10 Physicists and Ph
Total Page:16
File Type:pdf, Size:1020Kb
Physicists and Philosophers Hold Peace Talks The Atlantic, Dec 22, 2015 http://www.theatlantic.com/science/archive/2015/12/physics-philosophy- string-theory/421569/ Physicists typically think they “need philosophers and historians of science like birds need ornithologists,” the Nobel laureate David Gross told a roomful of philosophers, historians, and physicists in Munich, Germany, paraphrasing Richard Feynman. But desperate times call for desperate measures. Fundamental physics faces a problem, Gross explained—one dire enough to call for outsiders’ perspectives. “I’m not sure that we don’t need each other at this point in time,” he said. It was the opening session of a three-day workshop, held on December 7 in a Romanesque-style lecture hall at Ludwig Maximilian University (LMU Munich) one year after George Ellis and Joe Silk, two white-haired physicists now sitting in the front row, called for such a conference in an incendiary opinion piece in Nature. One hundred attendees had descended on a land with a celebrated tradition in both physics and the philosophy of science to wage what Ellis and Silk declared a “battle for the heart and soul of physics.” The crisis, as Ellis and Silk tell it, is the wildly speculative nature of modern physics theories, which they say reflects a dangerous departure from the scientific method. Many of today’s theorists—chief among them the proponents of string theory and the multiverse hypothesis—appear convinced of their ideas on the grounds that they are beautiful or logically compelling, despite the impossibility of testing them. Ellis and Silk accused these theorists of “moving the goalposts” of science and blurring the line between physics and pseudoscience. “The imprimatur of science should be awarded only to a theory that is testable,” Ellis and Silk wrote, thereby disqualifying most of the leading theories of the past 40 years. “Only then can we defend science from attack.” They were reacting, in part, to the controversial ideas of Richard Dawid, an Austrian philosopher whose 2013 book String Theory and the Scientific Method identified three kinds of “non-empirical” evidence that Dawid says can help build trust in scientific theories without empirical data. Dawid, a researcher at LMU Munich, answered Ellis and Silk’s battle cry and assembled far-flung scholars anchoring all sides of the argument for the high-profile event. Gross, a supporter of string theory who won the 2004 Nobel Prize in physics for his work on the force that glues atoms together, kicked off the workshop by asserting that the problem lies not with physicists but with a “fact of nature”—one that we have been approaching inevitably for four centuries. The dogged pursuit of a fundamental theory governing all forces of nature requires physicists to inspect the universe more and more closely—to examine, for instance, the atoms within matter, the protons and neutrons within those atoms, and the quarks within those protons and neutrons. But this zooming in demands evermore energy, and the difficulty and cost of building new machines increases exponentially relative to the energy requirement, Gross said. “It hasn’t been a problem so much for the last 400 years, where we’ve gone from centimeters to millionths of a millionth of a millionth of a centimeter”—the current resolving power of the Large Hadron Collider (LHC) in Switzerland, he said. “We’ve gone very far, but this energy- squared is killing us.” As we approach the practical limits of our ability to probe nature’s underlying principles, the minds of theorists have wandered far beyond the tiniest observable distances and highest possible energies. Strong clues indicate that the truly fundamental constituents of the universe lie at a distance scale 10 million billion times smaller than the resolving power of the LHC. This is the domain of nature that string theory, a candidate “theory of everything,” attempts to describe. But it’s a domain that no one has the faintest idea how to access. The problem also hampers physicists’ quest to understand the universe on a cosmic scale: No telescope will ever manage to peer past our universe’s cosmic horizon and glimpse the other universes posited by the multiverse hypothesis. Yet modern theories of cosmology lead logically to the possibility that our universe is just one of many. Whether the fault lies with theorists for getting carried away, or with nature, for burying its best secrets, the conclusion is the same: Theory has detached itself from experiment. The objects of theoretical speculation are now too far away, too small, too energetic or too far in the past to reach or rule out with our earthly instruments. So, what is to be done? As Ellis and Silk wrote, “Physicists, philosophers and other scientists should hammer out a new narrative for the scientific method that can deal with the scope of modern physics.” “The issue in confronting the next step,” said Gross, “is not one of ideology but strategy: What is the most useful way of doing science?” Over three mild winter days, scholars grappled with the meaning of theory, confirmation, and truth; how science works; and whether, in this day and age, philosophy should guide research in physics or the other way around. Over the course of these pressing yet timeless discussions, a degree of consensus took shape. Throughout history, the rules of science have been written on the fly, only to be revised to fit evolving circumstances. The ancients believed they could reason their way toward scientific truth. Then, in the 17th century, Isaac Newton ignited modern science by breaking with this “rationalist” philosophy, adopting instead the “empiricist” view that scientific knowledge derives only from empirical observation. In other words, a theory must be proved experimentally to enter the book of knowledge. But what requirements must an untested theory meet to be considered scientific? Theorists guide the scientific enterprise by dreaming up the ideas to be put to the test and then interpreting the experimental results; what keeps theorists within the bounds of science? Today, most physicists judge the soundness of a theory by using the Austrian-British philosopher Karl Popper’s rule of thumb. In the 1930s, Popper drew a line between science and non-science in comparing the work of Albert Einstein with that of Sigmund Freud. Einstein’s theory of general relativity, which cast the force of gravity as curves in space and time, made risky predictions—ones that, if they hadn’t succeeded so brilliantly, would have failed miserably, falsifying the theory. But Freudian psychoanalysis was slippery: Any fault of your mother’s could be worked into your diagnosis. The theory wasn’t falsifiable, and so, Popper decided, it wasn’t science. Critics accuse string theory and the multiverse hypothesis, as well as cosmic inflation—the leading theory of how the universe began—of falling on the wrong side of Popper’s line of demarcation. To borrow the title of the Columbia University physicist Peter Woit’s 2006 book on string theory, these ideas are “not even wrong,” say critics. In their editorial, Ellis and Silk invoked the spirit of Popper: “A theory must be falsifiable to be scientific.” But, as many in Munich were surprised to learn, falsificationism is no longer the reigning philosophy of science. Massimo Pigliucci, a philosopher at the Graduate Center of the City University of New York, pointed out that falsifiability is woefully inadequate as a separator of science and non- science, as Popper himself recognized. Astrology, for instance, is falsifiable— indeed, it has been falsified ad nauseam—and yet it isn’t science. Physicists’ preoccupation with Popper “is really something that needs to stop,” Pigliucci said. “We need to talk about current philosophy of science. We don’t talk about something that was current 50 years ago.” Nowadays, as several philosophers at the workshop said, Popperian falsificationism has been supplanted by Bayesian confirmation theory, or Bayesianism, a modern framework based on the 18th-century probability theory of the English statistician and minister Thomas Bayes. Bayesianism allows for the fact that modern scientific theories typically make claims far beyond what can be directly observed—no one has ever seen an atom—and so today’s theories often resist a falsified-unfalsified dichotomy. Instead, trust in a theory often falls somewhere along a continuum, sliding up or down between 0 and 100 percent as new information becomes available. “The Bayesian framework is much more flexible” than Popper’s theory, said Stephan Hartmann, a Bayesian philosopher at LMU. “It also connects nicely to the psychology of reasoning.” Gross concurred, saying that, upon learning about Bayesian confirmation theory from Dawid’s book, he felt “somewhat like the Molière character who said, ‘Oh my God, I’ve been talking prose all my life!’” Another advantage of Bayesianism, Hartmann said, is that it is enabling philosophers like Dawid to figure out “how this non-empirical evidence fits in, or can be fit in.” Dawid, who is 49, mild-mannered and smiley with floppy brown hair, started his career as a theoretical physicist. In the late 1990s, during a stint at the University of California, Berkeley, a hub of string-theory research, Dawid became fascinated by how confident many string theorists seemed to be that they were on the right track, despite string theory’s complete lack of empirical support. “Why do they trust the theory?” he recalls wondering. “Do they have different ways of thinking about it than the canonical understanding?” String theory says that elementary particles have dimensionality when viewed close-up, appearing as wiggling loops (or “strings”) and membranes at nature’s highest zoom level. According to the theory, extra dimensions also materialize in the fabric of space itself.