(Poales): Contributions to Their Reproductive Biology, Taxonomy, and Phylogeny Author(S): Aline Oriani and Vera L

Total Page:16

File Type:pdf, Size:1020Kb

(Poales): Contributions to Their Reproductive Biology, Taxonomy, and Phylogeny Author(S): Aline Oriani and Vera L Floral Anatomy of Xyrids (Poales): Contributions to Their Reproductive Biology, Taxonomy, and Phylogeny Author(s): Aline Oriani and Vera L. Scatena Source: International Journal of Plant Sciences, Vol. 173, No. 7 (September 2012), pp. 767-779 Published by: The University of Chicago Press Stable URL: http://www.jstor.org/stable/10.1086/666664 . Accessed: 17/09/2013 10:39 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press is collaborating with JSTOR to digitize, preserve and extend access to International Journal of Plant Sciences. http://www.jstor.org This content downloaded from 200.145.3.55 on Tue, 17 Sep 2013 10:39:12 AM All use subject to JSTOR Terms and Conditions Int. J. Plant Sci. 173(7):767–779. 2012. Ó 2012 by The University of Chicago. All rights reserved. 1058-5893/2012/17307-0003$15.00 DOI: 10.1086/666664 FLORAL ANATOMY OF XYRIDS (POALES): CONTRIBUTIONS TO THEIR REPRODUCTIVE BIOLOGY, TAXONOMY, AND PHYLOGENY Aline Oriani1,* and Vera L. Scatena* *Departamento de Botaˆnica, Instituto de Biocieˆncias, Universidade Estadual Paulista, C. Postal 199, 13506900 Rio Claro, Sa˜o Paulo, Brazil Xyridaceae, Eriocaulaceae, and Mayacaceae form the xyrid clade, which is weakly supported in Poales. The floral anatomy of xyrid species was studied, to contribute to the understanding of the relationships within the group. Both Eriocaulaceae and Xyridaceae have petals with elongated epidermal cells with straight walls, epipetalous stamens, staminodes, anthers with longitudinal dehiscence, an endothecium with band-like thickenings, and a style vascularized by the dorsal carpellary bundles; these characteristics thus corroborate the close relationship of these groups indicated by phylogenetic analyses. Mayacaceae is distinguished by the presence of papillose epidermal cells in the petals, a reduced inner whorl of stamens, poricidal anthers, an endothecium lacking thickenings, a style and stigma vascularized by the dorsal and ventral carpellary bundles, and the presence of an obturator in the ovary wall. A reduction in the inner whorl of fertile stamens also occurs in Juncaceae and Cyperaceae, linking Mayacaceae to the cyperids. The stylar appendages of Orectanthe (Xyridaceae) have been shown to be nectariferous and anatomically similar to those of Abolboda, dif- ferentiating these two genera from Xyris (Xyridoideae) and confirming their placement in Abolbodoideae. Stylar appendages also occur in Eriocaulaceae, with the same function, position, and vascularization, and are therefore homologous structures, reinforcing the phylogenetic proximity between Eriocaulaceae and Xyridaceae. Keywords: Eriocaulaceae, flower, Mayacaceae, Poales, Xyridaceae, xyrids. Introduction Mayacaceae to Eriocaulaceae and Xyridaceae, and there is relatively little evidence that these three families will continue The xyrids are a clade of Poales that comprises Xyridaceae, to form a clade when new data are added to future phyloge- Eriocaulaceae, and Mayacaceae (Linder and Rudall 2005; netic analyses. Givnish et al. 2010). However, the most recent phylogenetic Xyridaceae includes five genera and ;300 herbaceous spe- analysis of the Poales (Givnish et al. 2010), which was per- cies (Kral 1998). Xyris is the largest genus of this family formed on the basis of both morphological and molecular and comprises ;270 species found across a pantropical dis- data, has demonstrated that this is the most weakly supported tribution, mainly in Central and South America (Kral 1998). clade within the order. These three families, together with Abolboda includes ;20 species, whereas Aratitiyopea, Achly- Rapateaceae and Commelinaceae, had been grouped into the phila, and Orectanthe are represented by only one or two Commelinales (Dahlgren and Clifford 1982; Dahlgren et al. species, with distribution restricted to the tropical regions of 1985) because of shared features such as a nuclear endosperm South America (Kral 1998). Studies on the floral anatomy of and showy flowers with a differentiated perianth, which are Xyridaceae have been performed with a taxonomic focus characteristics that are considered plesiomorphic for the com- only for Xyris (Sajo et al. 1997; Rudall and Sajo 1999). The melinids. reproductive biology of Abolboda species has been studied Xyridaceae and Eriocaulaceae are identified as sister groups by Oriani and Scatena (2011), who first demonstrated the in most of the phylogenetic analyses of Poales (Givnish et al. production of nectar by stylar appendages in Xyridaceae and 1999, 2005, 2006; Chase et al. 2000, 2006; Bremer 2002; anatomically characterized these nectariferous structures. Christin et al. 2008). Mayacaceae is clustered as a sister Within the Xyridaceae, stylar appendages also occur in Arati- group to Eriocaulaceae (Givnish et al. 2010); the cyperid tiyopea and Orectanthe (Kral 1992, 1998) and constitute clade, which includes Cyperaceae, Juncaceae, and Thurniaceae one of the characteristics that support the circumscription of (Chase et al. 2000; Christin et al. 2008); or the clade formed the subfamily Abolbodoideae (Stevens 2011). by the cyperids plus Eriocaulaceae-Xyridaceae (Givnish et al. Eriocaulaceae comprises 10 genera and ;1400 herbaceous 2005, 2006; Chase et al. 2006). According to Givnish et al. species with a pantropical distribution (Stu¨tzel 1998; Giulietti (2010), there are a few morphological characteristics that link et al. 2012). Species of this family are found in the tropical and subtropical regions around the world, with diversity con- centrated in South America, especially Brazil (Giulietti and Hensold 1990; Stu¨tzel 1998). Floral anatomy studies with a tax- 1 Author for correspondence; e-mail: [email protected]. onomic and evolutionary focus have been conducted on differ- Manuscript received December 2011; revised manuscript received April 2012. ent species of Eriocaulaceae (Rosa and Scatena 2003, 2007). 767 This content downloaded from 200.145.3.55 on Tue, 17 Sep 2013 10:39:12 AM All use subject to JSTOR Terms and Conditions 768 INTERNATIONAL JOURNAL OF PLANT SCIENCES According to Rosa and Scatena (2007), most representatives A minimum of three individuals of each species was of the family have diclinous and isostemonous flowers that are examined. Isolated flowers were subjected to the n-butyl al- probably derived from a hermaphroditic ancestor with diplo- cohol dehydration series, infiltration, and inclusion in (2- stemonous flowers. Rosa and Scatena (2003, 2007) also hydroxyethyl)-methacrylate (Leica Historesin embedding reported the occurrence of nectariferous structures in the kit; Feder and O’Brien 1968). The embedded material was gynoecium of species of Eriocaulaceae, an important fea- sectioned using a Leica Reichert-Jung 2040 rotatory micro- ture for the phylogeny of Poales, since it may reinforce the tome (6–8-mm thick sections), stained with periodic acid– phylogenetic proximity between this family and Xyridaceae. Schiff’s reagent (PAS) and toluidine blue (Feder and O’Brien Mayacaceae comprises only four to 10 species in the sin- 1968), and mounted on permanent slides with Entellan gle genus Mayaca, and all are herbaceous, aquatic, or am- (Merck). Photomicrographs were obtained with an IM50 phibious plants (Stevenson 1998). With the exception of the (Leica Image Manager V.5.0) digital imaging system, using African species Mayaca baumii, Mayaca is limited to Neo- an image-capturing device (Leica, DFC 290) coupled to a mi- tropical regions, with a higher concentration of species found croscope (Leica, DM LB). Isolated flowers were also immersed in South America (Stevenson 1998). A study conducted on the in a 1 : 10,000 solution of neutral red (Kearns and Inouye floral anatomy of Neotropical species of Mayacaceae identi- 1993), to stain secretory structures. fied characteristics that distinguish the species as well as char- For analysis using SEM (Zeiss, DSM 950), flowers fixed in acteristics that support the positioning of this family within FAA 50 and dehydrated in 70% ethanol were immersed in Poales (Carvalho et al. 2009). According to Carvalho et al. FDA (formaldehyde-dimethylacetate; Gerstberger and Leins (2009), the number of stamens and microsporangia and the 1978), subjected to critical-point drying (Balzers, CPD 030), type of ovule and placentation link Mayacaceae to other and metallized with gold (Bal-Tec, SCD 050). The results families of the order. were recorded using a DIPS (Digital Image Processing Soft- Given the numerous uncertainties regarding the interfamily ware 2.2; Leipzig) digital imaging system. relationships within the Poales—particularly the relationships among the Xyridaceae, Eriocaulaceae, and Mayacaceae—this study aims to investigate the floral anatomy of xyrid species Results in order to identify characteristics on which to base the rela- tive positioning of these three families within the order. For Mayaca this purpose, we used data already published about represen- Mayaca fluviatilis and Mayaca sellowiana have monoclinous, tatives of Xyridaceae, Eriocaulaceae, and Mayacaceae (Sajo dichlamydeous, heterochlamydeous, and actinomorphic
Recommended publications
  • Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE
    Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE LILIACEAE de Jussieu 1789 (Lily Family) (also see AGAVACEAE, ALLIACEAE, ALSTROEMERIACEAE, AMARYLLIDACEAE, ASPARAGACEAE, COLCHICACEAE, HEMEROCALLIDACEAE, HOSTACEAE, HYACINTHACEAE, HYPOXIDACEAE, MELANTHIACEAE, NARTHECIACEAE, RUSCACEAE, SMILACACEAE, THEMIDACEAE, TOFIELDIACEAE) As here interpreted narrowly, the Liliaceae constitutes about 11 genera and 550 species, of the Northern Hemisphere. There has been much recent investigation and re-interpretation of evidence regarding the upper-level taxonomy of the Liliales, with strong suggestions that the broad Liliaceae recognized by Cronquist (1981) is artificial and polyphyletic. Cronquist (1993) himself concurs, at least to a degree: "we still await a comprehensive reorganization of the lilies into several families more comparable to other recognized families of angiosperms." Dahlgren & Clifford (1982) and Dahlgren, Clifford, & Yeo (1985) synthesized an early phase in the modern revolution of monocot taxonomy. Since then, additional research, especially molecular (Duvall et al. 1993, Chase et al. 1993, Bogler & Simpson 1995, and many others), has strongly validated the general lines (and many details) of Dahlgren's arrangement. The most recent synthesis (Kubitzki 1998a) is followed as the basis for familial and generic taxonomy of the lilies and their relatives (see summary below). References: Angiosperm Phylogeny Group (1998, 2003); Tamura in Kubitzki (1998a). Our “liliaceous” genera (members of orders placed in the Lilianae) are therefore divided as shown below, largely following Kubitzki (1998a) and some more recent molecular analyses. ALISMATALES TOFIELDIACEAE: Pleea, Tofieldia. LILIALES ALSTROEMERIACEAE: Alstroemeria COLCHICACEAE: Colchicum, Uvularia. LILIACEAE: Clintonia, Erythronium, Lilium, Medeola, Prosartes, Streptopus, Tricyrtis, Tulipa. MELANTHIACEAE: Amianthium, Anticlea, Chamaelirium, Helonias, Melanthium, Schoenocaulon, Stenanthium, Veratrum, Toxicoscordion, Trillium, Xerophyllum, Zigadenus.
    [Show full text]
  • Alphabetical Lists of the Vascular Plant Families with Their Phylogenetic
    Colligo 2 (1) : 3-10 BOTANIQUE Alphabetical lists of the vascular plant families with their phylogenetic classification numbers Listes alphabétiques des familles de plantes vasculaires avec leurs numéros de classement phylogénétique FRÉDÉRIC DANET* *Mairie de Lyon, Espaces verts, Jardin botanique, Herbier, 69205 Lyon cedex 01, France - [email protected] Citation : Danet F., 2019. Alphabetical lists of the vascular plant families with their phylogenetic classification numbers. Colligo, 2(1) : 3- 10. https://perma.cc/2WFD-A2A7 KEY-WORDS Angiosperms family arrangement Summary: This paper provides, for herbarium cura- Gymnosperms Classification tors, the alphabetical lists of the recognized families Pteridophytes APG system in pteridophytes, gymnosperms and angiosperms Ferns PPG system with their phylogenetic classification numbers. Lycophytes phylogeny Herbarium MOTS-CLÉS Angiospermes rangement des familles Résumé : Cet article produit, pour les conservateurs Gymnospermes Classification d’herbier, les listes alphabétiques des familles recon- Ptéridophytes système APG nues pour les ptéridophytes, les gymnospermes et Fougères système PPG les angiospermes avec leurs numéros de classement Lycophytes phylogénie phylogénétique. Herbier Introduction These alphabetical lists have been established for the systems of A.-L de Jussieu, A.-P. de Can- The organization of herbarium collections con- dolle, Bentham & Hooker, etc. that are still used sists in arranging the specimens logically to in the management of historical herbaria find and reclassify them easily in the appro- whose original classification is voluntarily pre- priate storage units. In the vascular plant col- served. lections, commonly used methods are systema- Recent classification systems based on molecu- tic classification, alphabetical classification, or lar phylogenies have developed, and herbaria combinations of both.
    [Show full text]
  • VESSELS in ERIOCAULACEAE By
    IAWA Journ al, Vol. 17 (2), 1996: 183-204 VESSELS IN ERIOCAULACEAE by Jennifer A. Thorsch & Vernon I. Cheadle I Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93 106, U.S.A. SUMMARY The occ urrence and level of specialization of vesse ls in 70 species representing 12 genera of Eriocaulaceae are presented. In alI species of Eriocaulaceae and in alI parts of the plant examined, vessels with simple perforations have been identified . Correlations between level of specia­ lization of vessel members and ecological conditi ons are reported for species from diverse habitats and species with distinct differences in habit. The pattern of origin and specialization of tracheary celIs in Erio­ caulaceae was compared to tracheary data for Xyridaceae , Rapateaceae, Restionaceae and Centrolepidaceae. The evolutionary position of these families has been regarded as close to Eriocaulaceae. Key words: Eriocaulaceae, vessels, perforation plates, phylogenetic posi­ tion. INTRODUCTION This paper provides detailed information about perforation plates of vessels in Erio­ caulaceae, the 29th family we have similarly examined in monocotyledons. The near­ ly complete list of families analyzed in detail is given in the literature cited in the paper on Commelinales (Cheadle & Kosakai 1980). Our studies on the tracheary elements in monocotyledons have included families and species from a broad range of habits, habitats and geographical sites around the world. Families for study were selected based on three criteria: I) presence of alI plant parts, 2) variety of habits and habitats, and 3) broad representation of the species within the family. The data on tracheids and vessels from these broadly based studies led to the folIowing brief conclusions.
    [Show full text]
  • Floral Ontogeny and Vasculature in Xyridaceae, with Particular Reference to Staminodes and Stylar Appendages Author(S): M
    Floral ontogeny and vasculature in Xyridaceae, with particular reference to staminodes and stylar appendages Author(s): M. Graça Sajo, Aline Oriani, Vera L. Scatena and Paula J. Rudall Source: Plant Systematics and Evolution, Vol. 303, No. 9 (November 2017), pp. 1293-1310 Published by: Springer Stable URL: https://www.jstor.org/stable/44853796 Accessed: 21-06-2021 11:00 UTC JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms Springer is collaborating with JSTOR to digitize, preserve and extend access to Plant Systematics and Evolution This content downloaded from 86.59.13.237 on Mon, 21 Jun 2021 11:00:03 UTC All use subject to https://about.jstor.org/terms Plant Syst Evol (2017) 303:1293-1310 CrossMark DOI 10. 1007/s00606-0 17- 1438-3 VOZ ORIGINAL ARTICLE Floral ontogeny and vasculature in Xyridaceae, with particular reference to staminodes and stylar appendages M. Graça Sajo1 • Aline Oriani1 • Vera L. Scatena1 • Paula J. Rudall2© Received: 29 March 2017 /Accepted: 24 June 2017 /Published online: 7 July 2017 © The Author(s) This2017. article is an open access publication Abstract We provide a detailed comparative evolutionary study historyof of the xyrid clade; this transition floral ontogeny and vasculature in Xyridaceae, occurred includ-either once followed by a reversal to fertile sta- ing Xyris , Abolboda and Orectanthe.
    [Show full text]
  • Common Name: DRUMMOND's YELLOW-EYED GRASS
    Common Name: DRUMMOND’S YELLOW-EYED GRASS Scientific Name: Xyris drummondii Malme Other Commonly Used Names: none Previously Used Scientific Names: none Family: Xyridaceae (yellow-eyed grass) Rarity Ranks: G3/S1 State Legal Status: Special Concern Federal Legal Status: none Federal Wetland Status: OBL Description: Perennial herb usually occurring in clumps; base of the plant with a shiny, reddish-brown patch, often buried in sand. Leaves 1¼ - 4 inches (3 - 10 cm) long, less than ¼ inch (1.5 - 5 mm) wide, flat, leaf bases overlapping and forming a fan. Flower stalk 1½ - 8 inches (4 - 25 cm) tall, ribbed, with a leaf-like sheath, as long as or slightly shorter than most of the leaves, enclosing the base of the stalk. Cone-like flower spike - inch (3 - 8 mm) long, oval, solitary at the top of the flower stalk, composed of many tan, papery, rounded, overlapping bracts, each bract with a small green patch; spikes usually produce only 1 flower per day. Flower with 3 yellow petals, rising from under a bract, opening in the morning and withering around noon; sepals are hidden under the bracts. Similar Species: Yellow-eyed grasses are very similar; this species is distinguished by the reddish-brown patch at the base of the plant and by the sheath of the flower stalk which is about the same length as the leaves. Related Rare Species: Harper’s yellow-eyed grass (Xyris scabrifolia, Special Concern) has a fleshy, pink-purple base; a twisted flower stalk with a sheath shorter than the leaves; and rounded petals. Its leaves are covered with tiny bumps which give them a rough texture and a glazed look.
    [Show full text]
  • Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
    Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M.
    [Show full text]
  • GENOME EVOLUTION in MONOCOTS a Dissertation
    GENOME EVOLUTION IN MONOCOTS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Kate L. Hertweck Dr. J. Chris Pires, Dissertation Advisor JULY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled GENOME EVOLUTION IN MONOCOTS Presented by Kate L. Hertweck A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. J. Chris Pires Dr. Lori Eggert Dr. Candace Galen Dr. Rose‐Marie Muzika ACKNOWLEDGEMENTS I am indebted to many people for their assistance during the course of my graduate education. I would not have derived such a keen understanding of the learning process without the tutelage of Dr. Sandi Abell. Members of the Pires lab provided prolific support in improving lab techniques, computational analysis, greenhouse maintenance, and writing support. Team Monocot, including Dr. Mike Kinney, Dr. Roxi Steele, and Erica Wheeler were particularly helpful, but other lab members working on Brassicaceae (Dr. Zhiyong Xiong, Dr. Maqsood Rehman, Pat Edger, Tatiana Arias, Dustin Mayfield) all provided vital support as well. I am also grateful for the support of a high school student, Cady Anderson, and an undergraduate, Tori Docktor, for their assistance in laboratory procedures. Many people, scientist and otherwise, helped with field collections: Dr. Travis Columbus, Hester Bell, Doug and Judy McGoon, Julie Ketner, Katy Klymus, and William Alexander. Many thanks to Barb Sonderman for taking care of my greenhouse collection of many odd plants brought back from the field.
    [Show full text]
  • Inflorescence Architecture and Floral Morphology of Aratitiyopea Lopezii (Xyridaceae) Lisa M
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 23 | Issue 1 Article 17 2007 Inflorescence Architecture and Floral Morphology of Aratitiyopea lopezii (Xyridaceae) Lisa M. Campbell New York Botanical Garden, Bronx Dennis Wm. Stevenson New York Botanical Garden, Bronx Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Campbell, Lisa M. and Stevenson, Dennis Wm. (2007) "Inflorescence Architecture and Floral Morphology of Aratitiyopea lopezii (Xyridaceae)," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 23: Iss. 1, Article 17. Available at: http://scholarship.claremont.edu/aliso/vol23/iss1/17 Aliso 23, pp. 227–233 ᭧ 2007, Rancho Santa Ana Botanic Garden INFLORESCENCE ARCHITECTURE AND FLORAL MORPHOLOGY OF ARATITIYOPEA LOPEZII (XYRIDACEAE) LISA M. CAMPBELL1, 2 AND DENNIS WM.STEVENSON1 1The New York Botanical Garden, Bronx, New York 10458, USA 2Corresponding author ([email protected]) ABSTRACT Aratitiyopea lopezii is a robust perennial species of Xyridaceae from seasonally saturated, mid- to high-elevation, sandstone and granite sites in northern South America. The species lacks the scapose inflorescence characteristic of Xyridaceae and, having the gestalt of a rhizomatous bromeliad, it is seemingly aberrant in the family. However, closer examination confirms features consistent with the family and the previously noted morphological similarities to Orectanthe. Details of inflorescence structure and floral morphology are presented and compared to other genera of Xyridaceae. Key words: Aratitiyopea, Bromeliaceae, gynoecium appendage, inflorescence, Navia, nectary, Orec- tanthe, osmophore, pollen, Xyridaceae. INTRODUCTION florescence, and the few exceptions to this growth form (i.e., some Abolboda species, Achlyphila, and Aratitiyopea) have Aratitiyopea (Xyridaceae) is a monospecific genus of her- not been critically evaluated.
    [Show full text]
  • The Vascular Flora of Rarău Massif (Eastern Carpathians, Romania). Note Ii
    Memoirs of the Scientific Sections of the Romanian Academy Tome XXXVI, 2013 BIOLOGY THE VASCULAR FLORA OF RARĂU MASSIF (EASTERN CARPATHIANS, ROMANIA). NOTE II ADRIAN OPREA1 and CULIŢĂ SÎRBU2 1 “Anastasie Fătu” Botanical Garden, Str. Dumbrava Roşie, nr. 7-9, 700522–Iaşi, Romania 2 University of Agricultural Sciences and Veterinary Medicine Iaşi, Faculty of Agriculture, Str. Mihail Sadoveanu, nr. 3, 700490–Iaşi, Romania Corresponding author: [email protected] This second part of the paper about the vascular flora of Rarău Massif listed approximately half of the whole number of the species registered by the authors in their field trips or already included in literature on the same area. Other taxa have been added to the initial list of plants, so that, the total number of taxa registered by the authors in Rarău Massif amount to 1443 taxa (1133 species and 310 subspecies, varieties and forms). There was signaled out the alien taxa on the surveyed area (18 species) and those dubious presence of some taxa for the same area (17 species). Also, there were listed all the vascular plants, protected by various laws or regulations, both internal or international, existing in Rarău (i.e. 189 taxa). Finally, there has been assessed the degree of wild flora conservation, using several indicators introduced in literature by Nowak, as they are: conservation indicator (C), threat conservation indicator) (CK), sozophytisation indicator (W), and conservation effectiveness indicator (E). Key words: Vascular flora, Rarău Massif, Romania, conservation indicators. 1. INTRODUCTION A comprehensive analysis of Rarău flora, in terms of plant diversity, taxonomic structure, biological, ecological and phytogeographic characteristics, as well as in terms of the richness in endemics, relict or threatened plant species was published in our previous note (see Oprea & Sîrbu 2012).
    [Show full text]
  • Ana M. Giulietti,1,7,8 Maria José G. Andrade,1,4 Vera L
    Rodriguésia 63(1): 001-019. 2012 http://rodriguesia.jbrj.gov.br Molecular phylogeny, morphology and their implications for the taxonomy of Eriocaulaceae Filogenia molecular, morfologia e suas implicações para a taxonomia de Eriocaulaceae Ana M. Giulietti,1,7,8 Maria José G. Andrade,1,4 Vera L. Scatena,2 Marcelo Trovó,6 Alessandra I. Coan,2 Paulo T. Sano,3 Francisco A.R. Santos,1 Ricardo L.B. Borges,1,5 & Cássio van den Berg1 Abstract The pantropical family Eriocaulaceae includes ten genera and c. 1,400 species, with diversity concentrated in the New World. The last complete revision of the family was published more than 100 years ago, and until recently the generic and infrageneric relationships were poorly resolved. However, a multi-disciplinary approach over the last 30 years, using morphological and anatomical characters, has been supplemented with additional data from palynology, chemistry, embryology, population genetics, cytology and, more recently, molecular phylogenetic studies. This led to a reassessment of phylogenetic relationships within the family. In this paper we present new data for the ITS and trnL-F regions, analysed separately and in combination, using maximum parsimony and Bayesian inference. The data confirm previous results, and show that many characters traditionally used for differentiating and circumscribing the genera within the family are homoplasious. A new generic key with characters from various sources and reflecting the current taxonomic changes is presented. Key words: anatomy, ITS, phylogenetics, pollen, trnL-trnF. Resumo Eriocaulaceae é uma família pantropical com dez gêneros e cerca de 1.400 espécies, com centro de diversidade no Novo Mundo, especialmente no Brasil.
    [Show full text]
  • Microscopic Features of Monocotyledonous Plants Features of Culms, Flower Stalks, Stems and Rhizomes
    Microscopic features of monocotyledonous plants Features of culms, flower stalks, stems and rhizomes Vol. IV Fritz H. Schweingruber Hugo Berger 1 Coverphoto Eriophorum scheuchzeri Species on the cover Top: Agropyron cristatum Middle (left to right): Luzula alpina-pilosa, Potamogeton pectinatus Base (left to right): Carex acutiformis, Carex pseudocyperus, Carex appropinquata Prof. Dr. Fritz H. Schweingruber Swiss Federal Research Institute WSL Zürichstrasse 111 8903 Birmensdorf Switzerland Email: [email protected] Hugo Berger Email: [email protected] Barbara Berger Design and layout Email: [email protected] Verlag Dr. Kessel Eifelweg 37 D-53424 Remagen Tel.: 0049-2228-493 www.forestrybooks.com www.forstbuch.de ISBN: 978-3-945941-52-2 2 Content 1 Introduction. 5 2 Material .............................................................. 6 3 Preparation ........................................................... 6 4 Features of culms, flower stalks and stems .................... 7 5 Rhizome features of Cyperaceae ............................... 41 6 References ......................................................... 60 7 Index ............................................................... 62 3 4 1. Introduction The list of monocotyledonous culms, flower stalks, rhizomes and stem-features is a result of the studies published in tree volumes: - Vol.I Anatomy of grass culms (Schweingruber and Berger 2017) - Vol. II Anatomy of culms and rhizomes of sedges (Schweingruber and Berger 2018) - Vol. III Anatomy of culms and flower stalks of monocotyledonous plants (Schweingruber and Berger 2018) Here we present the first time a list of features which is applicable on the whole spectrum of monocotyledonous plants in temperate zones of the northern hemisphere. The definition of features is primarily based on double stained microscopic slides from recently collected material. The origin of some feature-characterization originates from monographs of Schenk 1886 and Evans 2003, Seago et al.
    [Show full text]
  • Four New Species of <I>Xyris</I> (<I>Xyridaceae
    Blumea 57, 2012: 116–124 www.ingentaconnect.com/content/nhn/blumea RESEARCH ARTICLE http://dx.doi.org/10.3767/000651912X654191 Four new species of Xyris (Xyridaceae) from Thailand P. Phonsena1, P. Chantaranothai1, A. Meesawat1 Key words Abstract Four new species of Xyris (Xyridaceae), X. bituberosa, X. buengkanensis, X. emarginata, and X. thai­ landica from North-Eastern Thailand are described and illustrated. A provisional conservation assessment for each new species species is given. Thailand Xyridaceae Published on 1 August 2012 Xyris INTRODUCTION & Boonsuk 6418 (holo KKU; iso BK, BKF, C, L), Thailand, Bueng Kan, Phu Wua Wildlife Sanctuary, alt. 400 m, 25 Sept. 2009. Xyridaceae is a small tropical and subtropical family, comprising Etymology. The specific epithet refers to the 2-lobed corm. c. 385 species in five genera: Abolboda Humb. & Bonpl. (1813), Achlyphila Maguire & Wurdack (1960), Aratitiyopea Steyerm. Solitary perennial herb, 40–50(–75) cm tall with a 2-lobed & P.E.Berry (1984), Orectanthe Maguire (1958), and Xyris L. corm. Corm-lobes yellowish brown, subglobose, (0.8–)1–1.5 (1753). Xyris is the largest genus of the family, with more than by (1.2–)1.5–2.3 cm, containing starch grains. Leaves (2–)3–4 250 species (Kral 2000), and is distributed mainly in tropical per plant, linear or subterete, (12–)25–37 cm by 2–2.3 mm, and subtropical North and South America, with about 50 spe- with a ligule; blade smooth, margin entire, apex bluntly oblique cies in Africa, and smaller numbers in Asia and Australia. The to acute. Scape terete, subterete below the spike, 1–1.5 mm other four genera are restricted to South America (Dahlgren et diam.
    [Show full text]