050614001 M48 Userguide.Indd

Total Page:16

File Type:pdf, Size:1020Kb

050614001 M48 Userguide.Indd M-48 SuperMask® User Guide Document #050614001 Document P/N 100-800 SuperMask, Kirby Morgan, DSI, Diving Systems International, EXO, SuperFlow and DECA are all registered trademarks of Kirby Morgan Dive Systems, Inc. Use of these terms to describe products that are not manufactured by KMDSI is not permitted. The two dimensional images (such as photographs and illustrations) of our products are © copyrighted and trademarks of Kirby Morgan Dive Systems, Inc. The three dimensional forms of our products are trademark/trade dress protected. © Copyright 2005 Kirby Morgan Dive Systems, Inc. All rights reserved. This manual is made available for the express use of owner of this Kirby Morgan product. No part of this manual may be reproduced, stored in any retrieval system, or transmitted, or used in any form or by any means, whether graphic, electronic, mechanical, photocopy, or otherwise by technology known or unknown, without the prior written permission of Kirby Morgan Dive Systems, Inc. M-48 SuperMask User Guide WARRANTY INFORMATION Kirby Morgan Dive Systems, Inc. (KMDSI) warrants every new mask, hel- met, or KMAC Air Control System to be free from defects in workmanship for a period of ninety (90) days from date of purchase. This warranty covers all metal, fiberglass, and plastic parts. This warranty does NOT cover rub- ber parts, communications components, or headliners. In addition, due to the electrolytic nature of underwater cutting and welding, chrome plating cannot be warranted when the diver engages in these activities. Should any part become defective, contact the nearest authorized KMDSI dealer. If there is no dealer in your area, contact KMDSI directly at (805) 928-7772. You must have a return authorization from KMDSI prior to the return of any item, Upon approval from KMDSI, return the defective part, freight prepaid, to the KMDSI plant. The part will be repaired or replaced at no charge as deemed necessary by KMDSI. This warranty becomes null and void if: 1) The product is not registered with KMDSI within ten (10) days of purchase. 2) The product has not been properly serviced and/or maintained accord- ing to the appropriate KMDSI manual. In addition, the user is responsible to ensure that all product updates as recommended by KMDSI have been performed. 3) Unauthorized modifications have been made to the product. 4) The product has been abused or subjected to conditions which are unusual or exceed the product’s intended service. NOTE: Be sure to complete the enclosed warranty card and return it to KMDSI immediately. No warranty claims will be honored without a satis- factorily completed warranty card on file at KMDSI. 2 © 2005 KMDSI. All rights reserved. Document #050614001 M-48 SuperMask User Guide Table of Contents Definitions of Signal Words Used in this Guide 5 Introduction 6 Components of the M-48 SuperMask 9 Using the M-48 SuperMask with Open Circuit Scuba 9 Surface-Supplied Open Circuit 10 Minimum Equipment for Surface-Supplied Diving 11 Demand Regulator Adjustment / Surface-supplied 11 Regulator Hose 12 European Conformance 12 Mounting Open Circuit Regulators 12 Tools and Components Needed for Installation of Regulator 15 Pre-Dive Inspection with Open-Circuit Demand Regulator 19 Cleaning the Face Port and Interior Surfaces 20 Donning the SuperMask 20 Connecting the Pod to the Mask 22 Alternate Method of Connecting the Pod to the Mask 23 Diving with a Hood 24 Water Entry 24 Removing / Replacing Pod While Underwater 24 Alternate Method of Removing/Replacing Pod Underwater 24 Mask / Pod Dewatering 25 Releasing the Pod 26 Removing the Mask 26 Quick-Release Method of Mask Removal 26 Alternate Method of Mask Removal 26 Post Dive Procedures 27 Head Harness Removal and Installation 28 Removal of Harness from Mask Frame 28 Installation of Harness on Mask Frame 28 Communications with the M-48 SuperMask® 29 Installing a Communications Port Plug 29 Demand Regulators 30 Accessories for the M-48 SuperMask 30 Non-Stretch Harness P/N 805-030• 30 Communications Port Plug P/N 820-155 30 Mask Bag P/N 800-904 31 Inlet Swivel P/N 305-017 31 © 2005 KMDSI. All rights reserved. Document #050614001 3 M-48 SuperMask User Guide Table of Contents Manifold Block 31 Over-Pressure Relief Valve 31 SCUBA Pod 32 NATO Rebreather Pod PN# 805-080 32 Mask Variations 33 Exploded View Drawing 34 4 © 2005 KMDSI. All rights reserved. Document #050614001 M-48 SuperMask User Guide Definitions of Signal Words Used in this Guide Throughout this manual we will use certain words to call your attention to conditions, practices or techniques that may directly affect your safety. Pay particular attention to information introduced by the following signal words: DANGER This word indicates an imminently hazardous situation, which if not avoided, will result in death or serious injury. WARNING This word indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury. CAUTION This word indicates a potentially hazardous situation which may result in personal injury or damage to equipment. It may also be used to alert against unsafe practices. This Operation Manual contains important safety information and should always be available to those personnel operating this equipment. Read, understand, and retain all instructions before operating this equipment to prevent injury or equipment damage. If you sell or loan this equipment to another person, be sure that this manual accompanies the gear when you transfer possession to them. © 2005 KMDSI. All rights reserved. Document #050614001 5 M-48 SuperMask User Guide Introduction Congratulations for choosing the Kirby Morgan SuperMask®. The SuperMask represents years of development and testing. Development of this mask could not have been possible without the help of the diving com- munity as a whole. The original goal was to develop a modular full-face mask that could offer greater comfort and safety to divers using self-contained breathing apparatus. When the mask is used with a rebreather, it is normally used with a DSV (Dive Surface Valve), which you may also hear referred to as the rebreather’s “mouthpiece.” Dive Surface Valves are mechanisms that contain the shut off valve that connects the inlet and exhaust hoses on a rebreather. The mouthpiece for the diver normally connects to the DSV using a cable tie. The mouthpiece mounting tube is where the DSV interfaces with the M-48 mouthpiece pod. The SuperMask, was designed for use with rebreathers, as well as open circuit SCUBA, and lightweight umbilical supply. The SuperMask has been tested and certified by Dive Lab Inc. Configuration in both open and closed circuit mode have been tested and approved for use by U.S. military organizations KMDSI will continue to develop the mask as well as additional pods and accessories. Users should routinely check the KMDSI web page for additional information. Questions on the use and care of this mask should be addressed to Kirby Morgan Dive Systems Inc. Telephone 805-928-7772 or e-mail at www.kirbymorgan.com or Dive Lab Inc, Telephone 850-235- 2715 or e-mail at www.divelab.com. DANGER Kirby Morgan Dive Systems, Inc., cannot guaran- tee the diver protection from contaminants when using the SuperMask in waters that are biological- ly, chemically or radioactively polluted. Radioac- tive, chemical, and biological contaminants can cause serious, permanent bodily harm or death to the user. While the SuperMask can minimize and help re- duce the risks associated with the exposure to certain waterborne chemical and biological con- tamination, it cannot protect the user in all situa- tions or against all contaminants. 6 © 2005 KMDSI. All rights reserved. Document #050614001 M-48 SuperMask User Guide WARNING Not all SCUBA regulators or rebreather DSV’s (mouthpiec- es) will fit the M-48 mouth pod. The size of the mouthpiece mounting tube as well as the placement and size of the ex- haust tee can affect the mounting and proper functioning of the mouthpiece and folding action on the pod bellows. Additionally, it is extremely important that the demand reg- ulator or DSV being fitted does not have any sharp edges that could cut the pod skirt or mouthpiece orifice. The SCUBA regulator or DSV must not interfere with the fit of the mask, and all components must be fully functional. Do not use any component with the mask or pod if the com- ponent or mask functions are compromised in any way. WARNING Use only mouthpieces with the appropriate dimensions and characteristics for the M-48 mask pod and the breath- ing apparatus you have selected. Use of other mouthpieces may cause an insecure fit which could lead to separation of the mouthpiece from the pod, resulting in a flooded pod and drowning. WARNING Diving this mask in water containing concentrations of pe- troleum based chemicals could cause degradation of the components of the mask. Clean the mask using only a so- lution of one (1) tablespoon of a mild hand dish washing detergent, such as Joy ™ or Palmolive ™, to one gallon of water. WARNING Cold Water Diving (water Temperatures below 450F or 100C) requires specialized training and equipment. Do not at- tempt diving in cold water unless you are properly trained and equipped for this type of specialized diving. © 2005 KMDSI. All rights reserved. Document #050614001 7 M-48 SuperMask User Guide WARNING The SuperMask is NOT equipped with a one-way valve (non-return valve) for surface-supplied diving. When using the mask for surface-supplied diving it must be used with the KMDSI manifold block KMDSI PN# 300-150 or 300-155 and a suitable harness and emergency gas supply system. Without the non-return valve, the diver could be subject to a “squeeze” if the umbilical supply is severed.
Recommended publications
  • Hypothermia and Respiratory Heat Loss While Scuba Diving
    HYPOTHERMIA AND RESPIRATORY HEAT LOSS WHILE SCUBA DIVING Kateřina Kozáková Faculty of Physical Education and Sport, Charles University in Prague, Department of Biomedical Labo- ratory Abstract One of the factors affecting length of stay under water of a diver is heat comfort. During scuba diving there is an increased risk of hypothermia. Hypothermia is one of the most life threatening factors of a diver and significantly affects his performance. The body heat loss runs by different mechanisms. One of them is the respiratory mechanism, which is often overlooked. Compressed dry air or other media is coming out from the cylinder, which have to be heated and humidified to a suitable value. Thus the organism loses body heat and consequently energy. Based on literature search the article will describe safe dive time in terms of hypo- thermia in connection to respiratory heat loss. Key words: hypothermia, heat loss, respiration, scuba diving, water environment Souhrn Jedním z faktorů ovlivňujících délku pobytu potápěče pod vodou je tepelný komfort. Během výkonu přístro- jového potápění hrozí zvýšené riziko hypotermie. Hypotermie představuje jedno z nejzávažnějších ohrožení života potápěče a zásadně ovlivňuje jeho výkon. Ke ztrátám tělesného tepla dochází různými mechanismy. Jednou cestou tepelných ztrát je ztráta tepla dýcháním, která je často opomíjená. Z potápěčského přístroje vychází suchý stlačený vzduch nebo jiné médium, který je třeba při dýchání ohřát a zvlhčit na potřebnou hodnotu. Tím organismus ztrácí tělesné teplo a potažmo energii. Tento článek, na základě literární rešerše, popíše bezpečnou dobou ponoru z hlediska hypotermie a v souvislosti se ztrátou tepla dýcháním. Klíčová slova: hypotermie, ztráta tepla, dýchání, přístrojové potápění, vodní prostředí Introduction amount of body heat.
    [Show full text]
  • Pressure-Regulator-Manual-Rev23
    5) Close cylinder valve. Tighten fittings as required to eliminate all external leaks. DO NOT over 9. Before a regulator is removed from a cylinder, fully close the cylinder valve and release all gas tighten threaded connections. Replace yoke washer if required. from the regulator. 10. Never interchange regulators, hoses, or other equipment with similar equipment intended for D. Operation: use with other gases. Pressure regulators and related fittings should never be handled with 1) If the regulator is equipped with a flow outlet, ensure that the Flow Selector setting is at “0” oily or greasy hands or gloves. Never hold hand over the outlet(s) to test for the presence of position. pressure. 2) Stand behind the cylinder so that the cylinder is between you and the regulator. Never stand in 11. Do not stand in front of a regulator outlet when opening the cylinder valve in case foreign front of a cylinder outlet or regulator when opening the cylinder valve. particles are present which could cause a hazardous malfunction of the regulator. 3) Slowly and gradually open the cylinder valve. 12. The flow outlet is intended for patient therapy use only. Do not use it for driving any medical 4) Ensure pressure build up through the pressure gauge. equipment. 5) If leakage occurs between the regulator and cylinder, never tighten fittings when under 13. Do not set the flow-selecting knob between adjacent settings or it might cause no flow output. pressure: 14. The oxygen therapy may be critical treatment. The application of the regulator should be made a.
    [Show full text]
  • Deep Sea Dive Ebook Free Download
    DEEP SEA DIVE PDF, EPUB, EBOOK Frank Lampard | 112 pages | 07 Apr 2016 | Hachette Children's Group | 9780349132136 | English | London, United Kingdom Deep Sea Dive PDF Book Zombie Worm. Marrus orthocanna. Deep diving can mean something else in the commercial diving field. They can be found all over the world. Depth at which breathing compressed air exposes the diver to an oxygen partial pressure of 1. Retrieved 31 May Diving medicine. Arthur J. Retrieved 13 March Although commercial and military divers often operate at those depths, or even deeper, they are surface supplied. Minimal visibility is still possible far deeper. The temperature is rising in the ocean and we still don't know what kind of an impact that will have on the many species that exist in the ocean. Guiel Jr. His dive was aborted due to equipment failure. Smithsonian Institution, Washington, DC. Depth limit for a group of 2 to 3 French Level 3 recreational divers, breathing air. Underwater diving to a depth beyond the norm accepted by the associated community. Limpet mine Speargun Hawaiian sling Polespear. Michele Geraci [42]. Diving safety. Retrieved 19 September All of these considerations result in the amount of breathing gas required for deep diving being much greater than for shallow open water diving. King Crab. Atrial septal defect Effects of drugs on fitness to dive Fitness to dive Psychological fitness to dive. The bottom part which has the pilot sphere inside. List of diving environments by type Altitude diving Benign water diving Confined water diving Deep diving Inland diving Inshore diving Muck diving Night diving Open-water diving Black-water diving Blue-water diving Penetration diving Cave diving Ice diving Wreck diving Recreational dive sites Underwater environment.
    [Show full text]
  • The Basics of Pressure Regulators
    THE BASICS OF PRESSURE REGULATORS Contents Pressure regulators are found in many common home and industrial applications. For example, pressure regulators are The Basics of Pressure Regulators used in gas grills to regulate propane, in home heating furnaces to regulate natural gas, in medical and dental equipment to regulate Material oxygen and anesthesia gases, in pneumatic automation systems Fluid used (gas, liquid, toxic or flammable) Temperature to regulate compressed air, in engines to regulate fuel and in fuel Operating Pressures cells to regulate hydrogen. As this partial list demonstrates there Flow Requirements are numerous applications for regulators yet, in each of them, the Size & Weight pressure regulator provides the same function. Pressure regulators reduce a supply (or inlet) pressure to a lower outlet pressure and Pressure Reducing Element (poppet valve) Sensing Element (piston or diaphragm) work to maintain this outlet pressure despite fluctuations in the The Reference Force Element (spring) inlet pressure. The reduction of the inlet pressure to a lower outlet pressure is the key characteristic of pressure regulators. Regulator Accuracy and Capacity Droop Definition Orifice Size When choosing a pressure regulator many factors must be Lock Up Pressure considered. Important considerations include: operating pressure Hysteresis ranges for the inlet and outlet, flow requirements, the fluid (Is it a Single-Stage Regulator gas, a liquid, toxic, or flammable?), expected operating temperature Two-Stage (Dual Stage) Regulator range, material selection for the regulator components including Three-Stage Regulator seals, as well as size and weight constraints. Installation Guide Beswick pressure regulators can be viewed at http://catalog.beswick.com PRD2-2N2 PR2 Excellence in Miniature beswick engineering co., inc.
    [Show full text]
  • Thermo Valves Corporation
    Thermo Valves Corporation Scuba Diving Valves The Leader in High Pressure Technology Date: 05/31/04 Thermo Scuba Products are Sold Through Authorized Distributors Only Thermo PRO Thermo PRO Modular with H Connector Thermo DIN WWW.THERMOVALVES.COM Page 2 Thermo Valves Corporation Table of Contents Introduction 4 Products and Features 5 Scuba Valve Outlets 6 Breathing Air or EAN? 6 Stand Alone Valves 5251 Thermo K 7 5651 Thermo PRO 8 5262 Thermo DIN 9 5282 Thermo DIN 10 Modular Valves 8043 Thermo Modular 11 8063 Thermo Modular 12 8082 Thermo Modular 13 Modular Valve Attachments 9020 Thermo 230 Bar H Connector 14 9040 Thermo 300 Bar DIN H Connector 15 Manifold Center Bars 16 Exploded View Drawings 5251 Series Exploded View 17 5651, 5262 & 5282 Exploded View 18 8043, 8063 & 8082 Exploded View 19 9020 & 9040 Exploded View 20 8002 CTR W VLV Manifold Center Bar Exploded View 21 Parts Index 22 Scuba Valve Parts Warnings 23 Warnings, Terms and Conditions of Sale 24 Page 3 Thermo Valves Corporation The Leader in High Pressure Technology Who We Are Thermo Valves Corporation was founded in 1972 as a manufacturer of compressed gas cylinder valves and adaptors to a wide variety of international standards. Thermo was acquired in 1988 by Hamai Industries Limited who has been manufacturing cyl- inder valves for over 75 years! Thermo now spe- cializes in specialty gas valves, valves for the semi- conductor industry and scuba diving valves. Thermo’s mission is to supply state of the art equip- ment with a focus on safety and innovation SCUBA Diving Valves With over 75 years of manufacturing experi- ence, Thermo Valves full line includes the Thermo K, Thermo PRO, Thermo DIN and Thermo Modu- lar Series of scuba diving valves.
    [Show full text]
  • Surface-Supplied Diver Training Manual
    Surface-supplied Diver Training Manual Tennessee Aquarium Chattanooga, TN Published by the Diving Control Board Tennessee Aquarium Chattanooga, TN 1st Edition 2007 Purpose Surface-supplied diving is defined in the Tennessee Aquarium Diving Safety Manual (TADSM) as a diving mode in which the diver in the water is supplied from the dive location with compressed gas for breathing and is in voice communication with the tender on the surface. This definition is based upon the requirements outlined in the Occupational Safety and Health Administration’s Code of Federal Regulations. (29 CFR 1910 Subpart T) This federal law outlines the criteria for all commercial diving. The surface-supplied diving mode requires gear and techniques that are not introduced in recreational diver training. This text was designed by the Tennessee Aquarium Diving Control Board to introduce Aquarium divers to the fundamental principles associated with surface-supplied diving. This text should be accompanied by proper practical training, as outlined in Appendix A, to promote safe surface-supplied diving under the auspice of the Tennessee Aquarium. Figure 1 – Secret Reef Dive Show- A primary use of surface-supplied diving at the Tennessee Aquarium. i Introduction There are numerous advantages to surface-supplied diving that make it an excellent choice for many diving operations. First, the diver has the benefit of an unlimited air supply. With a surface-supplied diving system, a diver can theoretically stay underwater forever. Of course, in reality, there are comfort, thermal, and decompression limits. For deep technical diving, a surface-supplied rig relieves the diver of the need to carry numerous stage bottles.
    [Show full text]
  • Can Asthmatic Subjects Dive?
    SERIES SPORTS-RELATED LUNG DISEASE Can asthmatic subjects dive? Yochai Adir1 and Alfred A. Bove2 Number 1 in the Series “Sports-related lung disease” Edited by Yochai Adir and Alfred A. Bove Affiliations: 1Pulmonary Division, Lady Davis Carmel Medical Center, Faculty of Medicine, The Technion, Institute of Technology, Haifa, Israel. 2Cardiology Section, Dept of Medicine, Temple University School of Medicine, Philadelphia, PA, USA. Correspondence: Yochai Adir, Pulmonary Division, Lady Davis Carmel Medical Center, 7 Michal St., Haifa, Israel. E-mail: [email protected] ABSTRACT Recreational diving with self-contained underwater breathing apparatus (scuba) has grown in popularity. Asthma is a common disease with a similar prevalence in divers as in the general population. Due to theoretical concern about an increased risk for pulmonary barotrauma and decompression sickness in asthmatic divers, in the past the approach to asthmatic diver candidates was very conservative, with scuba disallowed. However, experience in the field and data in the current literature do not support this dogmatic approach. In this review the theoretical risk factors of diving with asthma, the epidemiological data and the recommended approach to the asthmatic diver candidate will be described. @ERSpublications The theoretical risks of diving with asthma, epidemiological data and the recommended approach to asthmatic divers http://ow.ly/105KuZ Introduction Recreational diving with self-contained underwater breathing apparatus (scuba) has grown in popularity and millions of dives are performed in USA each year. Asthma is a common disease with a prevalence of ∼7% in the general population and probably has a similar prevalence among divers [1]. There is obvious theoretical concern for asthmatic divers.
    [Show full text]
  • Compressors & Nitrox Installations Compressors & Nitrox Installations
    CompressorsCompressors & & NitroxNitrox Installations Installations Compressors Accessories and selection Nitrox Installations Kompressoren und Nitrox Anlagen Compressors & Nitrox Installations Scuba Publications – Daniela Goldstein Jan Oldenhuizing All rights of the author and its licensors reserved This publication and all its parts are protected under laws governing copyright. All use beyond the lim- its defined by these laws on copyright are, without written permission from the publisher, not author- ized and punishable. This applies especially - but is not limited to - copying, translation or storing and distributing via electronic systems. The use of trademarks, logos, commercial names and other does not give the right to assume, even if not specifically mentioned, that these are free of rights and can be used by anybody. www.scuba.ag Compressors & Nitrox Installations Table of Content Compressors........................................................................................................................................................................................ 3 Accessories and selection............................................................................................................................................................23 Nitrox Installations.........................................................................................................................................................................36 Index .....................................................................................................................................................................................................46
    [Show full text]
  • Diving Air Compressor - Wikipedia, the Free Encyclopedia Diving Air Compressor from Wikipedia, the Free Encyclopedia
    2/8/2014 Diving air compressor - Wikipedia, the free encyclopedia Diving air compressor From Wikipedia, the free encyclopedia A diving air compressor is a gas compressor that can provide breathing air directly to a surface-supplied diver, or fill diving cylinders with high-pressure air pure enough to be used as a breathing gas. A low pressure diving air compressor usually has a delivery pressure of up to 30 bar, which is regulated to suit the depth of the dive. A high pressure diving compressor has a delivery pressure which is usually over 150 bar, and is commonly between 200 and 300 bar. The pressure is limited by an overpressure valve which may be adjustable. A small stationary high pressure diving air compressor installation Contents 1 Machinery 2 Air purity 3 Pressure 4 Filling heat 5 The bank 6 Gas blending 7 References 8 External links A small scuba filling and blending station supplied by a compressor and Machinery storage bank Diving compressors are generally three- or four-stage-reciprocating air compressors that are lubricated with a high-grade mineral or synthetic compressor oil free of toxic additives (a few use ceramic-lined cylinders with O-rings, not piston rings, requiring no lubrication). Oil-lubricated compressors must only use lubricants specified by the compressor's manufacturer. Special filters are used to clean the air of any residual oil and water(see "Air purity"). Smaller compressors are often splash lubricated - the oil is splashed around in the crankcase by the impact of the crankshaft and connecting A low pressure breathing air rods - but larger compressors are likely to have a pressurized lubrication compressor used for surface supplied using an oil pump which supplies the oil to critical areas through pipes diving at the surface control point and passages in the castings.
    [Show full text]
  • Lp-Gas Pressure Regulator
    Safety is our 1st Priority LP-GAS PRESSURE REGULATOR HYR SINGLE STAGE REGULATOR 14 HYRM SERIES REGULATOR 16 HYR SECOND STAGE REGULATOR 22 2000 SERIES REGULATOR 26 AUTOMATIC CHANGEOVER PRESSURE REGULATOR 28 LIQUID CHANGEOVER DEVICE (HLX-301) 32 HWA YOUNG GAS HOSE 34 8 www.hwa-young.com The Guideline of the products Precaution of installation • The regulator should be installed by qualifi ed and trained or foreign matter which may have accumulated in the technician regulator body or in the pipelines. Please check the • THIS PRODUCT is MADE FOR USING LP-GAS ONLY. Do product in appearances before installation, Failure of not use other than LP gas. Unless it can degrade original product may cause of hazardous condition. performance down • This product is accurate assembled and set so that NEVER * in order to prevent water damage, appropriate protection should be disassemble or modifi ed without a professionally trainer’s required such as waterproof, ** Regulators should be installed with the vent facing down or protected permission. Prior installing the regulator, check the damage with so that operation will not be affected by the elements which might have occurred in shipment. Also check for *** Remove scraps, dust, any foreign substances in the vent line. dirt or foreign matter which may have accumulated in the regulator body or in the pipelines. Please check the product Maintenance in appearances before installation, Failure of product may cause of hazardous condition. • In case of installing indoor, a regulator must avoid rain, snow, or direct sunlight. Set appropriate protection where DANGER a product can be expose long period of time from sunlight and water.
    [Show full text]
  • Anaesthetic Machine Anatomy
    Anaesthetic Machine Anatomy Year Group: BVSc3 + Document Number: CSL_A00 Equipment list: Anaesthetic Machine Anatomy Equipment for this station: • Anaesthetic machine • Name labels • Function labels Considerations for this station: • Do not attempt to attach cylinders or connect the oxygen pipeline, this machine is for reference only and is NOT a working machine. • The first time you try to complete this task it may be worth refreshing your memory of the anaesthetic machine by reading the section of this booklet marked ‘Answers’. Anyone working in the Clinical Skills Lab must read the ‘CSL_I01 Induction’ and agree to abide by the ‘CSL_I00 House Rules’ & ‘CSL_I02 Lab Area Rules’ Please inform a member of staff if equipment is damaged or about to run out. Clinical Skills: Anaesthetic Machine Anatomy 1 2 3 Using the name labels On the bottom of the name On some of the function provided, name each part of label, place a function label labels there are additional the anaesthetic machine (match the circular tabs). questions. (match/stick the white square Place the correct answers in velcro tab to the yellow the space provided (match square tab). the semi-circular tabs). 4 5 You will need to lift the lid Once you have placed all of to find all of the the labels, use the components! information on the following pages of this booklet to check your answers. Here are some online resources and tutorials that you may find useful: 1. http://mhra.gov.uk/learningcentre/AnaestheticMachines/player.html 2. https://www.youtube.com/watch?v=1LY0eAzrIrE ANSWERS: Anaesthetic Machine Anatomy ANSWERS The following pages contain the answers i.e.
    [Show full text]
  • 17. Cavern Discovery
    TDI Standards and Procedures Part 2: TDI Diver Standards 17. Cavern Discovery 17.1 Introduction This course is designed to develop the minimum skills and knowledge for guided cavern diving within the limits of light penetration; in addition outlines specific hazards associated with cave diving. The Cavern Discovery course in not intended to provide instruction for cave diving environments. The objective of this course is to allow recreational divers to dive in the cavern environment under direct supervision of an active Cavern Diver Instructor. 17.2 Qualifications of Graduates Upon successful completion of this course graduates may: 1. Cavern dive under the direct supervision of an active TDI Cavern instructor 2. Enroll in a TDI Cavern Diver Course 17.3 Who May Teach 1. Any active TDI Cavern, Intro to Cave or Cave Instructor may teach this Course: 17.4 Student to Instructor Ratio Academic 1. Unlimited, so long as adequate facility, supplies and time are provided to ensure comprehensive and complete training of subject matter Confined Water (swimming pool-like conditions) Optional 1. A maximum of 4 students per active TDI instructor Cavern 1. A maximum of 2 students per active TDI Instructor are allowed; ratio should be reduced as required due to environmental or operational constraints 2. Daylight zone, i.e. within natural light of the cavern entrance 3. Penetration is limited to 1/3 of a single diving cylinder or “1/6 in doublé tanks” 4. 61 linear metres / 200 linear feet from the surface 5. 40 metres / 130 feet maximum depth 6. No decompression diving 7.
    [Show full text]