGNIN DERIVATIVES Ryan Kalinoski University of Kentucky, [email protected] Author ORCID Identifier: https://orcid.org/0000-0001-8774-275X Digital Object Identifier: https://doi.org/10.13023/etd.2020.455 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Kalinoski, Ryan, "CHARACTERIZING AND PREDICTING THE ANTIMICROBIAL PROPERTIES OF LIGNIN DERIVATIVES" (2020). Theses and Dissertations--Biosystems and Agricultural Engineering. 76. https://uknowledge.uky.edu/bae_etds/76 This Doctoral Dissertation is brought to you for free and open access by the Biosystems and Agricultural Engineering at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Biosystems and Agricultural Engineering by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • Gas-Phase Basicities of Polyfunctional Molecules. Part 2 : Saturated Basic Sites Guy Bouchoux, Jean-Yves Salpin
    Gas-phase basicities of polyfunctional molecules. Part 2 : saturated basic sites Guy Bouchoux, Jean-Yves Salpin To cite this version: Guy Bouchoux, Jean-Yves Salpin. Gas-phase basicities of polyfunctional molecules. Part 2 : saturated basic sites. Mass Spectrometry Reviews, Wiley, 2012, 31 (3), pp.353-390. 10.1002/mas.20343. hal- 00760015 HAL Id: hal-00760015 https://hal.archives-ouvertes.fr/hal-00760015 Submitted on 5 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. BOUCHOUX AND SALPIN POLYFUNCTIONAL MOLECULES WITH SATURATED BASIC SITES Gas-phase basicities of polyfunctional molecules. Part 2: saturated basic sites Guy Bouchoux1,2* and Jean-Yves Salpin3,4 (1) Ecole Polytechnique - Laboratoire des Mécanismes Réactionnels (DCMR) - Département de Chimie - 91120 Palaiseau. France. (2) CNRS – UMR 7651 (3) Université d'Evry Val d'Essonne - Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement (LAMBE) – Bâtiment Maupertuis – Bd F. Mitterrand - 91025 Evry. France (4) CNRS – UMR 8587 * Correspondence to: Guy Bouchoux. Laboratoire des Mécanismes Réactionnels. Département de Chimie. Ecole Polytechnique. 91120 Palaiseau. France. E-mail address: [email protected] Telephone: (33) 1 69 33 48 42 FAX: (33) 1 69 33 48 03 -1- BOUCHOUX AND SALPIN POLYFUNCTIONAL MOLECULES WITH SATURATED BASIC SITES Table of contents I.
    [Show full text]
  • Detection of Methoxymethanol As a Photochemistry Product Of
    Detection of Methoxymethanol as a Photochemistry Product of Condensed Methanol Hope Schneider,1 Anna Caldwell-Overdier,1 Sophie Coppieters ‘t Wallant,1 Lan Dau, 1 Jean Huang,1 Ifunanya Nwolah,1 Muhammad Kasule,2 Christina Buffo,1 Ella Mullikin,1 Lily Widdup,1 Aury Hay,1 Si Tong Bao,1 Jeniffer Perea,1 Mayla Thompson,1 Rhoda Tano-Menka, 1 Mileva Van Tuyl,1 Amy Wang,1 Sophia Bussey,1 Nina Sachdev,1 Christine Zhang,1 Michael C. Boyer,2 and Christopher R. Arumainayagam1* 1 Department of Chemistry, Wellesley College, Wellesley, MA 02481 2 Department of Physics, Clark University, Worcester, MA 01610 Abstract We report the identification of methoxymethanol (CH3OCH2OH) as a photochemistry product of condensed methanol (CH3OH) based on temperature-programmed desorption studies conducted following photon irradiation at energies below the ionization threshold (9.8 eV) of condensed methanol. The first detection of methoxymethanol in the interstellar medium was reported in 2017 based on data from Bands 6 and 7 from the Atacama Large Millimeter/submillimeter Array (ALMA). The cosmic synthesis of “complex” organic molecules such as methyl formate (HCOOCH3), dimethyl ether (CH3OCH3), acetic acid (CH3COOH), ethylene glycol (HOCH2CH2OH), and glycolaldehyde (HOCH2CHO) has been attributed to UV photolysis of condensed methanol found in interstellar ices. Experiments conducted in 1995 demonstrated that electron-induced radiolysis of methanol cosmic ice analogues yields methoxymethanol. In three recent publications (2016, 2017, and 2018), methoxymethanol was considered as a potential tracer for reactions induced by secondary electrons resulting from the interaction of cosmic rays with interstellar ices. However, the results presented in this study suggest that methoxymethanol can be formed from both radiation chemistry and photochemistry of condensed methanol.
    [Show full text]
  • Stabilization Method of Vinyl Compound with Hydroxy Group and Composition Containing Such Vinyl Compound
    ^ ^ ^ ^ I ^ ^ ^ ^ ^ ^ II ^ II ^ II ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ I ^ European Patent Office Office europeen des brevets EP 0 763 518 A1 EUROPEAN PATENT APPLICATION (43) Date of publication: (51) |nt CI C07C 67/62, C07C 69/732, 19.03.1997 Bulletin 1997/12 C07C 255/1 5, C07C 253/32 (21) Application number: 96306611.3 (22) Date of filing: 12.09.1996 (84) Designated Contracting States: • Makino, Mitsuaki DE FR GB Himeji-shi, Hyogo 671-12 (JP) • Kita, Yuichi (30) Priority: 14.09.1995 J P 237440/95 Akashi-shi, Hyogo 673 (JP) (71) Applicant: NIPPON SHOKUBAI CO., LTD. (74) Representative: West, Alan Harry et al Chuo-ku, Osaka-shi, Osaka-fu 541 (JP) R.G.C. Jenkins & Co. 26 Caxton Street (72) Inventors: London SW1H 0RJ (GB) • Nakagawa, Koichi Himeji-shi, Hyogo 672 (JP) (54) Stabilization method of vinyl compound with hydroxy group and composition containing such vinyl compound (57) A vinyl compound having an hydroxy group is by mixing it with minor amounts of primary antioxidant stabilised against being denatured during storage, together with an alcohol and/or water, and/or with an or- transportation and use while maintaining its reactivity, ganic acid. < 00 lo CO CO o a. LU Printed by Jouve, 75001 PARIS (FR) EP0 763 518 A1 Description The present invention generally relates to a stabilization method of a vinyl compound with hydroxy group and a composition containing such vinyl compound, and more particularly relates to a stabilization method which offers an 5 improved stability of the vinyl compound with hydroxy group by preventing a vinyl compound with hydroxy group from being denatured on storage, transportation, manufacturing process, etc., and to a composition containing the vinyl compound of an improved stability.
    [Show full text]
  • The 67Th OSU International Symposium on Molecular Spectroscopy on Behalf of the Executive Committee, Frank Delucia, Anne B
    Welcome to the 67th OSU International Symposium on Molecular Spectroscopy On behalf of the Executive Committee, Frank DeLucia, Anne B. McCoy, and myself, I extend a heartfelt welcome to all the attendees to the 67th Symposium and welcome you to The Ohio State University and Columbus. The Symposium presents research in fundamental molecular spectroscopy and a wide variety of related fields and applications. The continued vitality and significance of spectroscopy is annually re-affirmed by the number of talks, their variety, and the fact that many are given by students. These presentations are the heart of the meeting and are documented by this Abstract Book. Equally important is the information flowing from informal exchanges and discussions. As organizers, we strive to provide an environment that facilitates both kinds of interactions. The essence of the meeting lies in the scientific discussions and your personal experi- ences this week independent of the number of times that you have attended this meeting. It is our sincere hope that you will find this meeting informative and enjoyable both scientifically and personally, whether it is your first or 50th meeting. If we can help to enhance your experience, please do not hesitate to ask the Symposium staff or the Executive Committee. Terry A. Miller Symposium Chair Contents SCHEDULE OF TALKS ABSTRACTS Monday (M)....................1 Monday (M)...................79 Tuesday (T)...................14 Tuesday (T)..................110 Wednesday (W).............36 Wednesday (W)............161 Thursday (R).................48 Thursday (R)................191 Friday (F).....................69 Friday (F).....................243 AUTHOR INDEX..................269 ACKNOWLEDGMENTS......277 67th OSU INTERNATIONAL SYMPOSIUM ON MOLECULAR SPECTROSCOPY JUNE 18-22, 2012 International Advisory Committee Executive Committee International Advisory Committee Jose Alonso, U.
    [Show full text]
  • Thermal Decomposition of Electronic Cigarette Liquids
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Summer 8-4-2016 Thermal Decomposition of Electronic Cigarette Liquids Robert Paul Jensen Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Chemistry Commons Let us know how access to this document benefits ou.y Recommended Citation Jensen, Robert Paul, "Thermal Decomposition of Electronic Cigarette Liquids" (2016). Dissertations and Theses. Paper 3081. https://doi.org/10.15760/etd.3076 This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Thermal Decomposition of Electronic Cigarette Liquids by Robert Paul Jensen A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry Dissertation Committee: David H. Peyton, Chair Jonathan J. Abramson Dean B. Atkinson David R. Stuart Portland State University 2016 © 2016 Robert Paul Jensen Abstract Electronic cigarette liquid (e-liquid) is a solution of propylene glycol and/or glycerol with varying concentrations of nicotine and flavorants. Inhalation of vaporized e-liquid is a method of nicotine delivery that is growing in popularity and is commonly regarded as safe relative to smoking traditional tobacco products. The thermal decomposition of glycerol and propylene glycol is typical of alcohols and has been investigated, although not exhaustively. In this work, samples of propylene glycol and glycerol were vaporized using an electronic cigarette (e-cigarette) and were analyzed for evidence of decomposition using nuclear magnetic resonance (NMR) spectroscopy.
    [Show full text]
  • Alcohols and Phenols
    Chapter 17: Alcohols and Phenols 1 Alcohols and Phenols Alcohols contain an OH group connected to a saturated C (sp3) They are important solvents and synthesis intermediates Methanol, CH3OH, called methyl alcohol, is a common solvent, a fuel additive, produced in large quantities Ethanol, CH3CH2OH, called ethyl alcohol, is a solvent, fuel, beverage Phenols contain an OH group connected to a carbon in a benzene ring. Phenol, C6H5OH (“phenyl alcohol”) has diverse uses - it gives its name to the general class of compounds Enol, contains both a double bond and OH, they do not have to be adjacent, note that the priority goes to OH, the last name. alcohol (ROH) phenol enol 2 Industrial method for making ROH Methanol (methyl alcohol, wood alcohol) causes blindness in low doses (15 mL), and death in larger doses (100 – 250 mL). Catalytic reduction: Ethanol (ethyl alcohol, grain alcohol): Non-beverage use obtained by acid-catalyzed hydration of ethylene: 3 17.1 Naming Alcohols General classifications of alcohols based on C to which OH is attached CH3OH RCH2OH R2CHOH R3COH methyl primary 1o secondary 2o tertiary 3o 4 IUPAC Rules for Naming Alcohols Select the longest carbon chain containing the hydroxyl group, and derive the parent name by replacing the -e ending of the corresponding alkane with -ol Number the chain from the end nearer the hydroxyl group Number substituents according to position on chain, listing the substituents in alphabetical order Examples of primary alcohols: CH3CH2OH ethanol (grain alcohol) CH3CH2CH2OH 1-propanol
    [Show full text]
  • Material Code Reference List Alphabetical
    MATERIAL CODE REFERENCE LIST ALPHABETICAL G-Form G-Form Code Description Usage Unit Code Description Usage Unit 565 1,1,1-trichloroethane gallons 473 Abrasive glass beads tons 294 1,1,1-trichloroethane (with 566 Abrasive sand tons dioxane) gallons 474 Abrasive steel shot tons 781 1,1,2,2-tetrachloroethane gallons 476 Abrasive walnut shell tons 480 1,1,2-Trichloro-1,2,2-triflouroethane gallons 746 Absol EG gallons 782 1,1,2-trichloroethane gallons 335 Acetaldehyde gallons 385 1,2,4-trimethylbenzene gallons 769 Acetamide pounds 774 1,2-butylene oxide gallons 310 Acetamide, n,n-dimethyl gallons 808 1,2-diaminoethane gallons 16 Acetate - alkyl gallons 762 1,2-dibromo-3-chloropropane gallons 63 Acetate - cellosolve gallons 420 1,2-dibromoethane gallons 453 Acetate - other/not spec gallons 774 1,2-epoxybutane gallons 452 Acetate flake tons 732 1,3,5-trimethylbenzene gallons 604 Acetate, 2-methyl propyl gallons 521 1,3-butadiene pounds 334 Acetate, amyl gallons 387 1,3-dichloropropene gallons 602 Acetate, butoxyethanol gallons 387 1,3-dichloropropylene gallons 48 Acetate, butyl gallons 359 1,4-dioxane gallons 602 Acetate, butyl cellosolve gallons 778 1,6-diisocyanatohexane gallons 104 Acetate, ethyl gallons 746 1-Bromopropane gallons 602 Acetate, ethylene glycol monobutyl 734 1-chloro-4-trifluoromethyl benzene gallons ether gallons 773 1-methyl-2,4-dinitrobenzene pounds 604 Acetate, isobutyl gallons 154 2,2,4-trimethylpentane gallons 156 Acetate, isopropyl gallons 747 2,3-dihydroperfluoropentane gallons 601 Acetate, methoxy propanol gallons
    [Show full text]
  • Bay Area Air Quality Management District Board of Directors Will Be Held at 9:45 A.M
    BOARD OF DIRECTORS’ REGULAR MEETING JUNE 15, 2005 A meeting of the Bay Area Air Quality Management District Board of Directors will be held at 9:45 a.m. in the 7th floor Board Room at the Air District headquarters, 939 Ellis Street, San Francisco, California. Questions About an Agenda Item The name, telephone number and e-mail of the appropriate staff person to contact for additional information or to resolve concerns is listed for each agenda item. Meeting Procedures The public meeting of the Air District Board of Directors begins at 9:45 a.m. The Board of Directors generally will consider items in the order listed on the agenda. However, any item may be considered in any order. After action on any agenda item not requiring a public hearing, the Board may reconsider or amend the item at any time during the meeting. BOARD OF DIRECTORS’ REGULAR MEETING A G E N D A WEDNESDAY BOARD ROOM JUNE 15, 2005 7TH FLOOR 9:45 A.M. CALL TO ORDER Opening Comments Marland Townsend, Chairperson Roll Call Clerk of the Boards Pledge of Allegiance PUBLIC COMMENT PERIOD Public Comment on Non-Agenda Items, Pursuant to Government Code Section 54954.3 Members of the public are afforded the opportunity to speak on any agenda item. All agendas for regular meetings are posted at District headquarters, 939 Ellis Street, San Francisco, CA, at least 72 hours in advance of a regular meeting. At the beginning of the regular meeting agenda, an opportunity is also provided for the public to speak on any subject within the Board’s subject matter jurisdiction.
    [Show full text]