262 — 12 October 2014 Editor: Bo Reipurth ([email protected]) List of Contents
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born. -
Orbiting a Binary SPHERE Characterisation of the HD 284149 System?
A&A 608, A106 (2017) Astronomy DOI: 10.1051/0004-6361/201731003 & c ESO 2017 Astrophysics Orbiting a binary SPHERE characterisation of the HD 284149 system? M. Bonavita1; 2, V. D’Orazi1, D. Mesa1, C. Fontanive2, S. Desidera1, S. Messina4, S. Daemgen3, R. Gratton1, A. Vigan5, M. Bonnefoy7, A. Zurlo5; 20, J. Antichi13; 1, H. Avenhaus3; 6; 16, A. Baruffolo1, J. L. Baudino19, J. L. Beuzit7, A. Boccaletti10, P. Bruno4, T. Buey10, M. Carbillet20, E. Cascone14, G. Chauvin7, R. U. Claudi1, V. De Caprio14, D. Fantinel1, G. Farisato1, M. Feldt6, R. Galicher10, E. Giro1, C. Gry5, J. Hagelberg7, S. Incorvaia15, M. Janson6; 9, M. Jaquet5, A. M. Lagrange7, M. Langlois5, J. Lannier7, H. Le Coroller5, L. Lessio1, R. Ligi5, A. L. Maire6, M. Meyer3; 18, F. Menard7; 8, C. Perrot10, S. Peretti12, C. Petit11, J. Ramos6, A. Roux7, B. Salasnich1, G. Salter5, M. Samland6, S. Scuderi4, J. Schlieder6; 17, M. Surez11, M. Turatto1, and L. Weber12 1 INAF–Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, 35122 Padova, Italy 2 Institute for Astronomy, The University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, UK 3 Institute for Astronomy, ETH Zurich, Wolfgang-Pauli Strasse 27, 8093 Zurich, Switzerland 4 INAF–Osservatorio Astronomico di Catania, via Santa Sofia, 78 Catania, Italy 5 Aix Marseille Univ., CNRS, LAM, Laboratoire d’Astrophysique de Marseille, 13013 Marseille, France 6 Max-Planck Institute for Astronomy, Königstuhl 17, 69117 Heidelberg, Germany 7 Univ. Grenoble Alpes, CNRS, IPAG, 38000 Grenoble, France 8 European Southern Observatory (ESO), Karl-Schwarzschild-Str. 2, 85748 Garching, Germany 9 Department of Astronomy, Stockholm University, AlbaNova University Center, 106 91 Stockholm, Sweden 10 LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. -
TESTING MODELS of LOW-EXCITATION PHOTODISSOCIATION REGIONS with FAR-INFRARED OBSERVATIONS of REFLECTION NEBULAE Rolaine C
The Astrophysical Journal, 578:885–896, 2002 October 20 # 2002. The American Astronomical Society. All rights reserved. Printed in U.S.A. TESTING MODELS OF LOW-EXCITATION PHOTODISSOCIATION REGIONS WITH FAR-INFRARED OBSERVATIONS OF REFLECTION NEBULAE Rolaine C. Young Owl Department of Physics and Astronomy, University of California at Los Angeles, Mail Code 156205, Los Angeles, CA 90095-1562 Margaret M. Meixner1 and David Fong Department of Astronomy, University of Illinois, Urbana, IL 61801; [email protected], [email protected] Michael R. Haas NASA Ames Research Center, MS 245-6, Moffett Field, CA 94035-1000; [email protected] Alexander L. Rudolph1 Department of Physics, Harvey Mudd College, 301 East 12th Street, Claremont, CA 91711; [email protected] and A. G. G. M. Tielens Kapteyn Astronomical Institute, P.O. Box 800, 9700 AV Groningen, Netherlands; [email protected] Received 2001 August 2; accepted 2002 June 24 ABSTRACT This paper presents Kuiper Airborne Observatory observations of the photodissociation regions (PDRs) in nine reflection nebulae. These observations include the far-infrared atomic fine-structure lines of [O i]63 and 145 lm, [C ii] 158 lm, and [Si ii]35lm and the adjacent far-infrared continuum to these lines. Our analysis of these far-infrared observations provides estimates of the physical conditions in each reflection nebula. In our sample of reflection nebulae, the stellar effective temperatures are 10,000–30,000 K, the gas densities are 4 Â 102 2 Â 104 cmÀ3, the gas temperatures are 200–690 K, and the incident far-ultraviolet intensities are 300–8100 times the ambient interstellar radiation field strength (1:2 Â 10À4 ergs cmÀ2 sÀ1 srÀ1). -
A Revised Age for Upper Scorpius and the Star Formation History Among the F-Type Members of the Scorpius–Centaurus Ob Association
The Astrophysical Journal, 746:154 (22pp), 2012 February 20 doi:10.1088/0004-637X/746/2/154 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. A REVISED AGE FOR UPPER SCORPIUS AND THE STAR FORMATION HISTORY AMONG THE F-TYPE MEMBERS OF THE SCORPIUS–CENTAURUS OB ASSOCIATION Mark J. Pecaut1, Eric E. Mamajek1,3, and Eric J. Bubar1,2 1 Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171, USA 2 Department of Biology and Physical Sciences, Marymount University, Arlington, VA 22207-4299, USA Received 2011 August 8; accepted 2011 December 2; published 2012 February 2 ABSTRACT We present an analysis of the ages and star formation history of the F-type stars in the Upper Scorpius (US), Upper Centaurus–Lupus (UCL), and Lower Centaurus–Crux (LCC) subgroups of Scorpius–Centaurus (Sco-Cen), the nearest OB association. Our parent sample is the kinematically selected Hipparcos sample of de Zeeuw et al., restricted to the 138 F-type members. We have obtained classification-resolution optical spectra and have also determined the spectroscopic accretion disk fraction. With Hipparcos and 2MASS photometry, we estimate the reddening and extinction for each star and place the candidate members on a theoretical H-R diagram. For each subgroup we construct empirical isochrones and compare to published evolutionary tracks. We find that (1) our empirical isochrones are consistent with the previously published age-rank of the Sco-Cen subgroups; (2) subgroups LCC and UCL appear to reach the main-sequence turn-on at spectral types ∼F4 and ∼F2, respectively. -
A Photometric Study of Be Stars Located in the Seismology fields of COROT
A&A 476, 927–933 (2007) Astronomy DOI: 10.1051/0004-6361:20078252 & c ESO 2007 Astrophysics A photometric study of Be stars located in the seismology fields of COROT J. Gutiérrez-Soto1,2,J.Fabregat1,2,J.Suso3, M. Lanzara3, R. Garrido4, A.-M. Hubert2, and M. Floquet2 1 Observatorio Astronómico, Universidad de Valencia, edificio Institutos de Investigación, polígono la Coma, 46980 Paterna, Valencia, Spain e-mail: [email protected] 2 GEPI, Observatoire de Paris, CNRS, Université Paris Diderot; place Jules Janssen 92195 Meudon Cedex, France 3 GACE-ICMUV, edificio Institutos de Investigación, polígono la Coma, 46980 Paterna, Valencia, Spain 4 Instituto de Astrofísica de Andalucía (CSIC), calle Camino Bajo de Huétor, 24. 18008, Granada, Spain Received 10 July 2007 / Accepted 28 September 2007 ABSTRACT Context. In preparation for the COROT mission, an exhaustive photometric study of Be stars located in the seismology fields of the mission has been performed. The very precise and long-time-spanned photometric observations gathered by the COROT satellite will give important clues on the origin of the Be phenomenon. Aims. The aim of this work is to find short-period variable Be stars located in the seismology fields of COROT, and to study and characterise their pulsational properties. Methods. Light curves obtained at the Observatorio de Sierra Nevada, together with data from Hipparcos and ASAS-3 for a total of 84 Be stars, were analysed in order to search for short-term variations. We applied standard Fourier techniques and non-linear least-square fitting to the time series. Results. We found 7 multiperiodic, 21 mono-periodic and 26 non-variable Be stars. -
Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55 -
THE CASE of the HERBIG F STAR SAO 206462 (HD 135344B)A,B,C,D,E,F
The Astrophysical Journal, 699:1822–1842, 2009 July 10 doi:10.1088/0004-637X/699/2/1822 C 2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A. REVEALING THE STRUCTURE OF A PRE-TRANSITIONAL DISK: THE CASE OF THE HERBIG F STAR SAO 206462 (HD 135344B)a,b,c,d,e,f C. A. Grady1,2,3, G. Schneider4,M.L.Sitko5,6,19, G. M. Williger7,8,9, K. Hamaguchi10,11,3, S. D. Brittain12, K. Ablordeppey6,D.Apai4, L. Beerman6, W. J. Carpenter6, K. A. Collins7,20, M. Fukagawa13,H.B.Hammel5,19, Th. Henning14,D.Hines5,R.Kimes6,D.K.Lynch15,19,F.Menard´ 16, R. Pearson15,19,R.W.Russell15,19, M. Silverstone1, P. S. Smith4, M. Troutman12,21,D.Wilner17, B. Woodgate18,3, and M. Clampin18 1 Eureka Scientific, 2452 Delmer, Suite 100, Oakland, CA 96002, USA 2 ExoPlanets and Stellar Astrophysics Laboratory, Code 667, Goddard Space Flight Center, Greenbelt, MD 20771, USA 3 Goddard Center for Astrobiology, NASA Goddard Space Flight Center, Greenbelt, MD, USA 4 Steward Observatory, The University of Arizona, Tucson, AZ 85721, USA 5 Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301, USA 6 Department of Physics, University of Cincinnati, Cincinnati, OH 45221-0011, USA 7 Department of Physics, University of Louisville, Louisville, KY 40292, USA 8 Department of Physics and Astronomy, John Hopkins University, Baltimore, MD 21218-2686, USA 9 Department of Physics, The Catholic University of America, Washington, DC 20064, USA 10 CRESST, X-Ray Astrophysics Laboratory, NASA/GSFC, Greenbelt, MD 20771, USA 11 Department of Physics, University -
A Review on Substellar Objects Below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs Or What?
geosciences Review A Review on Substellar Objects below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs or What? José A. Caballero Centro de Astrobiología (CSIC-INTA), ESAC, Camino Bajo del Castillo s/n, E-28692 Villanueva de la Cañada, Madrid, Spain; [email protected] Received: 23 August 2018; Accepted: 10 September 2018; Published: 28 September 2018 Abstract: “Free-floating, non-deuterium-burning, substellar objects” are isolated bodies of a few Jupiter masses found in very young open clusters and associations, nearby young moving groups, and in the immediate vicinity of the Sun. They are neither brown dwarfs nor planets. In this paper, their nomenclature, history of discovery, sites of detection, formation mechanisms, and future directions of research are reviewed. Most free-floating, non-deuterium-burning, substellar objects share the same formation mechanism as low-mass stars and brown dwarfs, but there are still a few caveats, such as the value of the opacity mass limit, the minimum mass at which an isolated body can form via turbulent fragmentation from a cloud. The least massive free-floating substellar objects found to date have masses of about 0.004 Msol, but current and future surveys should aim at breaking this record. For that, we may need LSST, Euclid and WFIRST. Keywords: planetary systems; stars: brown dwarfs; stars: low mass; galaxy: solar neighborhood; galaxy: open clusters and associations 1. Introduction I can’t answer why (I’m not a gangstar) But I can tell you how (I’m not a flam star) We were born upside-down (I’m a star’s star) Born the wrong way ’round (I’m not a white star) I’m a blackstar, I’m not a gangstar I’m a blackstar, I’m a blackstar I’m not a pornstar, I’m not a wandering star I’m a blackstar, I’m a blackstar Blackstar, F (2016), David Bowie The tenth star of George van Biesbroeck’s catalogue of high, common, proper motion companions, vB 10, was from the end of the Second World War to the early 1980s, and had an entry on the least massive star known [1–3]. -
Stars Chien-De Lee (李建德)1, Wen-Ping Chen (陳文屏)1, 2, and Sheng-Yuan Liu (呂聖元)3
A&A 592, A130 (2016) Astronomy DOI: 10.1051/0004-6361/201628332 & c ESO 2016 Astrophysics Evolutionary status of isolated B[e] stars Chien-De Lee (Nú·)1, Wen-Ping Chen (s文O)1; 2, and Sheng-Yuan Liu (BVC)3 1 Graduate Institute of Astronomy, National Central University, 300 Jhongda Road, 32001 Jhongli, Taiwan e-mail: [email protected] 2 Department of Physics, National Central University, 300 Jhongda Road, 32001 Jhongli, Taiwan 3 Institute of Astronomy and Astrophysics, Academia Sinica, 10617 Taipei, Taiwan Received 18 February 2016 / Accepted 18 May 2016 ABSTRACT Aims. We study a sample of eight B[e] stars with uncertain evolutionary status to shed light on the origin of their circumstellar dust. Methods. We performed a diagnostic analysis on the spectral energy distribution beyond infrared wavelengths, and conducted a census of neighboring region of each target to ascertain its evolutionary status. Results. In comparison to pre-main sequence Herbig stars, these B[e] stars show equally substantial excess emission in the near- infrared, indicative of existence of warm dust, but much reduced excess at longer wavelengths, so the dusty envelopes should be compact in size. Isolation from star-forming regions excludes the possibility of their pre-main sequence status. Six of our targets, including HD 50138, HD 45677, CD−24 5721, CD−49 3441, MWC 623, and HD 85567, have been previously considered as FS CMa stars, whereas HD 181615/6 and HD 98922 are added to the sample by this work. We argue that the circumstellar grains of these isolated B[e] stars, already evolved beyond the pre-main sequence phase, should be formed in situ. -
The Vienna-KPNO Search for Doppler-Imaging Candidate Stars
ASTRONOMY & ASTROPHYSICS MARCH I 2000, PAGE 275 SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 142, 275–311 (2000) The Vienna-KPNO search for Doppler-imaging candidate stars I. A catalog of stellar-activity indicators for 1058 late-type Hipparcos stars ? K.G. Strassmeier??, A. Washuettl??, Th. Granzer??, M. Scheck, and M. Weber?? Institut f¨ur Astronomie, Universit¨at Wien, T¨urkenschanzstraße 17, A-1180 Wien, Austria e-mail: [email protected] Received November 2; accepted December 22, 1999 Abstract. We present the results from a spectroscopic Ca II 1. Scientific motivation for a Ca II H&K survey H&K survey of 1058 late-type stars selected from a color- limited subsample of the Hipparcos catalog. Out of these 1058 The presence of emission in the core of the Ca II HandK stars, 371 stars were found to show significant H&K emis- resonance lines is a diagnostic of magnetic activity in the sion, most of them previously unknown; 23% with strong chromospheres of late-type stars. Spatially resolved K-line he- emission, 36% with moderate emission, and 41% with weak liograms and magnetograms amply demonstrate the relation emission. These spectra are used to determine absolute H&K between H&K-emission strength and the surface magnetic field emission-line fluxes, radial velocities, and equivalent widths of on our Sun (Schrijver 1996). Furthermore, the fact that we ob- the luminosity-sensitive Sr II line at 4077 A.˚ Red-wavelength serve generally stronger H&K emission in more rapidly rotat- spectroscopic and Str¨omgren y photometric follow-up obser- ing stars is widely known as the rotation-activity relation (e.g. -
Planets Around Low-Mass Stars (PALMS). III. a Young Dusty L
ApJ, Accepted (July 7 2013) A Preprint typeset using LTEX style emulateapj v. 5/2/11 PLANETS AROUND LOW-MASS STARS (PALMS). III. A YOUNG DUSTY L DWARF COMPANION AT THE DEUTERIUM-BURNING LIMIT∗† Brendan P. Bowler,1 Michael C. Liu,1,2 Evgenya L. Shkolnik,3 Trent J. Dupuy4, 5 ApJ, Accepted (July 7 2013) ABSTRACT We report the discovery of an L-type companion to the young M3.5V star 2MASS J01225093– 2439505 at a projected separation of 1.45′′ (≈52 AU) as part of our adaptive optics imaging search for extrasolar giant planets around young low-mass stars. 2MASS 0122–2439 B has very red near- infrared colors similar to the HR 8799 planets and the reddest known young/dusty L dwarfs in the field. Moderate-resolution (R≈3800) 1.5–2.4 µm spectroscopy reveals a near-infrared spectral type of L4–L6 and an angular H-band shape, confirming its cool temperature and young age. The kinematics of 2MASS 0122–2439 AB are marginally consistent with members of the ∼120 Myr AB Dor young moving group based on the photometric distance to the primary (36 ± 4 pc) and our radial velocity measurement of 2MASS 0122–2439 A from Keck/HIRES. We adopt the AB Dor group age for the system, but the high energy emission, lack of Li I λ6707 absorption, and spectral shape of 2MASS 0122–2439 B suggest a range of ∼10–120 Myr is possible. The age and luminosity of 2MASS 0122–2439 B fall in a strip where “hot-start” evolutionary model mass tracks overlap as a result of deuterium burning. -
Thesisthesis We Analyzed a Large Sample of Young Stars,, Coveringcovering Aa Massmass Rangerange of ~2 to ~20 Solar Masses
UvA-DARE (Digital Academic Repository) Dusty disks around young stars Verhoeff, A. Publication date 2009 Document Version Final published version Link to publication Citation for published version (APA): Verhoeff, A. (2009). Dusty disks around young stars. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:06 Oct 2021 Dusty Disks around Dusty Disks around Stars are formed through the collapse of giant molecular clouds.. During this contraction the matter spins up and naturally forms a circumstellar disk.. OnceOnce accretionaccretion comescomes toto aa halt,halt, thesethese disksdisks arare relatively stable.. SomeSome disksdisks areare kknown to last up to 10 Myrs.. MostMost disks however,, dissipatedissipate onon shorshorter time scales under the inuence of photoevaporation and planet formation. These disks,, consistingconsisting of 99% gas and 1% dust, have revealed a high variety of dust composition and geometry.