Journal of Threatened Taxa
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Plant Systematics Economic Botany and Ethnobotany
CORE PAPER- VIII PLANT SYSTEMATICS ECONOMIC BOTANY AND ETHNOBOTANY UNIT - III Rubiaceae Systematic position Class-Dicotyledons Sub class -Gamopetalae Series –Inferae Order - Rubiales Family-Rubiaceae Distribution of Rubiaceae: It is commonly known as Madder or Coffee family. It includes 6000 species and 500 genera. In India it is represented by 551 species. The members of this family are distributed in tropics, sub-tropics and temperate regions. Vegetative characters Habit and Habitatat. Trees -Adina cordifolia Shrubs- Gardenia (mostly), some are twinners- Paederia Climbers -Uncaria Herbs -Gallium Epiphytic eg Hymenopogon parasiticus Helophytic, or mesophytic, or xerophytic, or hydrophytic (Limnosipanea). Majority are perennials a few annuals, cultrivated as well as wild Root –branched tap root Stem- aerial,erect or weak, cylindrical or angular herbaceous Gallium or woody ,armed with spines Randia dementorum ,glabrous,pubescent hairy or smooth Stephegyne, branched, dichasial cymein Gallium. Leaf - Cauline and ramal Leaves stipulate. Stipules interpetiolar (between the petioles , or intrapetiolar; between the petiole and axis .leafy Gallium divided Borreria hair like Pentas sometimes fused to form a sheath GardeniaPetiolate, subsessile or sessile Gallium Leaves opposite Cinchona or whorled Gallium simple; Lamina entire; Cinchona opposite decussate Ixora ), reticulate Floral characters: Inflorescence- Flowers aggregated in ‘inflorescences’, or solitary (less often); in cymes, or in panicles, Cinchona or in heads (rarely, e.g. Morindeae, Gardenia). The ultimate inflorescence units compound cyme MussaendaInflorescences with involucral bracts (when capitate), or without involucral bracts; Flowers -Bracteate Gardenia ebracteate Cinchona Bracts persistant –Hymenopogan Pedicellate,subsessile Gardenia sessile RandinBracteolate or ebracteolate, complete or incomplete actinomorphic,, Rarely Zygomorphic Randeletin bisexual unisexual Coprosma , epigynous regular; mostly 4 merous, or 5 merous; cyclic; tetracyclic. -
A Compilation and Analysis of Food Plants Utilization of Sri Lankan Butterfly Larvae (Papilionoidea)
MAJOR ARTICLE TAPROBANICA, ISSN 1800–427X. August, 2014. Vol. 06, No. 02: pp. 110–131, pls. 12, 13. © Research Center for Climate Change, University of Indonesia, Depok, Indonesia & Taprobanica Private Limited, Homagama, Sri Lanka http://www.sljol.info/index.php/tapro A COMPILATION AND ANALYSIS OF FOOD PLANTS UTILIZATION OF SRI LANKAN BUTTERFLY LARVAE (PAPILIONOIDEA) Section Editors: Jeffrey Miller & James L. Reveal Submitted: 08 Dec. 2013, Accepted: 15 Mar. 2014 H. D. Jayasinghe1,2, S. S. Rajapaksha1, C. de Alwis1 1Butterfly Conservation Society of Sri Lanka, 762/A, Yatihena, Malwana, Sri Lanka 2 E-mail: [email protected] Abstract Larval food plants (LFPs) of Sri Lankan butterflies are poorly documented in the historical literature and there is a great need to identify LFPs in conservation perspectives. Therefore, the current study was designed and carried out during the past decade. A list of LFPs for 207 butterfly species (Super family Papilionoidea) of Sri Lanka is presented based on local studies and includes 785 plant-butterfly combinations and 480 plant species. Many of these combinations are reported for the first time in Sri Lanka. The impact of introducing new plants on the dynamics of abundance and distribution of butterflies, the possibility of butterflies being pests on crops, and observations of LFPs of rare butterfly species, are discussed. This information is crucial for the conservation management of the butterfly fauna in Sri Lanka. Key words: conservation, crops, larval food plants (LFPs), pests, plant-butterfly combination. Introduction Butterflies go through complete metamorphosis 1949). As all herbivorous insects show some and have two stages of food consumtion. -
Sistema De Clasificación Artificial De Las Magnoliatas Sinántropas De Cuba
Sistema de clasificación artificial de las magnoliatas sinántropas de Cuba. Pedro Pablo Herrera Oliver Tesis doctoral de la Univerisdad de Alicante. Tesi doctoral de la Universitat d'Alacant. 2007 Sistema de clasificación artificial de las magnoliatas sinántropas de Cuba. Pedro Pablo Herrera Oliver PROGRAMA DE DOCTORADO COOPERADO DESARROLLO SOSTENIBLE: MANEJOS FORESTAL Y TURÍSTICO UNIVERSIDAD DE ALICANTE, ESPAÑA UNIVERSIDAD DE PINAR DEL RÍO, CUBA TESIS EN OPCIÓN AL GRADO CIENTÍFICO DE DOCTOR EN CIENCIAS SISTEMA DE CLASIFICACIÓN ARTIFICIAL DE LAS MAGNOLIATAS SINÁNTROPAS DE CUBA Pedro- Pabfc He.r retira Qltver CUBA 2006 Tesis doctoral de la Univerisdad de Alicante. Tesi doctoral de la Universitat d'Alacant. 2007 Sistema de clasificación artificial de las magnoliatas sinántropas de Cuba. Pedro Pablo Herrera Oliver PROGRAMA DE DOCTORADO COOPERADO DESARROLLO SOSTENIBLE: MANEJOS FORESTAL Y TURÍSTICO UNIVERSIDAD DE ALICANTE, ESPAÑA Y UNIVERSIDAD DE PINAR DEL RÍO, CUBA TESIS EN OPCIÓN AL GRADO CIENTÍFICO DE DOCTOR EN CIENCIAS SISTEMA DE CLASIFICACIÓN ARTIFICIAL DE LAS MAGNOLIATAS SINÁNTROPAS DE CUBA ASPIRANTE: Lie. Pedro Pablo Herrera Oliver Investigador Auxiliar Centro Nacional de Biodiversidad Instituto de Ecología y Sistemática Ministerio de Ciencias, Tecnología y Medio Ambiente DIRECTORES: CUBA Dra. Nancy Esther Ricardo Ñapóles Investigador Titular Centro Nacional de Biodiversidad Instituto de Ecología y Sistemática Ministerio de Ciencias, Tecnología y Medio Ambiente ESPAÑA Dr. Andreu Bonet Jornet Piiofesjar Titular Departamento de EGdfegfe Universidad! dte Mearte CUBA 2006 Tesis doctoral de la Univerisdad de Alicante. Tesi doctoral de la Universitat d'Alacant. 2007 Sistema de clasificación artificial de las magnoliatas sinántropas de Cuba. Pedro Pablo Herrera Oliver I. INTRODUCCIÓN 1 II. ANTECEDENTES 6 2.1 Historia de los esquemas de clasificación de las especies sinántropas (1903-2005) 6 2.2 Historia del conocimiento de las plantas sinantrópicas en Cuba 14 III. -
ORNAMENTAL GARDEN PLANTS of the GUIANAS: an Historical Perspective of Selected Garden Plants from Guyana, Surinam and French Guiana
f ORNAMENTAL GARDEN PLANTS OF THE GUIANAS: An Historical Perspective of Selected Garden Plants from Guyana, Surinam and French Guiana Vf•-L - - •• -> 3H. .. h’ - — - ' - - V ' " " - 1« 7-. .. -JZ = IS^ X : TST~ .isf *“**2-rt * * , ' . / * 1 f f r m f l r l. Robert A. DeFilipps D e p a r t m e n t o f B o t a n y Smithsonian Institution, Washington, D.C. \ 1 9 9 2 ORNAMENTAL GARDEN PLANTS OF THE GUIANAS Table of Contents I. Map of the Guianas II. Introduction 1 III. Basic Bibliography 14 IV. Acknowledgements 17 V. Maps of Guyana, Surinam and French Guiana VI. Ornamental Garden Plants of the Guianas Gymnosperms 19 Dicotyledons 24 Monocotyledons 205 VII. Title Page, Maps and Plates Credits 319 VIII. Illustration Credits 321 IX. Common Names Index 345 X. Scientific Names Index 353 XI. Endpiece ORNAMENTAL GARDEN PLANTS OF THE GUIANAS Introduction I. Historical Setting of the Guianan Plant Heritage The Guianas are embedded high in the green shoulder of northern South America, an area once known as the "Wild Coast". They are the only non-Latin American countries in South America, and are situated just north of the Equator in a configuration with the Amazon River of Brazil to the south and the Orinoco River of Venezuela to the west. The three Guianas comprise, from west to east, the countries of Guyana (area: 83,000 square miles; capital: Georgetown), Surinam (area: 63, 037 square miles; capital: Paramaribo) and French Guiana (area: 34, 740 square miles; capital: Cayenne). Perhaps the earliest physical contact between Europeans and the present-day Guianas occurred in 1500 when the Spanish navigator Vincente Yanez Pinzon, after discovering the Amazon River, sailed northwest and entered the Oyapock River, which is now the eastern boundary of French Guiana. -
Development of Encyclopedia Boyong Sleman Insekta River As Alternative Learning Resources
PROC. INTERNAT. CONF. SCI. ENGIN. ISSN 2597-5250 Volume 3, April 2020 | Pages: 629-634 E-ISSN 2598-232X Development of Encyclopedia Boyong Sleman Insekta River as Alternative Learning Resources Rini Dita Fitriani*, Sulistiyawati Biological Education Faculty of Science and Technology, UIN Sunan Kalijaga Jl. Marsda Adisucipto Yogyakarta, Indonesia Email*: [email protected] Abstract. This study aims to determine the types of insects Coleoptera, Hemiptera, Odonata, Orthoptera and Lepidoptera in the Boyong River, Sleman Regency, Yogyakarta, to develop the Encyclopedia of the Boyong River Insect and to determine the quality of the encyclopedia developed. The method used in the research inventory of the types of insects Coleoptera, Hemiptera, Odonata, Orthoptera and Lepidoptera insects in the Boyong River survey method with the results of the study found 46 species of insects consisting of 2 Coleoptera Orders, 2 Hemiptera Orders, 18 orders of Lepidoptera in Boyong River survey method with the results of the research found 46 species of insects consisting of 2 Coleoptera Orders, 2 Hemiptera Orders, 18 orders of Lepidoptera in Boyong River survey method. odonata, 4 Orthopterous Orders and 20 Lepidopterous Orders from 15 families. The encyclopedia that was developed was created using the Adobe Indesig application which was developed in printed form. Testing the quality of the encyclopedia uses a checklist questionnaire and the results of the percentage of ideals from material experts are 91.1% with very good categories, 91.7% of media experts with very good categories, peer reviewers 92.27% with very good categories, biology teachers 88, 53% with a very good category and students 89.8% with a very good category. -
Evaluation of the Analgesic Activity of the Leaf
Pavani P et al. Int. Res. J. Pharm. 2019, 10 (6) INTERNATIONAL RESEARCH JOURNAL OF PHARMACY www.irjponline.com ISSN 2230 – 8407 Research Article EVALUATION OF THE ANALGESIC ACTIVITY OF THE LEAF METHANOLIC EXTRACT OF ZANTHOXYLUM OVALIFOLIUM WIGHT Pavani P *1, Ashwathanarayana R 1, Raja Naika 2 1Research student, Department of Applied Botany, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Bhadravati, Shimoga, Karnataka, India 2Professor, Department of Applied Botany, Kuvempu University, Jnana Sahyadri, Shankaraghatta, Bhadravati, Shimoga, Karnataka, India *Corresponding Author Email: [email protected] Article Received on: 19/03/19 Approved for publication: 26/04/19 DOI: 10.7897/2230-8407.1006199 ABSTRACT Background: Zanthoxylum ovalifolium is a medicinal shrub used by some communities of Karnataka, India, in treating fever, headache and other ailments. Objectives: The present study is to evaluate the analgesic activity of the Z. ovalifolium methanolic leaf extract. Method: Standard in-vivo methods such as acetic acid-induced abdominal writhing, tail immersion and hot plate analgesic methods using albino Wistar mice. Dose levels such as, 100, 200 and 400 mg/kg body weight of the extract were given orally by gastric gavage and the obtained results was compared with a standard acetylsalicylic acid (aspirin) (400 mg/kg) and negative control. Statistical analysis was done using Prism using one-way ANOVA. Result: In the acetic acid-induced writhing model, the Z. ovalifolium methanolic extract (400 mg/kg) and the reference drug significantly (P<0.0001) decreased the number of abdominal constrictions in the tested mice. The percentage inhibition of the abdominal constriction was improved from 0% (100 mg/kg) to 40% at the highest dose of the extract (400 mg/kg). -
Zanthoxylum Ovalifolium Wight Family: Rutaceae Wight, R
Australian Tropical Rainforest Plants - Online edition Zanthoxylum ovalifolium Wight Family: Rutaceae Wight, R. (1839) Illustrations of Indian Botany 1 : 169. Type: India, Madras, Wight 356. Common name: Thorny Yellowwood; Oval-leaf Yellow Wood; Little Yellowwood Stem Seldom exceeding 30 cm dbh. Squat, conical prickles often present on the trunk. Leaves Oil dots quite large, numerous and conspicuous. Both simple and compound leaves usually present on each twig. Leaf or leaflet blades about 6-16.5 x 2.5-7 cm. Lateral veins forming loops inside the blade margin and midrib generally raised on the upper surface of the leaflet blade. Flowers Inflorescence about 3-12 cm long, approximating but usually not exceeding the leaves. Sepals about Flowers [not vouchered]. CC-BY 1 mm long. Petals about 2.5 mm long. Anther filaments about 2 mm long, inserted outside the J.L. Dowe sometimes inconspicuous disk, anthers about 0.75 mm long. Disk about 0.5-0.75 mm high. Carpels about 1.5 mm long, style eccentric. Fruit Fruits subglobose, about 6-7 mm diam. Seeds globular, about 4.5-5 mm diam., cotyledons thick and fleshy, marked with large conspicuous oil glands. Seedlings Cotyledons elliptic or obovate, about 4-7 mm long, fleshy, without venation. Oil dots large. First pair of leaves with toothed leaflets. Petiole winged. At the tenth leaf stage: leaflet blades elliptic to Leaves and fruit. © CSIRO obovate, apex acuminate, base cuneate often unequal-sided, upper surface glabrous, sometimes with 1 or 2 straight spines on the midrib; oil dots large, easily visible with a lens; petiole usually with one to several spines on the upper surface. -
Phytochemical Studies and Antibacterial Activities of Ruellia Tuberosa L
University Journal of Creativity and Innovative Research 2020 Vol-01 Issue-01 Phytochemical Studies and Antibacterial Activities of Ruellia tuberosa L. Khin Nwe Than Khin Myint Maw Yadanabon University Mandalay University of Distance Education [email protected] [email protected] Abstract antidote activity. These plants are used to cure antidote for snake-bite, centipede and gecko-bite according to [2]. The medicinal plant Ruellia tuberosa L. of The preliminary phytochemical investigation was Acanthaceae family is a tropical plant widely carried out by ethanol extracts for study of plants distributed in South East Asia. In phytochemical containing chemical constituents (alkaloid, steroid, investigation, 10 compounds were studied. Among them, flavonoid, glycoside, tannin, reducing sugar, phenolic glycoside, alkaloid, reducing sugar, terpene, phenolic compound, saponin, polyphenol and terpenoid). compound, polyphenol, saponin and tannin were Antibacterial activities were also made with various present but flavonoid and steroid were absent in the extract (ethanol, ethyl- acetate and n-hexane) of the powder of study plant. Moreover, the antibacterial whole plant of R. tuberosa L. by using agar well activity were carried out by using 95% ethanol, ethyl- diffusion method against six different types of test acetate and n-hexane. Ethanol extract, n-hexane extract organisms. The present research aimed to investigate the and ethyl-acetate extract were obtained the best chemical composition of Ruellia tuberosa L. as well as inhibition zone diameter (0.7 cm) on Salmonella typhi. to determine the antibacterial activity. The inhibition zone of ethanol extract showed the most effective on Staphylococcus aureus (0.8 cm) and less 2. Materials and Methods inhibition zone showed on Pseudomonas aeruginosa (0.3 cm). -
Life History and Larval Performance of the Peacock Pansy Butterfly, Junonia Almana Linnaeus (Lepidoptera: Rhopalocera: Nymphalidae)
IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT) ISSN: 2319-2402, ISBN: 2319-2399. Volume 1, Issue 2 (Sep-Oct. 2012), PP 17-21 www.iosrjournals.org Life history and larval performance of the Peacock pansy butterfly, Junonia almana Linnaeus (Lepidoptera: Rhopalocera: Nymphalidae) 1Bhupathi Rayalu. M, 2Ella Rao. K, 3Sandhya Deepika.D, 4Atluri. J.B 1,2,3,4 (Department of Botany, Andhra University, Visakhapatnam-530 003, Andhra Pradesh, India.) Abstract: The life history of the Peacock pansy butterfly, Junonia almana and larval performance in terms of food consumption and utilization, and the length of life cycle on its host plant Ruellia tuberosa are described for the first time. The study was conducted during 2008 at Visakhapatnam (17o 42' N and 82 18' E), South India. Junonia almana completes its life cycle in 24.40 1.14 days (eggs 3, larvae, 15 – 16, pupa 5 – 7 days). The values of nutritional indices across the instars were AD (Approximate Digestibility) 44.10 – 95.87%; ECD (Efficiency of Conversion of Digested food) 1.48 – 34.00%; ECI (Efficiency of Conversion of Ingested food) 1.41 – 15.00%, measured at the temperature of 28 ± 20 C and RH of 80 ± 10% in the laboratory. These relatively high values of ECD and ECI explain at least partially the ecological success of J. almana in the present study environment. Keywords: Life history, Junonia almana, captive rearing, immature stages, food utilization indices. I. Introduction Butterflies are known for the incontestable beauty of their wing colors, and contribute to the aesthetic quality of the environment. -
Mai Po Nature Reserve Management Plan: 2019-2024
Mai Po Nature Reserve Management Plan: 2019-2024 ©Anthony Sun June 2021 (Mid-term version) Prepared by WWF-Hong Kong Mai Po Nature Reserve Management Plan: 2019-2024 Page | 1 Table of Contents EXECUTIVE SUMMARY ................................................................................................................................................... 2 1. INTRODUCTION ..................................................................................................................................................... 7 1.1 Regional and Global Context ........................................................................................................................ 8 1.2 Local Biodiversity and Wise Use ................................................................................................................... 9 1.3 Geology and Geological History ................................................................................................................. 10 1.4 Hydrology ................................................................................................................................................... 10 1.5 Climate ....................................................................................................................................................... 10 1.6 Climate Change Impacts ............................................................................................................................. 11 1.7 Biodiversity ................................................................................................................................................ -
ACANTHACEAE 爵床科 Jue Chuang Ke Hu Jiaqi (胡嘉琪 Hu Chia-Chi)1, Deng Yunfei (邓云飞)2; John R
ACANTHACEAE 爵床科 jue chuang ke Hu Jiaqi (胡嘉琪 Hu Chia-chi)1, Deng Yunfei (邓云飞)2; John R. I. Wood3, Thomas F. Daniel4 Prostrate, erect, or rarely climbing herbs (annual or perennial), subshrubs, shrubs, or rarely small trees, usually with cystoliths (except in following Chinese genera: Acanthus, Blepharis, Nelsonia, Ophiorrhiziphyllon, Staurogyne, and Thunbergia), isophyllous (leaf pairs of equal size at each node) or anisophyllous (leaf pairs of unequal size at each node). Branches decussate, terete to angular in cross-section, nodes often swollen, sometimes spinose with spines derived from reduced leaves, bracts, and/or bracteoles. Stipules absent. Leaves opposite [rarely alternate or whorled]; leaf blade margin entire, sinuate, crenate, dentate, or rarely pinnatifid. Inflo- rescences terminal or axillary spikes, racemes, panicles, or dense clusters, rarely of solitary flowers; bracts 1 per flower or dichasial cluster, large and brightly colored or minute and green, sometimes becoming spinose; bracteoles present or rarely absent, usually 2 per flower. Flowers sessile or pedicellate, bisexual, zygomorphic to subactinomorphic. Calyx synsepalous (at least basally), usually 4- or 5-lobed, rarely (Thunbergia) reduced to an entire cupular ring or 10–20-lobed. Corolla sympetalous, sometimes resupinate 180º by twisting of corolla tube; tube cylindric or funnelform; limb subactinomorphic (i.e., subequally 5-lobed) or zygomorphic (either 2- lipped with upper lip subentire to 2-lobed and lower lip 3-lobed, or rarely 1-lipped with 3 lobes); lobes ascending or descending cochlear, quincuncial, contorted, or open in bud. Stamens epipetalous, included in or exserted from corolla tube, 2 or 4 and didyna- mous; filaments distinct, connate in pairs, or monadelphous basally via a sheath (Strobilanthes); anthers with 1 or 2 thecae; thecae parallel to perpendicular, equally inserted to superposed, spherical to linear, base muticous or spurred, usually longitudinally dehis- cent; staminodes 0–3, consisting of minute projections or sterile filaments. -
Psoralea Pinnata Global Invasive
FULL ACCOUNT FOR: Psoralea pinnata Psoralea pinnata System: Terrestrial Kingdom Phylum Class Order Family Plantae Magnoliophyta Magnoliopsida Fabales Fabaceae Common name dally pine (English, New Zealand), African scurfpea (English), blue Psoralea (English, Australia), bloukeur (English, South Africa), Albany broom (English, Western Australia), blue butterfly bush (English, Australia), blue broom (English, Western Australia), blue pea (English), umhlonishwa (English, South Africa), taylorina (English, Australia), fonteinbos (English, South Africa), penwortel (English, South Africa), Fountain Bush (English, South Africa) Synonym Psoralea arborea Similar species Summary Psoralea pinnata is a slender, medium-sized shrub that occurs in riparian habitats along creeks and rivers, in waste land and disturbed natural vegetation. Any disturbance for e.g. a fire incident can trigger a mass germination of soil stored seed. It is fast growing and forms dense thickets that could shade out and impede the growth of lower stratal species; it is a nitrogen fixer and can alter soil nutrient status. view this species on IUCN Red List Species Description Psoralea pinnata is a slender medium-sized fast growing shrub that can reach upto 5m in height. Its fine deep green linear leaves are deeply divided (about 4cm long). The linear leaf blades occur in crowded alterante spirals (0.8mm to 2mm wide) and tapering from the base. This plant blooms with white, lilac or blue pea shaped sweet smelling flowers in large clusters toward the end of the branches. Flowering is followed by the production of small pods, each of these contain a single dark brown seed [Description from EOL 2010]. The seeds are hard-coated (3.4 × 2.1mm); any disturbance for e.g.