Hemispheric Association and Dissociation of Voice and Speech Information Processing in Stroke Anna Jones, Andrew Farrall, Pascal Belin, Cyril Pernet

Total Page:16

File Type:pdf, Size:1020Kb

Hemispheric Association and Dissociation of Voice and Speech Information Processing in Stroke Anna Jones, Andrew Farrall, Pascal Belin, Cyril Pernet Hemispheric association and dissociation of voice and speech information processing in stroke Anna Jones, Andrew Farrall, Pascal Belin, Cyril Pernet To cite this version: Anna Jones, Andrew Farrall, Pascal Belin, Cyril Pernet. Hemispheric association and dissociation of voice and speech information processing in stroke. Cortex, Elsevier, 2015. hal-01997402 HAL Id: hal-01997402 https://hal-amu.archives-ouvertes.fr/hal-01997402 Submitted on 29 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License cortex 71 (2015) 232e239 Available online at www.sciencedirect.com ScienceDirect Journal homepage: www.elsevier.com/locate/cortex Research report Hemispheric association and dissociation of voice and speech information processing in stroke Anna B. Jones a,b, Andrew J. Farrall a,b, Pascal Belin c,d and * Cyril R. Pernet a,b, a Brain Research Imaging Centre, The University of Edinburgh, UK b Centre for Clinical Brain Sciences, The University of Edinburgh, UK c Institute of Neuroscience and Psychology, University of Glasgow, UK d Institut des Neurosciences de La Timone, UMR 7289, CNRS & Universite Aix-Marseille, France article info abstract Article history: As we listen to someone speaking, we extract both linguistic and non-linguistic informa- Received 9 January 2015 tion. Knowing how these two sets of information are processed in the brain is fundamental Reviewed 21 April 2015 for the general understanding of social communication, speech recognition and therapy of Revised 22 May 2015 language impairments. We investigated the pattern of performances in phoneme versus Accepted 6 July 2015 gender categorization in left and right hemisphere stroke patients, and found an anatomo- Action editor Peter Garrard functional dissociation in the right frontal cortex, establishing a new syndrome in voice Published online 16 July 2015 discrimination abilities. In addition, phoneme and gender performances were most often associated than dissociated in the left hemisphere patients, suggesting a common neural Keywords: underpinnings. Voice gender perception © 2015 Elsevier Ltd. All rights reserved. Phoneme perception Hemispheric dissociation Stroke Aphasia achieve high performance levels, it has been hypothesized that 1. Introduction voice information (talker specific information) is extracted along with the speech signal, and then stripped away to access Speech perception is often seen as special (Liberman & (invariant) phonemic content: a process known as ‘speaker Mattingly, 1989) because localized brain injury can elicit spe- normalization’. This hypothesis is however challenged cific language impairments such as aphasia, and because because general auditory learning mechanisms are capable of healthy individuals are extremely efficient at categorizing explaining category formation in the absence of invariant phonemes and syllables despite large variations in the stim- acoustic information. Birds can learn speech consonant cate- ulus spectral patterns (Liberman, Delattre, & Cooper, 1952). To gories with no obvious acoustic invariant cue (Kluender, Diehl, * Corresponding author. Centre for Clinical Brain Sciences (CCBS), The University of Edinburgh, Chancellor's Building, Room GU426D, 49 Little France Crescent, Edinburgh EH16 4SB, UK. E-mail address: [email protected] (C.R. Pernet). http://dx.doi.org/10.1016/j.cortex.2015.07.004 0010-9452/© 2015 Elsevier Ltd. All rights reserved. cortex 71 (2015) 232e239 233 & Killeen, 1987) and human listeners can readily learn non- we hypothesized that left hemispheric aphasic patients will speech categories that are similarly structured (Wade & Holt, not show such dissociation, while non-aphasic patient could 2005). In addition, several studies showed that talker vari- be impaired for voice but not phoneme. ability influences speech perception. For instance the litera- ture describes increased memory for words spoken by familiar voices, compared to non-familiar voices (Nygaard & Pisoni, 2. Materials and methods 1998; Nygaard, Sommers, & Pisoni, 1994; Palmeri, Goldinger, & Pisoni, 1993), and similarly enhanced discrimination of, The experiment used (program and stimuli) is freely available and memory for, (non-familiar) speakers of our own language from http://dx.doi.org/10.6084/m9.figshare.1287284. It runs compared to speakers of another language (Language Famil- under Matlab with the psychophysical toolbox (Brainard, 1997; iarity Effect e Perrachione & Wong, 2007) even in the absence of Kleiner, Brainard, & Pelli, 2007). The behavioral data and intelligibility (Fleming, Giordano, Caldara, & Belin, 2014). Most scripts used to analyze the data are available from http://dx. of these studies do not, however, specifically address the issue doi.org/10.6084/m9.figshare.1287262. The imaging radiolog- of phoneme perception, and thus acoustical regularities com- ical analysis is also available with the behavioral data. CT or ing from multiple levels are at play. MRI scans could not be shared as they belong to the UK Na- Like speech perception, voice perception is often consid- tional Health Service (NHS) and not to the research team. The ered special (Belin, 2006; Belin, Fecteau, & Bedard, 2004; Scott, study was approved by the NHS Lothian South East Scotland 2008). Humans easily recognize different voices, and this Research Ethics Committee 01 (REC reference number: 11/SS/ ability is of considerable social importance. Voice-selective 0055) and NHS Lothian Research and Development (R&D areas have been demonstrated in the human brain (Belin, project number: 2011/W/NEU/09). Zattorre, & Ahad, 2002; Belin, Zattorre, Lafaille, Ahad, & Pike, 2000; Pernet et al., 2015), localized bilaterally along the upper 2.1. Participants bank (middle and anterior) of the Superior Temporal Sulcus (STS) (Alho et al., 2006; Belin, et al., 2002), and also in the infe- Twenty-five stroke patients (14 males, 11 females) with a rior and orbitofrontal cortex (Charest, Pernet, Latinus, Crabbe, median age of 69 years (min 39, max 85) were recruited into & Belin, 2012; Fecteau, Armony, Joanete, & Belin, 2005) as well this study. At the time of testing, all patients were at the as surrounding insular cortex (Johnstone, van Reekum, Oakes, chronic stage (median time between stroke and testing 90 ± 17 & Davidson, 2006; Rama et al., 2004). This neural selectivity for days). Participants were recruited as inpatients and out- voice has also been established in other mammals, in partic- patients from Lothian NHS hospitals via stroke physicians and ular primates (Johnstone et al., 2006; Rama et al., 2004) and Speech & Language Therapists between 10 and 60 weeks post- more recently dogs (Andics, Gacsi, Farago, Kis, & Miklosi, 2014). stroke with the sole inclusion criterion of a stroke affecting Given the presence of con-specific voice neural selectivity in perisylvian tissues (Supplementary Table 1). Exclusion criteria these animals, we can establish that neural voice selectivity is were the presence of a previous stroke and/or English not an old evolutionary feature (~100 million years for a common being the participant's first language. ancestor between humans and dogs, ~25 million years for a All patients were tested for their mood (Visual Analogue common ancestor between macaques and human), preceding Self Esteem Scale e VASES (Brumfitt & Sheeran, 1999) and The the appearance of speech (~5 to 2 million years ago for proto- Depression Intensity Scale Circles e DISCS (Turner-Stokes, language and ~150,000 to 300,000 years ago for speech e Kalmus, Hirani, & Clegg, 2005) and language abilities (West- Perreault & Mathew, 2012). Following psycholinguistic studies ern Aphasia Battery e WAB, Shewan & Kertesz, 1980). No pa- suggesting that phonetic attributes are an intrinsic component tient had language deficits in the group with right hemisphere of the perception and identification of individuals, i.e., the lesions (N ¼ 9, 5 males and 4 females, WAB median score 98.8), recognition of voices (Remez, Fellowes, & Rubin, 1997), it is and 10 out of 16 patients showed signs of aphasia in the left possible that some brain regions dedicated to speech co-opted hemisphere group (N ¼ 10, 5 males and 5 females, WAB me- neurons already involved in con-specific voice processing. dian score 49.5 for aphasics vs N ¼ 6, 4 males and 2 females, In this study, we investigated how phoneme and talker WAB median score 99.4 for non-aphasics e percentile boot- information processing relate to each other, by comparing strap difference 49.8 [15 80] p ¼ 0). Kruskall-Wallis ANOVA performances of right fronto-temporal (non-aphasic), left showed that groups did not differ in terms of median age fronto-temporal aphasic and left fronto-temporal non- [c2(2,22) ¼ 4.58 p ¼ .1], in median time delay between stroke aphasic stroke patients. Each participant categorized sounds and testing [c2(2,22) ¼ 1.68 p ¼ .43] or depression scores from pitch equalized morphed continua as being mal- [c2(2,22) ¼ 4 p ¼ .13 for VASES and c2(2,22) ¼ 2.19 p ¼ .33
Recommended publications
  • The Importance of Modality Specificity in Diagnosing Central Auditory Processing Disorder
    Point/Counterpoint Article The Importance of Modality Specificity in Diagnosing Central Auditory Processing Disorder Anthony T. Cacace Albany Medical College, Albany, NY Dennis J. McFarland Wadsworth Laboratories, New York State Health Department, Albany Purpose: This article argues for the use of processes from more generalized dysfunction; modality specificity as a unifying framework by it lacked discriminant validity and resulted in which to conceptualize and diagnose central an incomplete assessment. Consequently, any auditory processing disorder (CAPD). The intent hypothetical model resulting from incomplete is to generate dialogue and critical discussion assessments or potential therapies that are in this area of study. based on indeterminate diagnoses are them- Method: Research in the cognitive, behavioral, selves questionable, and caution should be and neural sciences that relates to the concept used in their application. of modality specificity was reviewed and Conclusions: Improving specificity of diag- synthesized. nosis is an imperative core issue to the area Results: Modality specificity has a long of CAPD. Without specificity, the concept has history as an organizing construct within a little explanatory power. Because of serious diverse collection of mainstream scientific flaws in concept and design, the unimodal disciplines. The principle of modality specificity inclusive framework should be abandoned in was contrasted with the unimodal inclusive favor of a more valid approach that uses framework, which holds that auditory tests modality specificity. alone are sufficient to make the CAPD diag- nosis. Evidence from a large body of data demonstrated that the unimodal framework Key Words: central auditory processing was unable to delineate modality-specific disorder, modality specificity ew discoveries, technical innovations, and novel review process is not perfect, it has stood the test of ideas are some of the driving forces behind the time and remains an important element in establishing N advancement of science.
    [Show full text]
  • DISORDERS of AUDITORY PROCESSING: EVIDENCE for MODULARITY in AUDITION Michael R
    DISORDERS OF AUDITORY PROCESSING: EVIDENCE FOR MODULARITY IN AUDITION Michael R. Polster and Sally B. Rose (Psychology Department, Victoria University of Wellington, Wellington, New Zealand) ABSTRACT This article examines four disorders of auditory processing that can result from selective brain damage (cortical deafness, pure word deafness, auditory agnosia and phonagnosia) in an effort to derive a plausible functional and neuroanatomical model of audition. The article begins by identifying three possible reasons why models of auditory processing have been slower to emerge than models of visual processing: neuroanatomical differences between the visual and auditory systems, terminological confusions relating to auditory processing disorders, and technical factors that have made auditory stimuli more difficult to study than visual stimuli. The four auditory disorders are then reviewed and current theories of auditory processing considered. Taken together, these disorders suggest a modular architecture analogous to models of visual processing that have been derived from studying neurological patients. Ideas for future research to test modular theory more fully are presented. Key words: auditory processing, modularity, review INTRODUCTION Neuropsychological investigations of patients suffering from brain damage have flourished in recent years and helped to produce more detailed and neuroanatomically plausible models of several aspects of cognitive function. For example, models of language processing are often closely aligned with studies of aphasia (e.g., Caplan, 1987; Goodglass, 1993) and models of memory draw heavily upon studies of amnesia (e.g., Schacter and Tulving, 1994; Squire, 1987). Most of this research has relied on visually presented materials, and as a result visual processing disorders tend to be more well-documented and better understood than their auditory counterparts.
    [Show full text]
  • Developmental Phonagnosia: a Selective Deficit of Vocal Identity Recognition
    UvA-DARE (Digital Academic Repository) Developmental phonagnosia: a selective deficit of vocal identity recognition Garrido, L.; Eisner, F.; McGettigan, C.; Stewart, L.; Sauter, D.; Hanley, J.R.; Schweinberger, S.R.; Warren, J.D.; Duchaine, B. DOI 10.1016/j.neuropsychologia.2008.08.003 Publication date 2009 Published in Neuropsychologia Link to publication Citation for published version (APA): Garrido, L., Eisner, F., McGettigan, C., Stewart, L., Sauter, D., Hanley, J. R., Schweinberger, S. R., Warren, J. D., & Duchaine, B. (2009). Developmental phonagnosia: a selective deficit of vocal identity recognition. Neuropsychologia, 47(1), 123-131. https://doi.org/10.1016/j.neuropsychologia.2008.08.003 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:23 Sep 2021 Neuropsychologia 47 (2009) 123–131 Contents lists available at ScienceDirect Neuropsychologia journal homepage: www.elsevier.com/locate/neuropsychologia Developmental phonagnosia: A selective deficit of vocal identity recognition Lúcia Garrido a,b,∗, Frank Eisner a,c, Carolyn McGettigan a,c,LaurenStewartd, Disa Sauter e, J.
    [Show full text]
  • A Neuropsychological and Neuroanatomical Analysis
    doi:10.1093/brain/awr205 Brain 2011: 134; 2535–2547 | 2535 BRAIN A JOURNAL OF NEUROLOGY Voice processing in dementia: a neuropsychological and neuroanatomical analysis Julia C. Hailstone,1 Gerard R. Ridgway,1,2 Jonathan W. Bartlett,1,3 Johanna C. Goll,1 Aisling H. Buckley,1 Sebastian J. Crutch1 and Jason D. Warren1 1 Dementia Research Centre, University College London Institute of Neurology, Queen Square, London WC1N 3BG, UK 2 Wellcome Trust Centre for Neuroimaging, University College London Institute of Neurology, Queen Square, London WC1N 3BG, UK 3 Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, UK Correspondence to: Dr J.D. Warren, Dementia Research Centre, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK E-mail: [email protected] Voice processing in neurodegenerative disease is poorly understood. Here we undertook a systematic investigation of voice processing in a cohort of patients with clinical diagnoses representing two canonical dementia syndromes: temporal variant frontotemporal lobar degeneration (n = 14) and Alzheimer’s disease (n = 22). Patient performance was compared with a healthy matched control group (n = 35). All subjects had a comprehensive neuropsychological assessment including measures of voice perception (vocal size, gender, speaker discrimination) and voice recognition (familiarity, identification, naming and cross-modal matching) and equivalent measures of face and name processing. Neuroanatomical associations of voice processing per- formance were assessed using voxel-based morphometry. Both disease groups showed deficits on all aspects of voice recog- nition and impairment was more severe in the temporal variant frontotemporal lobar degeneration group than the Alzheimer’s disease group.
    [Show full text]
  • Phonagnosia: a Dissociation Between Familiar and Unfamiliar Voices
    PHONAGNOSIA: A DISSOCIATION BETWEEN FAMILIAR AND UNFAMILIAR VOICES Diana Roupas Van Lanckert, Jeffrey L. Cummingsl, Jody Kreiman3 and Bruce H. Dobkin4 CNeuropsychology Program, Neuropsychiatric Institure, the Department of Psychiatry and Biodehavioral Sciences, and 1,3The Department of Linguistics, University of California at Los Angeles; 2,4The Neurobehavioral Unit, West Los Angeles VAMC Neurology, School of Medicine; 4University of California, Los Angeles, California, and Daniel Freeman Hospital, Inglewood, CA) In prosopagnosia, patients lose the ability to recognize familiar faces such as those of close friends, family members, and famous personalities (Meadows, 1974), whereas their ability to discriminate between two unfamiliar faces may remain unimpaired (Benton, 1980; Benton and Van Allen, 1968; malone, Morris, Kay and Levin, 1982; Warrington and James, 1967). No similar dissociation between familiar and unfamiliar sensory stimuli in the auditory modality has been reported. A selective deficit in recognition of familiar voices might well go undetected because, in person, the face is available for recognition and, on the telephone, other identification strategies may be employed (Schegloff, 1979). Disturbances in recognition of non-voice auditory patterns have previoulsy been described, including deficits of recognition and discrimination of environmental sounds (Spinnler and Vignolo, 1966; Vignolo, 1969; Barbizet, Duizabo, Enos and Fuchs, 1969; Faglioni, Spinnler and Vignolo, 1969), animal cries (Assal and Aubert, 1979) and music (Kimura, 1964; Milner, 1962). It seems likely that voice perception, with its potential parallel to face recognition and discrimination, might also fall victim to selective impairment in brain damage. The speech signal carries information about personal identity along with the linguistic content of the utterance.
    [Show full text]
  • BOOKCHAPTER Title Deficits in Voice-Identity Processing: Acquired
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 June 2018 doi:10.20944/preprints201806.0280.v1 BOOKCHAPTER Title Deficits in voice-identity processing: acquired and developmental phonagnosia Author names Claudia Roswandowitz a,b * Corrina Maguinnessa * Katharina von Kriegstein a,c,d Author affiliations a Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany b International Max Planck Research School on Neuroscience of Communication, Stephanstraße 1a, 04103 Leipzig, Germany c Humboldt University zu Berlin, Rudower Chaussee 18, 12489 Berlin, Germany d Technische Universität Dresden, Faculty of Psychology, Bamberger Str. 7, 01187 Dresden *both authors contributed equally to this work Correspondence should be addressed to Claudia Roswandowitz ([email protected]) and Katharina von Kriegstein ([email protected]) This is a draft of a chapter that has been accepted for publication by Oxford University Press in the forthcoming book The Oxford Handbook of Voice Perception edited by Sascha Frühholz and Pascal Belin due for publication in November 2018. 1 © 2018 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 June 2018 doi:10.20944/preprints201806.0280.v1 Abstract The voice contains elementary social communication cues, conveying speech, as well as paralinguistic information pertaining to the emotional state and the identity of the speaker. In contrast to vocal-speech and vocal-emotion processing, voice-identity processing has been less explored. This seems surprising, given the day-to-day significance of person recognition by voice. A valuable approach to unravel how voice-identity processing is accomplished is to investigate people who have a selective deficit in recognising voices.
    [Show full text]
  • Agnosia for Accents in Primary Progressive Aphasia$
    Neuropsychologia 51 (2013) 1709–1715 Contents lists available at SciVerse ScienceDirect Neuropsychologia journal homepage: www.elsevier.com/locate/neuropsychologia Agnosia for accents in primary progressive aphasia$ Phillip D. Fletcher, Laura E. Downey, Jennifer L. Agustus, Julia C. Hailstone, Marina H. Tyndall, Alberto Cifelli, Jonathan M. Schott, Elizabeth K. Warrington, Jason D. Warren n Dementia Research Centre, UCL Institute of Neurology, University College London, London, United Kingdom article info abstract Article history: As an example of complex auditory signal processing, the analysis of accented speech is potentially Received 2 January 2013 vulnerable in the progressive aphasias. However, the brain basis of accent processing and the effects of Received in revised form neurodegenerative disease on this processing are not well understood. Here we undertook a detailed 14 May 2013 neuropsychological study of a patient, AA with progressive nonfluent aphasia, in whom agnosia for Accepted 17 May 2013 accents was a prominent clinical feature. We designed a battery to assess AA's ability to process accents Available online 27 May 2013 in relation to other complex auditory signals. AA's performance was compared with a cohort of 12 Keywords: healthy age and gender matched control participants and with a second patient, PA, who had semantic Primary progressive aphasia dementia with phonagnosia and prosopagnosia but no reported difficulties with accent processing. Dementia Relative to healthy controls, the patients showed distinct profiles of accent agnosia. AA showed markedly Accent processing impaired ability to distinguish change in an individual's accent despite being able to discriminate Phonagnosia fi Prosopagnosia phonemes and voices (apperceptive accent agnosia); and in addition, a severe de cit of accent identification.
    [Show full text]
  • Chapter 10. Delirium, Dementia, and Amnestic and Other Cognitive Disorders
    CHAPTER 10. DELIRIUM, DEMENTIA, AND AMNESTIC AND OTHER COGNITIVE DISORDERS Kaplan & Sadock’s Comprehensive Textbook of Psychiatry CHAPTER 10. DELIRIUM, DEMENTIA, AND AMNESTIC AND OTHER COGNITIVE DISORDERS ERIC D. CAINE, M.D. AND JEFFREY M. LYNESS, M.D. Definition History Comparative Nosology Diagnosis Pathology and Laboratory Examination Etiology and Differential Diagnosis Cognitive Disorders Diagnosis and Clinical Features Diagnosis and Clinical Features Psychiatry is in the midst of a profound transformation, at once struggling to incorporate a dynamic understanding of neuroscience and molecular biology while maintaining a view of unique persons or individuals as the central focus of therapeutic intervention. To date it has been beyond the scope of knowledge to effectively integrate research data regarding individual differences with more abstract findings regarding fundamental aspects of brain development or aging-related neurodegeneration. Discovering the bases for the major neuropsychiatric diseases can be expected to provide powerful clues for defining the nature of how neurobiological processes are expressed as emotions, thoughts, or actions, or how life events and daily experiences alter and shape brain growth and development. Since the late 1980s, a major conceptual transition has occurred in the way clinicians and researchers view the relation between mental disorders and brain function. For much of the past century psychiatry was trapped in an either-or dilemma—either a condition was viewed as a symptomatic manifestation of structural cerebral or systemic pathology (organic), or it was considered psychological or emotional in nature (functional). However, clinicians recognized that there are no behaviors that do not involve the brain, and that the transmission of culturally derived processes from individual to individual is influenced by each person's central nervous system (CNS).
    [Show full text]
  • Cross-Modal Processing of Voices and Faces in Developmental Prosopagnosia and Developmental Phonagnosia
    Visual Cognition ISSN: 1350-6285 (Print) 1464-0716 (Online) Journal homepage: http://www.tandfonline.com/loi/pvis20 Cross-modal processing of voices and faces in developmental prosopagnosia and developmental phonagnosia Corrina Maguinness & Katharina von Kriegstein To cite this article: Corrina Maguinness & Katharina von Kriegstein (2017) Cross-modal processing of voices and faces in developmental prosopagnosia and developmental phonagnosia, Visual Cognition, 25:4-6, 644-657, DOI: 10.1080/13506285.2017.1313347 To link to this article: https://doi.org/10.1080/13506285.2017.1313347 © 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group Published online: 02 Jun 2017. Submit your article to this journal Article views: 500 View Crossmark data Citing articles: 3 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=pvis20 VISUAL COGNITION, 2017 VOL. 25, NOS. 4–6, 644–657 https://doi.org/10.1080/13506285.2017.1313347 Cross-modal processing of voices and faces in developmental prosopagnosia and developmental phonagnosia Corrina Maguinness a and Katharina von Kriegstein a,b aMax Planck Research Group Neural Mechanisms of Human Communication, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; bDepartment of Psychology, Humboldt University of Berlin, Berlin, Germany ABSTRACT ARTICLE HISTORY Conspecifics can be recognized from either the face or the voice alone. However, person identity Received 24 August 2016 information is rarely encountered in purely unimodal situations and there is increasing evidence Accepted 22 March 2017 that the face and voice interact in neurotypical identity processing. Conversely, developmental KEYWORDS deficits have been observed that seem to be selective for face and voice recognition, Phonagnosia; prosopagnosia; developmental prosopagnosia and developmental phonagnosia, respectively.
    [Show full text]
  • Understanding the Mechanisms of Familiar Voice-Identity Recognition in the Human Brain
    Understanding the mechanisms of familiar voice-identity recognition in the human brain Corrina Maguinness1*, Claudia Roswandowitz1,2 & Katharina von Kriegstein1,3* 1 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany 2 International Max Planck Research School on Neuroscience of Communication, Leipzig, Germany 3 Faculty of Psychology, Technische Universität Dresden, Dresden, Germany *Corresponding authors: *[email protected]; *[email protected] [email protected] Abstract Humans have a remarkable skill for voice-identity recognition: most of us can remember many voices that surround us as ‘unique’. In this review, we explore the computational and neural mechanisms which may support our ability to represent and recognise a unique voice-identity. We examine the functional architecture of voice-sensitive regions in the superior temporal gyrus/sulcus and bring together findings on how these regions may interact with each other, and additional face-sensitive regions, to support voice-identity processing. We also contrast findings from studies on neurotypicals and clinical populations which have examined the processing of familiar and unfamiliar voices. Taken together, the findings suggest that representations of familiar and unfamiliar voices might dissociate in the human brain. Such an observation does not fit well with current models for voice-identity processing, which by-and-large assume a common sequential analysis of the incoming voice signal, regardless of voice familiarity. We provide a revised audio-visual integrative model of voice-identity processing which brings together traditional and prototype models of identity processing. This revised model includes a mechanism of how voice-identity representations are established and provides a novel framework for understanding and examining the potential differences in familiar and unfamiliar voice processing in the human brain.
    [Show full text]
  • Attention Disorders After Right Brain Damage
    Attention Disorders After Right Brain Damage Paolo Bartolomeo Attention Disorders After Right Brain Damage Living in Halved Worlds Paolo Bartolomeo, MD, PhD Brain and Spine Institute Hô pital de la Salpê triè re Institut national de la santé et de la recherche médicale (INSERM) Paris France Department of Psychology Catholic University Milan Italy ISBN 978-1-4471-5648-2 ISBN 978-1-4471-5649-9 (eBook) DOI 10.1007/978-1-4471-5649-9 Springer London Heidelberg New York Dordrecht Library of Congress Control Number: 2013957355 © Springer-Verlag London 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifi cally for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc.
    [Show full text]
  • MECHANISMS of VOICE PROCESSING in DEMENTIA Julia
    MECHANISMS OF VOICE PROCESSING IN DEMENTIA A Thesis presented for the degree of Doctor of Philosophy in Neuropsychology by Julia Catherine Hailstone The Dementia Research Centre Institute of Neurology UCL 2012 1 Declaration I, Julia Hailstone confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. All participants gave informed consent and all experimental work was carried out with the approval of the University College London Hospitals’ Research Ethics Committee, in accordance with the guidelines established by the Declaration of Helsinki. _____________________ Julia C Hailstone Date 2 Abstract Perception of nonverbal vocal information is essential in our daily lives. Patients with degenerative dementias commonly have difficulty with such aspects of vocal communication; however voice processing has seldom been studied in these diseases. This thesis comprises a series of linked studies of voice processing in canonical dementias: Alzheimer’s disease, behavioural variant frontotemporal dementia, semantic dementia and progressive nonfluent aphasia. A series of neuropsychological tests were developed to examine perceptual and semantic stages of voice processing and to assess two aspects of accent processing: comprehension of foreign accented speech and recognition of regional and foreign accents; patient performance was referenced to healthy control subjects. Neuroanatomical associations of voice processing performance were assessed using voxel based morphometry. Following a symptom-led approach, a syndrome of progressive associative phonagnosia was characterised in two detailed case studies. Following a disease-led approach, this work was extended systematically to cohorts of patients representing the target diseases and assessing voice processing in relation to other aspects of person recognition (faces and names).
    [Show full text]