Looking Back on 40 Years of Ethernet
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Digital Technical Journal, Number 3, September 1986: Networking
Netwo;king Products Digital TechnicalJournal Digital Equipment Corporation Number 3 September I 986 Contents 8 Foreword William R. Johnson, Jr. New Products 10 Digital Network Architecture Overview Anthony G. Lauck, David R. Oran, and Radia J. Perlman 2 5 PerformanceAn alysis andModeling of Digital's Networking Architecture Raj Jain and William R. Hawe 35 The DECnetjSNA Gateway Product-A Case Study in Cross Vendor Networking John P:.. �orency, David Poner, Richard P. Pitkin, and David R. Oran ._ 54 The Extended Local Area Network Architecture and LANBridge 100 William R. Hawe, Mark F. Kempf, and Alan). Kirby 7 3 Terminal Servers on Ethernet Local Area Networks Bruce E. Mann, Colin Strutt, and Mark F. Kempf 88 The DECnet-VAXProduct -A n IntegratedAp proach to Networking Paul R. Beck and James A. Krycka 100 The DECnet-ULTRIXSoftware John Forecast, James L. Jackson, and Jeffrey A. Schriesheim 108 The DECnet-DOS System Peter 0. Mierswa, David). Mitton, and Ma�ha L. Spence 117 The Evolution of Network Management Products Nancy R. La Pelle, Mark). Seger, and Mark W. Sylor 129 The NMCCjDECnet Monitor Design Mark W. Sylor 1 Editor's Introduction The paper by Bill Hawe, Mark Kempf, and AI Kirby reports how studies of potential new broad band products led to the development of the Extended LAN Architecture. The design of the LANBridge 100, the first product incorporating that architecture, is described, along with the trade-offs made to achieve high performance. The speed of communication between terminals and systems depends on how they are connected. Bruce Mann, Colin Strutt, and Mark Kempf explain how they developed the LAT protocol to connect terminals to hosts on an Ethernet. -
Harvard University
HARVARD UNIVERSITY ROBERT AND RENÉE BELFER CENTER FOR SCIENCE AND INTERNATIONAL AFFAIRS 2000-2001 ANNUAL REPORT 2 Robert and Renée Belfer Center for Science and International Affairs 2000-2001 Annual Report Director’s Foreword 5 Overview From the Executive Director 7 Environment and Natural Resources Program TABLE 8 OF Harvard Information Infrastructure Project 52 CONTENTS International Security Program 71 Science, Technology and Public Policy Program 109 Strengthening Democratic Institutions Project 155 WPF Program on Intrastate Conflict, Conflict Prevention, and Conflict Resolution 177 Events 188 Publications 219 Biographies 241 Robert and Renée Belfer Center for Science and International Affairs 3 2000-2001 Annual Report 4 Robert and Renée Belfer Center for Science and International Affairs 2000-2001 Annual Report Director’s Foreword —————————————♦ For the hub of the John F. Kennedy School’s research, teaching, and training in international security affairs, environmental and resource issues, conflict prevention and resolution, and science and technology policy, the first academic year of the new century has been bracing. According to our mission statement, The Belfer Center for Science and International Affairs strives to provide leadership in advancing policy-relevant knowledge about the most important challenges of international security and other critical issues where science, technology, and international affairs intersect. BCSIA’s leadership begins with the recognition of science and technology as driving forces transforming threats and opportunities in international affairs. The Center integrates insights of social scientists, technologists, and practitioners with experience in government, diplomacy, the military, and business to address critical issues. BCSIA involvement in both the Republican and Democratic campaigns. BCSIA was privileged to have senior advisors in both camps in one of the most unforgettable American elections in recent memory. -
Packet-Voice Communication on an Ethernet Local Computer Network: an Experimental Study
Packet-Voice Communication on an Ethernet Local Computer Network: an Experimental Study Timothy A. Gonsalves Packet-Voice Communication on an Ethernet Local Computer Network: an Experimental Study Timothy A. Gonsalves CSL·82·5 March 1982 [P82·00034] © Copyright Timothy A. Gonsalves 1982. All rights reserved. Abstract: Local computer networks have been used successfully for data applications such as file transfers for several years. Recently, there have been several proposals for using these networks for voice applications. This paper describes a simple voice protocol for use on a packet-switching local network. This protocol is used in an experimental study of the feasibility of using a 3 Mbps experimental Ethernet network for packet-voice communications. The study shows that with appropriately chosen parameters the experimental Ethernet is capable of supporting about 40 simultaneous 64-Kbps voice conversations with acceptable quality. This corresponds to a utilization of 95% of the network capacity. A version of this paper has been submitted for presentation at the 3rd International Conference on Distributed Computing Systems, Miami, Florida, October 1982. CR Categories: C.2.5, C.4 Key words and Phrases: CSMA/CD, Ethernet, local computer network, measurement, packet-voice, voice communication. Author's Affiliation: Computer Systems Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California 94305. Xerox Corporation XEROX Palo Alto Research Centers 3333 Coyote Hill Road Palo Alto, California 94304 I. Introduction In the past few years. local computer networks for the interconnection of computers and shared resources within a small area such as a building or a campus have rapidly increased in popularity. These networks support applications such as file transfers and electronic mail between autonomous computers. -
Reliable File Transfer Across a 10 Megabit Ethernet
Rochester Institute of Technology RIT Scholar Works Theses 1984 Reliable file transfer across a 10 megabit ethernet Mark Van Dellon Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Van Dellon, Mark, "Reliable file transfer across a 10 megabit ethernet" (1984). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Rochester Institute of Technology School of Computer Science and Technology Reliable File Transfer Ac ross A 10 Megabit Ethernet by Mark Van Dellon July 24, 1984 A thesis, submitted to The Faculty of the Computer Science and Technology, in partial fulfillment of the requirements for the degree of Master of Science in Computer Science Approved by: Roy Czernikowski Dr. Roy - Committee Head John Ellis 'Or. John Ellis Tong-han Chang Dr. Tong-han Chang Date fr-was? Copyright 1984. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, for commercial use or profit without the prior written permission of the author. Abstract: The Ethernet communications network is a broadcast, multi-access system for local computing networks. Such a network was used to connect six 68000 based Charles River Data Systems for the purpose of file transfer. Each system required hardware installation and connection to the Ethernet cable. -
Thoughts About Network Protocols and the Internet
Thoughts about Network Protocols and the Internet Radia Perlman Dell EMC [email protected] 1 Most important point I’ll make 2 Most important point I’ll make • Not everything you read, or hear is true 3 How networking tends to be taught • Memorize these standards documents, or the arcane details of some implementation that got deployed • Nothing else ever existed • Except possibly to make vague, nontechnical, snide comments about other stuff 4 My philosophy on teaching (and books) • Look at each conceptual problem, like how to autoconfigure an address • Talk about a bunch of approaches to that, with tradeoffs • Then mention how various protocols (e.g., IPv4, IPv6, Appletalk, IPX, DECnet, …) solve it 5 But some professors say… • Why is there stuff in here that my students don’t “need to know”? 6 Where does confusion come from? • Hype • People repeating stuff • Buzzwords with no clear definition – Or persons A and B have a clear definition in mind, but different from each other • Or the world changing, so something that used to be true is no longer true 7 Things are so confusing • Comparing technology A vs B – Nobody knows both of them – Somebody mumbles some vague marketing thing, and everyone repeats it – Both A and B are moving targets 8 Standards Bodies… 9 What about “facts”? • What if you measure A vs B? 10 What about “facts”? • What if you measure A vs B? • What are you actually measuring?...one implementation of A vs one implementation of B 11 What about “facts”? • What if you measure A vs B? • What are you actually measuring?...one -
Myths, Missteps, and Folklore in Protocol Design
Sun Laboratories 2000-0058 Myths, Missteps, and Folklore in Protocol Design Radia Perlman Sun Labs, East Coast [email protected] 1 Radia Perlman Sun Laboratories 2000-0058 Outline • Bridges, Routers, and Switches, Oh My! • What’s with IP Multicast? • What’s with IPv6? • ARPANET flooding • BGP • Compatible Parameters • Forward Compatibility • How not to get any advantage from a public key system 2 Radia Perlman Sun Laboratories 2000-0058 Why This Talk? • Learn from mistakes • Understand oddities in today’s protocols • Counteract “religion” aspect “It’s not what you don’t know that’ll get you. It’s what you do know that ain’t true” ..............Mark Twain • Be provocative. Start lively discussion. 3 Radia Perlman Sun Laboratories 2000-0058 Bridges and Routers and Switches, Oh My! • ISO’s OSI Reference Model - layer 1: physical - layer 2: neighbor-neighbor - layer 3: talk across cloud via a multi-hop path - layer 4: end-to-end - layer 5 and above: boring • Repeater: layer 1 relay • Bridge: layer 2 relay • Router: layer 3 relay • OK. Why is there such a thing as a layer 2 relay? 4 Radia Perlman Sun Laboratories 2000-0058 Definition of Layer 2 Protocol: Anything defined by a committee whose charter is to standardize a layer 2 protocol. What does a (connectionless) layer 3 protocol look like? • put “envelope” on your data that includes destination, source address and hop count • Layer 3 addresses usually hierarchical location node • With point-to-point links, only need one set of addresses: ultimate source, and ultimate destination • With multi-access links like Ethernet, need “next hop” also 5 Radia Perlman Sun Laboratories 2000-0058 Ethernet • Need “next hop” address in addition to ultimate destination A δ φ R1β R2 R3 α ε S π D layer 2 layer 3 α src= src=S data dst=β dst=D δ src= src=S data dst=φ dst=D ε src= src=S data dst=π dst=D • Also required rethinking routing algorithm (e.g., Designated Routers, pseudonodes) 6 Radia Perlman Sun Laboratories 2000-0058 What are Bridges? • Myth: Bridges were invented before routers. -
List of Internet Pioneers
List of Internet pioneers Instead of a single "inventor", the Internet was developed by many people over many years. The following are some Internet pioneers who contributed to its early development. These include early theoretical foundations, specifying original protocols, and expansion beyond a research tool to wide deployment. The pioneers Contents Claude Shannon The pioneers Claude Shannon Claude Shannon (1916–2001) called the "father of modern information Vannevar Bush theory", published "A Mathematical Theory of Communication" in J. C. R. Licklider 1948. His paper gave a formal way of studying communication channels. It established fundamental limits on the efficiency of Paul Baran communication over noisy channels, and presented the challenge of Donald Davies finding families of codes to achieve capacity.[1] Charles M. Herzfeld Bob Taylor Vannevar Bush Larry Roberts Leonard Kleinrock Vannevar Bush (1890–1974) helped to establish a partnership between Bob Kahn U.S. military, university research, and independent think tanks. He was Douglas Engelbart appointed Chairman of the National Defense Research Committee in Elizabeth Feinler 1940 by President Franklin D. Roosevelt, appointed Director of the Louis Pouzin Office of Scientific Research and Development in 1941, and from 1946 John Klensin to 1947, he served as chairman of the Joint Research and Development Vint Cerf Board. Out of this would come DARPA, which in turn would lead to the ARPANET Project.[2] His July 1945 Atlantic Monthly article "As We Yogen Dalal May Think" proposed Memex, a theoretical proto-hypertext computer Peter Kirstein system in which an individual compresses and stores all of their books, Steve Crocker records, and communications, which is then mechanized so that it may Jon Postel [3] be consulted with exceeding speed and flexibility. -
Lecture 9: Networks to Internetworks
Lecture 9: Networks to Internetworks CSE 123: Computer Networks Aaron Schulman HW 1 due today Lecture 9 Overview ! Bridging & switching (cont.) u Spanning Tree ! Internetworking u Routing u Internet Protocol CSE 123 – Lecture 8: From networks to Internetworks 2 Spanning Tree A ! Spanning tree uses B subset of bridges so B3 there are no cycles C B5 u Prune some ports D B7 B2 K u Only one tree E F B1 ! Q: How do we find a spanning tree? G H u Automatically! B6 B4 u Elect root, find paths I J CSE 123 – Lecture 9: From networks to Internetworks 3 Spanning Tree Algorithm ! Each bridge sends periodic configuration messages u (RootID, Distance to Root, BridgeID) u All nodes think they are root initially ! Each bridge updates route/Root upon receipt u Smaller root address is better u Select port with lowest cost to root as “root port” u To break ties, bridge with smaller address is better ! Rebroadcast new config to ports for which we’re “best” u Don’t bother sending config to LANs with better options u Add 1 to distance, send new configs on ports that haven’t told us about a shorter path to the root ! Only forward packets on ports for which we’re on the shortest path to root (prunes edges to form tree) CSE 123 – Lecture 9: From networks to Internetworks 4 Spanning Tree Example ! Sample messages to and from B3: A B B3 1. B3 sends (B3, 0, B3) to B2 [LAN C] and B5 [LAN A] C B5 2. -
Advanced Computer Networks Cs 538 Fall 2011
Advanced Computer Networks cs 538 fall 2011 Brighten Godfrey [email protected] Fall 2011 slides ©2010-2011 by Brighten Godfrey except photographs (from Computer History Museum) and unless otherwise noted To d ay Course Overview Internet History Your Future This course • is instructed by Brighten Godfrey ([email protected], 3128 Siebel) • takes place Tue & Thu, 3:30 - 4:45 pm, in 1302 Siebel • comes with FREE office hours: currently, Tuesdays after class and by appointment • has a web site: http://www.cs.illinois.edu/~pbg/ courses/cs538fa11/ Your instructor • Ph.D. from UC Berkeley, 2009 • Dissertation on improving resilience and performance of distributed systems by taking advantage of heterogeneity • Research interests: • Reliable, flexible, and efficient networked systems • Algorithms for and analysis of distributed systems Course goal • Prepare ourselves to perform high-quality research advancing the field of networking Course components • Networking literature • The classics • The challenges • The latest • Research project • How to read, criticize, and present research Major topics • Core architecture • Classic Internet architecture • Congestion control • Forwarding • Routing • Naming • Making it work well • Reliability, scalability, selfishness, security • Domain-specific networks • Enterprise, data center, P2P, wireless Requirements & grading • Project (45%) • Midterm presentation (10%) • Final paper (20%) • Final poster presentation (15%) • Assignments, quizzes (15%) • Paper reviews (15%) • Paper presentations (15%) • Class participation -
Computer Networking: a Top-Down Approach, 7Th Edition
Computer Networking A Top-Down Approach Seventh Edition James F. Kurose University of Massachusetts, Amherst Keith W. Ross NYU and NYU Shanghai Boston Columbus Indianapolis New York San Francisco Hoboken Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo Vice President, Editorial Director, ECS: Marcia Horton Acquisitions Editor: Matt Goldstein Editorial Assistant: Kristy Alaura Vice President of Marketing: Christy Lesko Director of Field Marketing: Tim Galligan Product Marketing Manager: Bram Van Kempen Field Marketing Manager: Demetrius Hall Marketing Assistant: Jon Bryant Director of Product Management: Erin Gregg Team Lead, Program and Project Management: Scott Disanno Program Manager: Joanne Manning and Carole Snyder Project Manager: Katrina Ostler, Ostler Editorial, Inc. Senior Specialist, Program Planning and Support: Maura Zaldivar-Garcia Cover Designer: Joyce Wells Manager, Rights and Permissions: Ben Ferrini Project Manager, Rights and Permissions: Jenny Hoffman, Aptara Corporation Inventory Manager: Ann Lam Cover Image: Marc Gutierrez/Getty Images Media Project Manager: Steve Wright Composition: Cenveo Publishing Services Printer/Binder: Edwards Brothers Malloy Cover and Insert Printer: Phoenix Color/ Hagerstown Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on appropriate page within text. Copyright © 2017, 2013, 2010 Pearson Education, Inc. All rights reserved. Manufactured in the United States of America. This publication is protected by Copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, request forms and the appropriate contacts within the Pearson Education Global Rights & Permissions Department, please visit www.pearsoned.com/permissions/. -
Introduction to TRILL by Radia Perlman, Intel Labs, and Donald Eastlake, Huawei Technologies
September 2011 Volume 14, Number 3 A Quarterly Technical Publication for From The Editor Internet and Intranet Professionals I recently attended a conference in Japan where the attendee network offered IPv6 service only. In the past, conferences such as the Asia In This Issue Pacific Regional Conference on Operational Technologies (APRICOT) and meetings of the Internet Engineering Task Force (IETF) have conducted IPv6 experiments, but these have all been “opt-in” events. From the Editor ...................... 1 The conference in Japan was different: there was no IPv4 service available. Making this work involved a few manual configuration TRILL ..................................... 2 steps, but for the most part everything worked more or less the same as it did under IPv4. Some applications, including my instant message client and Skype did not work, and all connections to IPv4-only hosts IP Backhaul ........................... 21 needed to use Fully Qualified Domain Names (FQDNs) instead of IP addresses, but overall the experience gave me confidence that IPv6 is becoming a reality. As you might expect, this IPv6-only experiment Fragments ............................. 30 also uncovered a number of bugs and incompatibilities that were duly reported to developers around the world. Call for Papers ...................... 31 Our first article is an overview of TRansparent Interconnection of Lots of Links (TRILL). TRILL uses Layer 3 routing techniques to create a large cloud of links that appear to IP nodes to be a single IP subnet. The protocol has been developed in the IETF and is currently being refined and enhanced in the TRILL working group. The article is by Radia Perlman and Donald Eastlake. -
Principles of Computer System Design an Introduction
Principles of Computer System Design An Introduction Suggestions for Further Reading Jerome H. Saltzer M. Frans Kaashoek Massachusetts Institute of Technology Version 5.0 Saltzer & Kaashoek Ch. 11, p. i June 24, 2009 12:32 am Copyright © 2009 by Jerome H. Saltzer and M. Frans Kaashoek. Some Rights Reserved. This work is licensed under a Creative Commons Attribution-Non commercial-Share Alike 3.0 United States License. For more information on what this license means, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ Designations used by companies to distinguish their products are often claimed as trade marks or registered trademarks. In all instances in which the authors are aware of a claim, the product names appear in initial capital or all capital letters. All trademarks that appear or are otherwise referred to in this work belong to their respective owners. Suggestions, Comments, Corrections, and Requests to waive license restrictions: Please send correspondence by electronic mail to: [email protected] and [email protected] Saltzer & Kaashoek Ch. 11, p. ii June 24, 2009 12:32 am Suggestions for Further Reading CHAPTER TABLE OF CONTENTS Introduction................................................................................... SR–2 1 Systems ..................................................................................... SR–4 1.1 Wonderful books about systems ............................................... SR–4 1.2 Really good books about systems. ............................................ SR–6 1.3 Good books on related