Journal of Undergraduate Research, Volume 9

Total Page:16

File Type:pdf, Size:1020Kb

Journal of Undergraduate Research, Volume 9 U.S. Department of Energy Journal of Undergraduate Research 1 http://www.scied.science.doe.gov JOURNAL EDITORS CO-EDITOR AND PROGRAM MANAGER SHANNON DUNPHY LAZO CO-EDITOR AND ALBERT EINSTEIN FELLOW LORNA T. V ÁZQUEZ PRODUCTION EDITOR DEBBIE MAYER CONSULTING EDITOR JEFFERY DILKS TECHNICAL REVIEW BOARD DIEDRE ADAMS BRENDA HAENDLER, PH.D. EINSTEIN FELLOW AAAS S&T POLICY FELLOW NATIONAL AERONAUTICS AND SPACE ADMINISTRATION BOOZ ALLEN HAMILTON AMORET L. BUNN MARK S. HANNUM, NBCT, EINSTEIN FELLOW PACIFIC NORTHWEST NATIONAL LABORATORY NATIONAL SCIENCE FOUNDATION DIVISION OF GRADUATE EDUCATION JAMES CHERRY EASTERN CONNECTICUT STATE UNIVERSITY JEFFREY A. HOLMES OAK RIDGE NATIONAL LABORATORY ALICE CIALELLA ENVIRONMENTAL SCIENCES DEPARTMENT KERA JOHNSON BROOKHAVEN NATIONAL LABORATORY EINSTEIN FELLOW NATIONAL SCIENCE FOUNDATION RAM DEVANATHAN PACIFIC NORTHWEST NATIONAL LABORATORY KIRK E. LAGORY, PH.D. ENVIRONMENTAL SCIENCE DIVISION JEFFERY DILKS ARGONNE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY DON LINCOLN SHANNON DUNPHY LAZO FERMI NATIONAL ACCELERATOR LABORATORY PROGRAM MANAGER U.S. DEPARTMENT OF ENERGY DEBBIE MAYER U.S. DEPARTMENT OF ENERGY PAUL F. FISCHER ARGONNE NATIONAL LABORATORY JULIE MITCHELL UNIVERSITY OF WISCONSIN BRADLEY G. FRITZ PACIFIC NORTHWEST NATIONAL LABORATORY ANTHONETTE W. PEÑA, NBCT EINSTEIN FELLOW DOUGLAS FULLER NATIONAL SCIENCE FOUNDATION ARIZONA STATE UNIVERSITY KITCHKA PETROVA, PH.D., NBCT DAVID B. GEOHEGAN EINSTEIN FELLOW OAK RIDGE NATIONAL LABORATORY NATIONAL SCIENCE FOUNDATION KOHL S. GILL TORKA S. POET AAAS S&T POLICY FELLOW PACIFIC NORTHWEST NATIONAL LABORATORY U.S. DEPARTMENT OF STATE 2 U.S. Department of Energy Journal of Undergraduate Research http://www.scied.science.doe.gov TECHNICAL REVIEW BOARD TED M. POSTON KAREN SUE STINER ENERGY AND ENVIRONMENT DIRECTORATE EINSTEIN FELLOW PACIFIC NORTHWEST NATIONAL LABORATORY U.S. HOUSE COMMITTEE ON SCIENCE AND TECHNOLOGY EDWARD POTOSNAK, III EINSTEIN FELLOW S. K. SUNDARAM, PH. D. OFFICE OF CONGRESSMAN MICHAEL M. HONDA CHIEF MATERIALS SCIENTIST PACIFIC NORTHWEST NATIONAL LABORATORY ERIC E. RICHMAN PACIFIC NORTHWEST NATIONAL LABORATORY BRUCE A. TOMKINS, PH.D. OBMG, CHEMICAL SCIENCES DIVISION EZEQUIEL RIVERA OAK RIDGE NATIONAL LABORATORY UNIVERSITY OF MASSACHUSETTS-LOWELL LORNA T. V ÁZQUEZ, NBCT JOSEMARI SANSIÑENA EINSTEIN FELLOW LOS ALAMOS NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY STEPHEN SCANNELL STEPHEN J. WALSH EINSTEIN FELLOW PACIFIC NORTHWEST NATIONAL LABORATORY NATIONAL SCIENCE FOUNDATION SARAH YUE MUBINA SCHROEDER-KHAN EINSTEIN FELLOW EINSTEIN FELLOW NATIONAL SCIENCE FOUNDATION U.S. DEPARTMENT OF ENERGY JOSÉ L. ZAMBRANA, JR. VAITHIYALINGAM SHUTTHANANDAN AAAS S&T POLICY FELLOW PACIFIC NORTHWEST NATIONAL LABORATORY ENVIRONMENTAL PROTECTION AGENCY MICHAEL SIVERTZ ANDREW P. ZWICKER BROOKHAVEN NATIONAL LABORATORY PRINCETON PLASMA PHYSICS LABORATORY DISCLAIMER The views and opinions of authors expressed in this Journal do not necessarily state or refl ect those of the United States Government or any agency thereof and shall not be used for advertising or product endorsement purposes. Reference herein to any specifi c commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. This document was prepared as an account of work sponsored by the United States Government and, while it is believed to contain correct information, neither the United States Government nor any of its agencies or employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. U.S. Department of Energy Journal of Undergraduate Research 3 http://www.scied.science.doe.gov A TIPPING POINT FOR SCIENCE Undergraduates engaged in research at the National Laboratories often feel that their eff orts to advance scientifi c knowledge are insignifi cant, or, at best, incremental contributions. Nothing could be further from the truth. Society (and perhaps even the planet) is at a crisis point and needs new perspectives and passions to create critically needed change. In Th e Tipping Point, Malcolm Gladwell contends that even seemingly small things can make a big diff erence. It is Gladwell’s thesis that technological ideas and societal behaviors, including themes and even products, behave like outbreaks of infectious disease; they are in fact “social epidemics.” Th e tipping points that he refers to are the levels at which the momentum for change becomes unstoppable. Such a tipping point may be triggered by increased societal or technological changes, even seemingly insignifi cant changes such as those initiated by undergraduate interns. One example of such an innovation is the Lithium (Li) battery. Small portable electronic devices like iPods and digital cameras, ubiquitous in today’s world, would not have been possible without the advent of Li batteries. In this case, the Li battery triggered a tipping point, after a great deal of what must have seemed like insignifi cant, incremental research. Currently, we may be at a nexus of tipping points, which creates an extraordinary opportunity for coupled societal and technological change that is unprecedented in modern times. Th e recent economic downturn, political unrest around the world, worries about global warming and an increasing belief that “business as usual” may not work has created a set of concurrent tipping points that could lead to the early adoption of new technologies and to sweeping changes in how we live. Although many of these ideas supporting sustainability have been advocated for by a small percentage of the population for a long time, and some have even been generally acknowledged as good ideas, they have never reached the critical mass that leads to widespread adoption. Historically, the ability of technology to drive societal change has been limited, and often ideas that seem to make “common sense” meet barriers that prevent their adoption. A unique opportunity exists today when those barriers have been lowered and profound change can occur. In fact, the current generation of students in our educational system will be the ultimate engine of this change and the ones that will actually implement it. Th e Materials Research Society (MRS) recently published a special expanded bulletin, “Harnessing Materials for Energy,” Volume 33, No. 4, on the materials challenges associated with addressing the global problems of the environment and with providing energy for society in a sustainable way. Th e articles in this publication indicate that rapid technological progress in the areas of energy generation, distribution and storage may change how we live today and lead to a sustainable way of life for future generations. Achieving this at the scale needed to make a real diff erence will require societal action at a level never before seen. New scientifi c Cover Image, “Harnessing Materials innovation must be adopted, creating new and improved technologies that are more for Energy.” MRS Bulletin Vol. 33, No. 4 (2008). Reproduced by effi cient, greener, cost competitive and socially responsible. Th is is true for both permission of the MRS Bulletin. 4 U.S. Department of Energy Journal of Undergraduate Research http://www.scied.science.doe.gov established energy technologies, such as fossil fuels, as well as renewable energy sources, such as wind and solar. Th e pie chart shows the contribution of renewable technologies to the United States’ electricity generation capacity. Only 9.9% of this country’s electricity was generated from renewable sources. Th e bulk of that, 7.1% of total electrical production, was generated by established hydroelectric power. Clearly there is room for increasing energy production from renewable sources. If we take global warming into consideration, however, it is an immense challenge Source: EIA Annual Energy Review 2007, AEO 2008 to adopt renewable energy quickly enough to make a diff erence. For renewable energies to become a signifi cant part of our energy mix, considerable scientifi c and technological breakthroughs across a broad range of technologies (including energy generation, storage, transmission, and use) must be made and implemented. Th e entire spectrum of energy alternatives includes more effi cient vehicles, lighting, electronics, and agricultural practices, as well as improved heating and cooling systems. Much the same set of arguments can be used to defend the idea that not only energy and the environment, but also our health care system, has reached a tipping point. Just as our energy system requires transformation, our current health care system is also unsustainable. Fortunately, as in the case of energy production, new science and technologies for improving health care are emerging. From eff orts ranging from the mapping of the human genome, to stem cell research, to gene therapy that will redefi ne the nature and expectations of health care worldwide, researchers are making steps, big and small, which will ultimately transform the life sciences. Th e concurrence of several tipping points may permit changes in energy and health care to spread worldwide in an unprecedented way and allow an accelerated introduction of new technologies. Investments in the development of new science and technology can spur progress
Recommended publications
  • Detailed Teacher Instructions: Inheritance, X-Linkage, Evolution Over Multiple Generations, Genetic Hitchhiking
    Revised Laboratory on Molecular Evolution Gredler et al. (2015) Detailed Teacher Instructions: Inheritance, X-linkage, Evolution over Multiple Generations, Genetic Hitchhiking Objectives: Between the laboratory exercise and the associated lectures, students will be able to: Explain the process of evolution by natural selection in terms of fitness-related traits and allele frequencies Describe the concept of X-linked inheritance Perform DNA extractions, PCR, and gel electrophoresis Analyze molecular data as a means of understanding an evolutionary process Explain the concepts of selective sweeps, hitchhiking, and linkage Materials: Drosophila melanogaster heat shock white-eyed strain 60739 Drosophila melanogaster heat shock white-eyed strain 60740 Drosophila melanogaster Zimbabwe (wild type) strain 60741 Culture vials, plugs, and food (media) for Drosophila rearing Carolina Biological FlyNap® Anesthetic Kit: 173010 (Optional but strongly preferred) CO2 anesthetization facilities for Drosophila DNA extraction buffer and proteinase-K for DNA isolation Sorting brushes "Squishing buffer" and proteinase-K for DNA isolation Equipment and reagents for polymerase chain reaction including oligonucleotides for "NEAR" and "FAR" markers Equipment and reagents for agarose gel electrophoresis Magnifying glasses Sharpie markers Custom PowerPoints and projector, if desired 1 Revised Laboratory on Molecular Evolution Gredler et al. (2015) This exercise allows students to view evolution over multiple generations, experiment with molecular techniques, and learn concepts of molecular evolution. This exercise requires considerable advance preparation (must be started approximately 6 weeks before planned class start date, with initial white- eyed fly crosses starting approximately 4 weeks before the planned class start date). The supplies and directions are listed out so that you may purchase or use supplies you already have.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0285765 A1 Chung Et Al
    US 20150285765A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0285765 A1 Chung et al. (43) Pub. Date: Oct. 8, 2015 (54) ACTIVE TRANSPORT OF CHARGED (52) U.S. Cl. MOLECULES INTO, WITHIN, AND/OR FROM CPC. G0IN 27/44756 (2013.01); G0IN 27/44704 CHARGED MATRICES (2013.01); G0IN 27/44708 (2013.01) (71) Applicant: Massachusetts Institute of Technology, Cambridge, MA (US) (57) ABSTRACT (72) Inventors: Kwanghun Chung, Cambridge, MA (US); Sung-Yon Kim, Cambridge, MA Articles and methods for the active transport of molecules (US); Kimberly Ohn, Boston, MA (US); into, within, and/or from a matrix are generally described. In Evan Murray, Cambridge, MA (US); some embodiments, an electric field may be used to alter the Jae Hun Cho, Cambridge, MA (US) position of the molecule with respect to the matrix. The elec tric field may be used to move the molecule to a new location (73) Assignee: Massachusetts Institute of Technology, within the matrix, remove the molecule from the matrix, or Cambridge, MA (US) infuse the molecule into the matrix. For instance, the electric field may be used to move a molecule having a binding (21) Appl. No.: 14/678,660 partner within the matrix into or away from the vicinity of the binding partner. In some embodiments, the position of the (22) Filed: Apr. 3, 2015 molecule may be altered by exposing the molecule to an electrodynamic field. In some Such embodiments, the mol Related U.S. Application Data ecule exposed to the dynamic electric field may have (60) Provisional application No.
    [Show full text]
  • 2019 KSFE Product Catalogue
    Laboratory Chemicals 209 Description Brand Reference Packing Acacia powder, “Biochem”. R&M 2924-00 500g Acenaphthene, C.P. R&M 0003-00 500g ACES, “Biochem”. [N-(Acetomido)-2-aminoethanesulfonic acid] R&M 2340-00 25g Acetamide, C.P. (Ethanamide) R&M 0004-00 500g Acetanilide, A.R. (N-Phenylacetamide) R&M 0006-50 500g Acetate Buffer, for chlorine (pH-4), “READIL”. R&M 1560-00 500ml Acetate Buffer, pH-5.50, “READIL”. R&M 1560-55 500ml Acetic Acid, glacial, A.R. (Ethanoic acid) R&M 1410-58 2.5Lt Acetic Acid, 95%, A.R. (Ethanoic acid) R&M 1410-59 2.5Lt Acetic Acid, 5% (W/V), "READIL”. (Vinegar) R&M 1411-05 1Lt Acetic Acid, 10% (W/V), "READIL”. R&M 1411-10 1Lt Acetic Acid, 30% (W/V), "READIL”. R&M 1410-53 1Lt Acetic Acid, 50% (W/V), "READIL”. R&M 1410-50 1Lt Acetic Acid, 0.05mol/l (0.05), "READIL”. R&M 1410-51 1Lt Acetic Acid, 0.1mol/l (0.1), "READIL”. R&M 1410-52 1Lt Acetic Acid, 0.5mol/l (0.5), "READIL”. R&M 1410-53 1Lt Acetic Acid, 1.0mol/l (1.0), "READIL”. R&M 1410-54 1Lt Acetic Alcohol, “READIL”. R&M 1410-30 1Lt Acetoacetanilide, C.P. R&M 5298-50 500g Aceto-Carmine, “Biochem”. R&M 0063-80 100ml Aceto-Orcein, “Biochem”. (Connective tissue stain) R&M 0299-80 100ml Acetone, A.R. R&M 1412-50 2.5Lt Acetone, C.P. R&M 9108-50 2.5Lt Acetone, HPLC. R&M 9108-20 2.5Lt Acetone:Alcohol, “READIL”.
    [Show full text]
  • Recycling of Superfine Resolution Agarose Gel
    Recycling of superfine resolution agarose gel T.-Y. Seng1,2, R. Singh3, Q.Z. Faridah2,4, S.-G. Tan4,5 and S.S.R.S. Alwee1 1Federal Land Development Authority Biotechnology Centre, FELDA Agricultural Services Sdn. Bhd., Kuala Lumpur, Malaysia 2Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia 3Advanced Biotechnology and Breeding Centre, Malaysian Palm Oil Board, Bandar Baru Bangi, Selangor, Malaysia 4Biology Department, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia 5Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia Corresponding author: T.-Y. Seng E-mail: [email protected] Genet. Mol. Res. 12 (3): 2360-2367 (2013) Received February 2, 2012 Accepted September 25, 2012 Published March 11, 2013 DOI http://dx.doi.org/10.4238/2013.March.11.1 ABSTRACT. Genetic markers are now routinely used in a wide range of applications, from forensic DNA analysis to marker-assisted plant and animal breeding. The usual practice in such work is to extract the DNA, prime the markers of interest, and sift them out by electrically driving them through an appropriate matrix, usually a gel. The gels, made from polyacrylamide or agarose, are of high cost, limiting their greater applications in molecular marker work, especially in developing countries where such technology has great potential. Trials using superfine resolution (SFR) agarose for SSR marker screening showed that it is capable of resolving SSR loci and can be reused up to 14 times, thus greatly reducing the cost of each gel run. Furthermore, for certain applications, low concentrations of agarose sufficed and switching to lithium borate buffer, instead of the conventional Tris- borate-ethylenediaminetetraacetic acid buffer, will further save time and cost.
    [Show full text]
  • Video: Cell Culture Techniques (See Website)
    1 of 11 In this module, the structure and operation of different laboratory equipment are shown, for example, centrifugation, chromatography and spectrophotometry. Some laboratory techniques, for example, preparation of buffer, gel electrophoresis and use of laboratory stains are also included. You will find yourself gaining better lab techniques after going through this module. Video: Cell Culture Techniques (see website) A buffer is a solution that can resist the change in pH when limited quantities of acid or base are added to it. It consists of a mixture of a weak acid with its conjugate base, or a weak base with its conjugate acid, at equilibrium. This combination allows the solution to neutralize the added acid/base with the conjugate base/conjugate acid, respectively. However, this characteristic only holds true within the buffer's capacity; exceeding the limit causes significant pH change. A buffer works in balancing the concentrations of acid and base to restore desired equilibrium, a principle which is governed by Le Chatelier's principle. Buffers are necessary in maintaining pH levels to prevent denaturing of proteins, and degradation of pH sensitive biomolecules that allow for biological reactions to occur consistently. - For example, carbonic acid (CH2CO3) and bicarbonate (HCO3 ) are present in blood plasma as a buffer system to maintain a pH level of 7.35-7.45 in the human body for function. When calculating pH, we are determining the negative logarithm of the concentration of protons [H+] in a solution. Strong acid/base HCl - -> H+ + Cl- Strong acid/base dissociates completely when reacted with water. The number of moles of H+ (protons) should be equivalent to the number of moles of H+ in the acid.
    [Show full text]
  • Thesis Fulltext.Pdf (4.757Mb)
    Design, synthesis and testing of β-strand mimics as protease inhibitors . A thesis submitted in partial fulfilment of the requirements of the degree of Doctor of Philosophy in Biochemistry at the University of Canterbury by Steve Aitken . University of Canterbury 2006 i TABLE OF CONTENTS TABLE OF CONTENTS i PUBLICATION LIST v ABSTRACT vi ABBREVIATIONS viii ACKNOWLEDGEMENTS xi CHAPTER ONE: INTRODUCTION 1.1: Introduction to peptidomimetics and proteases 1 1.2: Protease inhibitors in the clinic 2 1.3: Importance of the β-strand in protease inhibitor design 5 1.4: Calpain as the prototype protease for the testing of β-strand mimics 8 CHAPTER TWO: DESIGN AND SYNTHESIS OF ACYCLIC β-STRAND MIMICS 2.1: Current calpain inhibitors in the scientific literature 15 2.2: Use of molecular modelling to design β-strand calpain inhibitors 19 2.3: Patentability evaluation 23 2.4: Design, synthesis and testing of N-heterocyclic dipeptide aldehyde 2.5: calpain inhibitors 26 2.5: Conclusions and future work 30 CHAPTER THREE: DESIGN AND SYNTHESIS OF CONFORMATIONALLY CONSTRAINED β-STRAND MIMICS 3.1: Conformational constraint of peptidomimetics 35 3.2: History of RCM 36 3.3: Mechanism elucidation and metathesis catalyst development 37 3.4: The advent of well defined single-component catalysts 39 3.5: Design and synthesis of N-N conformationally constrained SJA analogues 48 3.6: Design and synthesis of β-amino acid C-N carbocycles 53 ii 3.7: Conclusions and future work 60 CHAPTER FOUR: DESIGN AND SYNTHESIS OF MACROCYCLIC β-STRAND MIMICS 4.1: Use of macrocyclisation
    [Show full text]
  • Electrochemical Sensor Development for Fluoride Molten Salt Redox Control
    Electrochemical Sensor Development for Fluoride Molten Salt Redox Control THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Nikolas W. Shay Graduate Program in Mechanical Engineering The Ohio State University 2017 Master's Examination Committee: Jinsuo Zhang, Co-advisor Marat Khafizov, Co-advisor Copyrighted by Nikolas William Shay 2017 Abstract Investment in nuclear technology is experiencing a revitalization as nuclear power becomes uniquely poised to take the burden left by phasing out fossil fuels to meet climate change goals. The United States Department of Energy is investing in research and development of the Fluoride salt-cooled High-temperature Reactor (FHR) with the ultimate goal of a 2030 deployment. One challenge presented by this reactor is corrosion of the reactor’s structural materials by the molten salt due to foreign and generated impurities. These impurities will shift the reduction-oxidation (redox) potential of the salt beyond the equilibrium potential of candidate structural materials, causing accelerated corrosion. This issue demands control of the molten salt’s redox condition in order to prevent unacceptable levels of corrosion. Research has been conducted on methods for redox control and electrochemical measurement techniques. The limited research that has been conducted related to measurement apparatus either lack certain characteristics specific to application for the FHR reactor or appropriate comparison to demonstrate first rate performance. The primary issue presented by an electrochemical sensor for this application is the selection of an appropriate reference electrode. This report investigates candidate reference electrodes with the purpose of identifying a leading candidate and proposing a holistic electrochemical sensor design which possesses high performance, durability, and ii ease of use.
    [Show full text]
  • Al-Qadsea University/Biotechnology College-Medical Molecular Biology- Second Stage.(27-Oct.-2015)
    Al-Qadsea University/biotechnology College-medical Molecular biology- second stage.(27-oct.-2015). Alaa k. Abualla 3ed-Lap: The molecular biology buffers and nucleic acid stain THE MOLECULAR BIOLOGY BUFFERS 1. EDTA (Ethylene Diamine Tetraacetic Acid) (pH 8.0) The disodium EDTA and calcium disodium EDTA, this metal ions are necessary for the action of many enzymes including DNases, EDTA In molecular biology is commonly used to deactivate metal- dependent enzymes. Used to suppress damage to DNA or proteins. 2. SDS (20%) (Sodium Dodecyl Sulfate) The SDS is an organic compound used in many cleaning and hygiene products. Derived from inexpensive coconut and palm oils. The SDS is a detergent that is known to denature proteins. It is used in gel electrophoresis for the determination of protein molecular weight. Used in nucleic acid extraction procedures for the disruption of cell walls and dissociation of nucleic acid of protein complexes. 3. SSPE (Sodium Chloride-Sodium Phosphate-EDTA Buffer) (pH 7.4) The SSPE Buffer 20x liquid is a standard reagent in hybridization procedures. This liquid can be used in diluted as needed Store at room temperature. Application • Hybridization buffer for Northern and Southern blots • Washing buffer for microarrays. 4. SAS (Sodium Acetate Solution -3 M), pH 5.2 This solution is routinely used in DNA and RNA precipitation. It's a 0.22 µm membrane filtered. Store at room temperature (indefinitely). 5. PBS (Phosphate-Buffered Saline) It's a buffer solution commonly used in biological research. It's a water-based salt solution containing sodium phosphate, sodium chloride and, in some formulations, potassium chloride and potassium phosphate.
    [Show full text]
  • The Carbene/Carbenoid Chemistry of Lithium and Tin Cyclopropylidenoids " (1984)
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1984 The ac rbene/carbenoid chemistry of lithium and tin cyclopropylidenoids Robert D. Herold Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Herold, Robert D., "The carbene/carbenoid chemistry of lithium and tin cyclopropylidenoids " (1984). Retrospective Theses and Dissertations. 8997. https://lib.dr.iastate.edu/rtd/8997 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed.
    [Show full text]
  • Genomic DNA Purification 2 PCR Clean Up
    G-Biosciences Molecular Biology Handbook & Selection Guide • Protein Estimation Assays • Lysis Buffers & Systems • Apoptosis Assays • Protein Fractionation Kits • Cytotoxicity Assays • Dialysis (Micro) System • SAM Methyltransferase Assays • Electrophoresis Clean-Up • Protease Assays • Concentration Systems • Phosphatase Assays • Contamination Removal • Peroxide Assay • Protease Inhibitor Cocktails • Proteomic Grade Detergents • Individual Protease Inhibitors • Research Grade Detergents • Protease Assays • Non-Ionic, Ionic & Zwitterionic • Proteases for Mass Spec. • Detergent Estimations • Sequencing Grade Proteases • Detergent Removal Systems • 1-Hour Western System • Gel Preparation Chemicals • Transfer Buffers & Membranes • Protein Marker Ladders • Membrane Stains • Electrophoresis Buffers • Blocking Buffers • Reducing & Alkylating Reagents • Secondary Antibodies • Protein Gel Stains • Detection Reagents • Reprobing Reagents • Protein Sample Preparation • Affinity Resins • Protein Clean-Up Systems • 6X His Protein Purification Kits • Electrophoresis Reagents • GST Protein Purification Kits • Mass Spec Grade Protease • Antibody Purification • InGel Digestion Kits • Activated Resins • Peptide Generation Reagents • Buffers & Reagents • Biotin Labeling • Carrier Proteins • Cell Surface Protein Labeling • Peptide Coupling Systems • Agarose Coupling Kits • Antibody Purification Resins • Fluorescent Dye Labeling Kits • Antibody Fragmentation Kits • Enzyme Labeling Systems • Coated Plates • Blocking Buffers • Homobifunctional • Wash Buffers
    [Show full text]
  • Two Months on the Other Side of the World (How Beijing Introduced Me to Arabidopsis Thalliana)
    Two Months on the Other Side of the World (How Beijing Introduced Me to Arabidopsis Thalliana) Sarah Brandsen Pella Christian High School China Agricultural University College of Agronomy and Biotechnology June 18- August 16, 2011 Table of Contents Thank You (谢谢).................................................................................................... Page 3 A Very Brief Introduction…………………………………………………….….… Page 4 Another Culture…………………………………………..……………………..…….. Page 4 A Bilingual Country…………………………………………….…………………….. Page 6 The Project…………………………………………………….….……………….….…. Page 7 A Brief Introduction to The Transgenic Controversy…………….…….…... Page 7 My Experiment—Moving Potassium Genes Into Arabdopsis……………. Page 7 A Multi-Step Process………………………………….………………………………….... Page 8 Two Months—My Experience…………………………………………………..Page 12 Beijing, China………………………….……………………………………………………… Page 12 My Lab Work…………………………….…………………………………………………… Page 13 Life As An Intern……………………….………...…………………………………………. Page 14 Becoming a Minority………………….…………………………………………………… Page 18 The End?………………………………………………………………………………………... Page 19 Annotated Bibliography………….………………………………………………. Page 20 2 Thank You (谢谢) To the World Food Prize Foundation: I am incredibly grateful for this opportunity. Excited though I was before the internship, it has far exceeded my expectations. To Lisa Fleming and Ambassador Quinn: Thank you for your extreme dedication to the program and your enthusiasm for continuing Norman Borlaug’s work. To my parents: When you first suggested I attend the Global Youth Institute, I disagreed. But you were both persistent, and now two years and one internship later, I owe you a huge thank you. To my teachers: You have all taught me an incredible amount, both academically and by example. I owe a particularly large thank you to Ms. Faber, Mr. Evenhouse, Mr. Herdegen, and Mr. Van Kooten for helping me with this internship. To Dr. Li: Thank you for allowing me to spend two months at your college and for making sure that I was doing all right.
    [Show full text]
  • State-Of-The-Art Report on the Progress of Nuclear Fuel Cycle Chemistry
    Nuclear Science 2018 State-of-the-Art Report on the Progress of Nuclear Fuel Cycle Chemistry Nuclear Science State-of-the-Art Report on the Progress of Nuclear Fuel Cycle Chemistry © OECD 2018 NEA No. 7267 NUCLEAR ENERGY AGENCY ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT The OECD is a unique forum where the governments of 35 democracies work together to address the economic, social and environmental challenges of globalisation. The OECD is also at the forefront of efforts to understand and to help governments respond to new developments and concerns, such as corporate governance, the information economy and the challenges of an ageing population. The Organisation provides a setting where governments can compare policy experiences, seek answers to common problems, identify good practice and work to co-ordinate domestic and international policies. The OECD member countries are: Australia, Austria, Belgium, Canada, Chile, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Israel, Italy, Japan, Korea, Latvia, Luxembourg, Mexico, Netherlands, New Zealand, Norway, Poland, Portugal, Slovak Republic, Slovenia, Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States. The European Commission takes part in the work of the OECD. OECD Publishing disseminates widely the results of the Organisation’s statistics gathering and research on economic, social and environmental issues, as well as the conventions, guidelines and standards agreed by its members. This work is published on the responsibility of the Secretary-General of the OECD. NUCLEAR ENERGY AGENCY The OECD Nuclear Energy Agency (NEA) was established on 1 February 1958.
    [Show full text]