Ancient DNA Suggests Modern Wolves Trace Their Origin to a Late Pleistocene Expansion from Beringia

Total Page:16

File Type:pdf, Size:1020Kb

Ancient DNA Suggests Modern Wolves Trace Their Origin to a Late Pleistocene Expansion from Beringia This is a repository copy of Ancient DNA suggests modern wolves trace their origin to a late Pleistocene expansion from Beringia. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/154615/ Version: Published Version Article: Loog, Liisa, Thalmann, Olaf, Sinding, Mikkel-Holger S. et al. (33 more authors) (2019) Ancient DNA suggests modern wolves trace their origin to a late Pleistocene expansion from Beringia. Molecular Ecology. ISSN 0962-1083 https://doi.org/10.1111/mec.15329 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Received: 5 October 2018 | Revised: 16 October 2019 | Accepted: 3 December 2019 DOI: 10.1111/mec.15329 FROM THE COVER Ancient DNA suggests modern wolves trace their origin to a Late Pleistocene expansion from Beringia Liisa Loog1,2,3,4 | Olaf Thalmann5 | Mikkel-Holger S. Sinding6,7,8 | Verena J. Schuenemann9,10,11 | Angela Perri12 | Mietje Germonpré13 | Herve Bocherens10,14 | Kelsey E. Witt15 | Jose A. Samaniego Castruita6 | Marcela S. Velasco6 | Inge K. C. Lundstrøm6 | Nathan Wales6,16 | Gontran Sonet17 | Laurent Frantz2 | Hannes Schroeder6 | Jane Budd18 | Elodie-Laure Jimenez13 | Sergey Fedorov19 | Boris Gasparyan20 | Andrew W. Kandel21 | Martina Lázničková-Galetová22,23,24 | Hannes Napierala25 | Hans-Peter Uerpmann9 | Pavel A. Nikolskiy26,27 | Elena Y. Pavlova27,28 | Vladimir V. Pitulko27 | Karl-Heinz Herzig5,29 | Ripan S. Malhi30 | Eske Willerslev2,31,32 | Anders J. Hansen8,31 | Keith Dobney33,34,35 | M. Thomas P. Gilbert6,36 | Johannes Krause9,37 | Greger Larson1 | Anders Eriksson2,38,39 | Andrea Manica2 1Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK 2Department of Zoology, University of Cambridge, Cambridge, UK 3Manchester Institute of Biotechnology, School of Earth and Environmental Sciences, University of Manchester, Manchester, UK 4Department of Genetics, University of Cambridge, Cambridge, UK 5Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Poznan, Poland 6EvoGenomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark 7Natural History Museum, University of Oslo, Oslo, Norway 8The Qimmeq Project, University of Greenland, Nuussuaq, Greenland 9Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany 10Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany 11Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland 12Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany 13OD Earth and History of Life, Royal Belgian Institute of Natural Sciences, Brussels, Belgium 14Department of Geosciences, Palaeobiology, University of Tübingen, Tübingen, Germany 15School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA 16BioArch, Department of Archaeology, University of York, York, UK, USA 17OD Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium 18Breeding Centre for Endangered Arabian Wildlife, Sharjah, United Arab Emirates 19Mammoth Museum, Institute of Applied Ecology of the North of the North-Eastern Federal University, Yakutsk, Russia 20Institute of Archaeology and Ethnography, National Academy of Sciences of the Republic of Armenia, Yerevan, Republic of Armenia 21Heidelberg Academy of Sciences and Humanities: The Role of Culture in Early Expansions of Humans, Tübingen, Germany 22Department of Anthropology, University of West Bohemia, Pilzen, Czech Republic 23Moravian museum, Brno, Czech Republic Thalmann, Sinding, and Schuenemann contributed equally to this work. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2019 The Authors. Molecular Ecology published by John Wiley & Sons Ltd Molecular Ecology. 2019;00:1–15. wileyonlinelibrary.com/journal/mec | 1 2 | LOOG ET AL. 24Hrdlička Museum of Man, Faculty of Science, Charles University, Praha, Czech Republic 25Institute of Palaeoanatomy, Domestication Research and History of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany 26Geological Institute, Russian Academy of Sciences, Moscow, Russia 27Institute for Material Culture History, Russian Academy of Sciences, St Petersburg, Russia 28Arctic and Antarctic Research Institute, St Petersburg, Russia 29Institute of Biomedicine and Biocenter of Oulu, Medical Research Center and University Hospital, University of Oulu, Oulu, Finland 30Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA 31Centre for GeoGenetics Globe Institute, University of Copenhagen, Copenhagen, Denmark 32Wellcome Trust Sanger Institute, Cambridge, UK 33Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK 34Department of Archaeology, University of Aberdeen, Aberdeen, UK 35Department of Archaeology, Simon Fraser University, Burnaby, BC, Canada 36Norwegian University of Science and Technology, University Museum, Trondheim, Norway 37Max Planck Institute for the Science of Human History, Jena, Germany 38Department of Medical & Molecular Genetics, King's College London, Guys Hospital, London, UK 39cGEM, Institute of Genomics, University of Tartu, Tartu, Estonia Correspondence Liisa Loog, Department of Genetics, Markova,Abstract 2016), and both the palaeontological and archaeological records attest to the continu- University of Cambridge, Cambridge, UK. ousGrey presence wolves of (greyCanis wolves lupus across) are theone Northern of the Hemispherefew large terrestrialfor at least thecarnivores last 300,000 that years have Email: [email protected] (Sotnikovamaintained & Rook, a wide 2010) geographical(reviewed in Appendix distribution S1). This across geogr aphicalthe Nor andthern temporal Hemisphere continuity Greger Larson, Research Laboratory for across the Northern Hemisphere contrasts with analyses of complete modern genomes, which throughout the Pleistocene and Holocene. Recent geneticstudies have suggested Archaeology and History of Art, University have suggested that all contemporary wolves and dogs descend from a common ancestral popula- of Oxford, Oxford, UK. that, despite this continuous presence, major demographic hangesc occurred in wolf tion that existed as recently as 20,000 years ago (Fan et al., 2016; Freedman et al., 2014; Skoglund, Email: [email protected] Ersmark,populations Palkopoulou, between & Dalén, the Late 2015). Pleistocene and early Holocene, and that extant wolves Anders Eriksson, cGEM, Institute of traceThese their analyses ancestry point to aa bottleneck single Late followed Pleistocene by a rapid populati radiationon. Bothfrom anthe ancestral geographical popula- Genomics, University of Tartu, Tartu, Estonia. tionorigin around of thisor just ancestral after the populationLGM. The geographical and how itorigin became and dynamics widespread of thisremain radiation unknown. remain Email: [email protected] unknown.Here, we Resolving used a thesespatially demographic and temporally changes explicit is necessary modell ingfor understandingframework to the analyse ecologi a- cal circumstances that allowed wolves to survive the Late Pleistocene megafaunal extinctions. Andrea Manica, Department of Zoology, data set of 90 modern and 45 ancient mitochondrial wolf genomes from across the University of Cambridge, Cambridge, UK. Furthermore, because dogs were domesticated from Late Pleistocene grey wolves (Larson et al., Northern Hemisphere, spanning the last 50,000 years. Our results suggest that con- Email: [email protected] 2012), a detailed insight into wolf demography during this time period would provide an essential contexttemporary for reconstructing wolf populations the history trace of their dog domestication. ancestry to an expansion from Beringia at the Funding information Russian Science Foundation, Grant/Award endReconstructing of the Last Glacialpast demographic Maximum, events and that solely this from process modern was genomesost m likely is drivenchallenging by Late be- Number: N16-18-10265 RNF; Grantová causePleistocene multiple demographicecological fluctuations histories can thatlead tooccurred similar ge acrossnetic patternsthe Northern in present-day Hemisphere. samples Agentura České Republiky, Grant/Award (Groucutt et al., 2015). Analyses that incorporate ancient DNA sequences can eliminate some of Number: GAČR15-06446S; Polish National This study provides direct ancient genetic evidence that long-range migration has Science Center, Grant/Award Number: theseplayed alternative an important histories role by quantifying in the population changes in history population of agenetic large carnivore, differences and through provides
Recommended publications
  • Ursus Americanus) Versus Brown Bears (U. Arctos
    East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 5-2017 Black Bears (Ursus americanus) versus Brown Bears (U. arctos): Combining Morphometrics and Niche Modeling to Differentiate Species and Predict Distributions Through Time Theron Michael Kantelis East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Other Environmental Sciences Commons, Paleobiology Commons, and the Paleontology Commons Recommended Citation Kantelis, Theron Michael, "Black Bears (Ursus americanus) versus Brown Bears (U. arctos): Combining Morphometrics and Niche Modeling to Differentiate Species and Predict Distributions Through Time" (2017). Electronic Theses and Dissertations. Paper 3262. https://dc.etsu.edu/etd/3262 This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. Black Bears (Ursus americanus) versus Brown Bears (U. arctos): Combining Morphometrics and Niche Modeling to Differentiate Species and Predict Distributions Through Time A thesis presented to the faculty of the Department of Geosciences East Tennessee State University In partial fulfillment of the requirements for the degree Master of Science in Geosciences _____________________
    [Show full text]
  • Dire Wolves Were the Last of an Ancient New World Canid Lineage Angela
    Dire wolves were the last of an ancient New World canid lineage Angela R. Perri1,*§, Kieren J. Mitchell2,*§, Alice Mouton3,*, Sandra Álvarez-Carretero4,*, Ardern Hulme-Beaman5,6, James Haile 7, Alexandra Jamieson7, Julie Meachen8, Audrey T. Lin7,9,10, Blaine W. Schubert11, Carly Ameen12, Ekaterina E. Antipina13, Pere Bover14, Selina Brace15, Alberto Carmagnini4, Christian Carøe16, Jose A. Samaniego Castruita16, James C. Chatters17, Keith Dobney5, Mario dos Reis4, Allowen Evin18, Philippe Gaubert19, Shyam Gopalakrishnan16, Graham Gower2, Holly Heiniger2, Kristofer M. Helgen20, Josh Kapp21, Pavel A. Kosintsev22,23, Anna Linderholm7, 24, Andrew T. Ozga25, 26, 27, Samantha Presslee28, Alexander T. Salis2, Nedda F. Saremi21, Colin Shew3, Katherine Skerry26, Dmitry E. Taranenko29, Mary Thompson30, Mikhail V. Sablin31,Yaroslav V. Kuzmin32, 33, Matthew J. Collins34, 35, Mikkel-Holger S. Sinding16, 36, M. Thomas P. Gilbert16, 37, Anne C. Stone25 ,26, Beth Shapiro21, 38, Blaire Van Valkenburgh3, Robert K. Wayne3, Greger Larson7, and Alan Cooper39, Laurent A. F. Frantz4, 40§. 1Department of Archaeology, Durham University, Durham, UK 2Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Australia 3Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA 4School of Biological and Chemical Sciences, Queen Mary University of London, London, UK 5Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK 6School of Natural Sciences and Psychology,
    [Show full text]
  • Modern Wolves Trace Their Origin to a Late Pleistocene Expansion from Beringia
    bioRxiv preprint doi: https://doi.org/10.1101/370122; this version posted July 18, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Modern wolves trace their origin to a late Pleistocene expansion from Beringia 2 Liisa Loog1,2,3*, Olaf Thalmann4†, Mikkel-Holger S. Sinding5,6,7†, Verena J. Schuenemann8,9†, 3 Angela Perri10, Mietje Germonpré11, Herve Bocherens9,12, Kelsey E. Witt13, Jose A. 4 Samaniego Castruita5, Marcela S. Velasco5, Inge K. C. Lundstrøm5, Nathan Wales5, Gontran 5 Sonet15, Laurent Frantz2, Hannes Schroeder5,15, Jane Budd16, Elodie-Laure Jimenez 11, Sergey 6 Fedorov17, Boris Gasparyan18, Andrew W. Kandel19, Martina Lázničková-Galetová20,21,22, 7 Hannes Napierala23, Hans-Peter Uerpmann8, Pavel A. Nikolskiy24,25, Elena Y. Pavlova26,25, 8 Vladimir V. Pitulko25, Karl-Heinz Herzig4,27, Ripan S. Malhi26, Eske Willerslev2,5,29, Anders J. 9 Hansen5,7, Keith Dobney30,31,32, M. Thomas P. Gilbert5,33, Johannes Krause8,34, Greger 10 Larson1*, Anders Eriksson35,2*, Andrea Manica2* 11 12 *Corresponding Authors: L.L. ([email protected]), G.L. ([email protected]), 13 A.E. ([email protected]), A.M. ([email protected]) 14 15 †These authors contributed equally to this work 16 17 1 Palaeogenomics & Bio-Archaeology Research Network Research Laboratory for 18 Archaeology and History of Art, University of Oxford, Dyson Perrins Building,
    [Show full text]
  • Modern Wolves Trace Their Origin to a Late Pleistocene Expansion from Beringia
    bioRxiv preprint doi: https://doi.org/10.1101/370122; this version posted July 18, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Modern wolves trace their origin to a late Pleistocene expansion from Beringia 2 Liisa Loog1,2,3*, Olaf Thalmann4†, Mikkel-Holger S. Sinding5,6,7†, Verena J. Schuenemann8,9†, 3 Angela Perri10, Mietje Germonpré11, Herve Bocherens9,12, Kelsey E. Witt13, Jose A. 4 Samaniego Castruita5, Marcela S. Velasco5, Inge K. C. Lundstrøm5, Nathan Wales5, Gontran 5 Sonet15, Laurent Frantz2, Hannes Schroeder5,15, Jane Budd16, Elodie-Laure Jimenez 11, Sergey 6 Fedorov17, Boris Gasparyan18, Andrew W. Kandel19, Martina Lázničková-Galetová20,21,22, 7 Hannes Napierala23, Hans-Peter Uerpmann8, Pavel A. Nikolskiy24,25, Elena Y. Pavlova26,25, 8 Vladimir V. Pitulko25, Karl-Heinz Herzig4,27, Ripan S. Malhi26, Eske Willerslev2,5,29, Anders J. 9 Hansen5,7, Keith Dobney30,31,32, M. Thomas P. Gilbert5,33, Johannes Krause8,34, Greger 10 Larson1*, Anders Eriksson35,2*, Andrea Manica2* 11 12 *Corresponding Authors: L.L. ([email protected]), G.L. ([email protected]), 13 A.E. ([email protected]), A.M. ([email protected]) 14 15 †These authors contributed equally to this work 16 17 1 Palaeogenomics & Bio-Archaeology Research Network Research Laboratory for 18 Archaeology and History of Art, University of Oxford, Dyson Perrins Building,
    [Show full text]
  • The Evolutionary Consequence of the Individualistic Response to Climate Change
    doi:10.1111/j.1420-9101.2009.01859.x REVIEW The evolutionary consequence of the individualistic response to climate change J. R. STEWART Department of Palaeontology, Natural History Museum, London, UK Keywords: Abstract climate change; The Quaternary fossil record has abundant evidence for ecologically non- coevolution; analogue communities made up of combinations of modern taxa not seen in Gleasonian; sympatry today. A brief review of the literature detailing these nonanalogue nonanalogue ecology (no-analogue); communities is given with a discussion of their various proposed causes. The quaternary. individualistic, Gleasonian, response of species to climate and environmental change is favoured by many. The degree to which communities are nonanalogue appears to increase with greater time depth, and this progressive process is a necessary outcome of the individualistic response of species to climate change through time. In addition, it is noted that populations within species, as well as the species as a whole, respond individualistically. This paper proposes that many elements of nonanalogue communities are extinct populations, which may explain their environmentally anomalous combina- tions. These extinct populations are, by definition, lineages without descen- dents. It is further proposed that the differential extinction of populations, as a result of continuous ecological reassembly, could amount to a significant evolutionary phenomenon. greater time depth to the study of the evolution of Introduction organisms in relation to their changing ecologies. The role of ecology in species evolution has been viewed The Quaternary, the last 2.6 millions years, with its as critical since the time of Darwin and Wallace (Lack, regular and extreme climatic oscillations at different 1944; Schluter, 2000, 2001; Day & Young, 2004; amplitudes and the accompanying ecological variation McKinnon et al., 2004).
    [Show full text]
  • Dphil Thesis Geraldine Werhahn
    Phylogeny and Ecology of the Himalayan Wolf Thesis for the Degree of Doctor of Philosophy in Zoology Geraldine Werhahn Wildlife Conservation Research Unit Department of Zoology University of Oxford Trinity Term 2019 Lady Margaret Hall Supervised by Professor David W. Macdonald, Professor Claudio Sillero-Zubiri & Doctor Helen Senn Dedicated to my mother Béatrice Werhahn and my father Peter Werhahn. Contents Abstract ..........................................................................................................................................7 Acknowledgements ..............................................................................................................12 List of original publications ...................................................................................................15 Author affiliations ..................................................................................................................19 Chapter 1. General Introduction ...................................................................................................21 Thesis objectives ..................................................................................................................31 Thesis structure ....................................................................................................................32 Study areas ..........................................................................................................................33 References ...........................................................................................................................38
    [Show full text]
  • 1 Dire Wolves Were the Last of an Ancient New World Canid Lineage 1
    1 Dire wolves were the last of an ancient New World canid lineage 2 3 Angela R. Perri1,*§, Kieren J. Mitchell2,*§, Alice Mouton3,*, Sandra Álvarez-Carretero4,*, Ardern 4 Hulme-Beaman5,6, James Haile 7, Alexandra Jamieson7, Julie Meachen8, Audrey T. Lin7,9,10, 5 Blaine W. Schubert11, Carly Ameen12, Ekaterina E. Antipina13, Pere Bover14, Selina Brace15, 6 Alberto Carmagnini4, Christian Carøe16, Jose A. Samaniego Castruita16, James C. Chatters17, 7 Keith Dobney5, Mario dos Reis4, Allowen Evin18, Philippe Gaubert19, Shyam Gopalakrishnan16, 8 Graham Gower2, Holly Heiniger2, Kristofer M. Helgen20, Josh Kapp21, Pavel A. Kosintsev22,23, 9 Anna Linderholm7, 24, Andrew T. Ozga25, 26, 27, Samantha Presslee28, Alexander T. Salis2, Nedda 10 F. Saremi21, Colin Shew3, Katherine Skerry26, Dmitry E. Taranenko29, Mary Thompson30, Mikhail 11 V. Sablin31,Yaroslav V. Kuzmin32, 33, Matthew J. Collins34, 35, Mikkel-Holger S. Sinding16, 36, M. 12 Thomas P. Gilbert16, 37, Anne C. Stone25 ,26, Beth Shapiro21, 38, Blaire Van Valkenburgh3, Robert 13 K. Wayne3, Greger Larson7, and Alan Cooper39, Laurent A. F. Frantz4, 40§. 14 15 1Department of Archaeology, Durham University, Durham, UK 16 2Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, 17 Australia 18 3Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, 19 USA 20 4School of Biological and Chemical Sciences, Queen Mary University of London, London, UK 21 5Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool,
    [Show full text]
  • Glacial Ice Ages
    JadeWyoming State State Mineral & Gem News Society, Inc. Award-Winning WSMGS Website: wsmgs.org Volume 2021, Issue # 1 Glacial Ice Ages By Emma Groeneveld Ancient History Encyclopedia* An ice age is a period in which the earth's climate is colder than normal, with ice sheets capping the poles and glaciers dominating higher altitudes. Within an ice age, there are varying pulses of colder and warmer climatic conditions, known as “glacials” and “interglacials.” Even within the interglacials, ice continues to cover at least one of the poles. In contrast, outside an ice age, temperatures are higher and more stable, and there is far less ice covering the WSMGS OFFICERS Earth. The Pleistocene Epoch is typically defined as the time period that began President: Jim Gray about 2.6 million years ago and lasted until about 11,700 years ago. The [email protected] Vice President: Linda Richendifer [email protected] Secretary: Leane Gray [email protected] Treasurer: Stan Strike [email protected] Historian: Roger McMannis [email protected] Woolly mammoth is the most recognized of the glacial ice-age animals. Credit: Yukon Beringia, https://beringia.com (Continued on Page 2) Jade State News Editor: Ilene Olson [email protected] Table of Contents Glacial Ice Ages...........................................................................................Page 1 RMFMS WY State Director: Natural Trap Cave........................................................................................Page 5 Jim Gray Wyoming Valley Glaciers............................................................................Page
    [Show full text]
  • 1 Modern Wolves Trace Their Origin to a Late Pleistocene Expansion from Beringia
    1 Modern wolves trace their origin to a late Pleistocene expansion from Beringia 2 Liisa Loog1,2,3*, Olaf Thalmann4†, Mikkel-Holger S. Sinding5,6,7†, Verena J. 3 Schuenemann8,9,10†, Angela Perri11, Mietje Germonpré12, Herve Bocherens9,13, Kelsey E. 4 Witt14, Jose A. Samaniego Castruita5, Marcela S. Velasco5, Inge K. C. Lundstrøm5, Nathan 5 Wales5, Gontran Sonet15, Laurent Frantz2, Hannes Schroeder5,16, Jane Budd17, Elodie-Laure 6 Jimenez 12, Sergey Fedorov18, Boris Gasparyan19, Andrew W. Kandel20, Martina Lázničková- 7 Galetová21,22,23, Hannes Napierala24, Hans-Peter Uerpmann8, Pavel A. Nikolskiy25,26, Elena Y. 8 Pavlova27,26, Vladimir V. Pitulko26, Karl-Heinz Herzig4,28, Ripan S. Malhi29, Eske 9 Willerslev2,5,30, Anders J. Hansen5,7, Keith Dobney31,32,33, M. Thomas P. Gilbert5,34, Johannes 10 Krause8,35, Greger Larson1*, Anders Eriksson36,2*, Andrea Manica2* 11 12 *Corresponding Authors: L.L. ([email protected]), G.L. ([email protected]), 13 A.E. ([email protected]), A.M. ([email protected]) 14 15 †These authors contributed equally to this work 16 17 1 Palaeogenomics & Bio-Archaeology Research Network Research Laboratory for 18 Archaeology and History of Art, University of Oxford, Dyson Perrins Building, South Parks 19 Road, Oxford OX1 3QY, UK 20 2 Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, 21 UK 22 3 Manchester Institute of Biotechnology, School of Earth and Environmental Sciences, 23 University of Manchester, Manchester, M1 7DN, UK 24 4 Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of 25 Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland 26 5 Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 27 Øster Voldgade 5-7, DK-1350 Copenhagen, Denmark 28 6 Natural History Museum, University of Oslo, P.O.
    [Show full text]
  • Ancient DNA Suggests Modern Wolves Trace Their Origin to a Late Pleistocene Expansion from Beringia
    Ancient DNA suggests modern wolves trace their origin to a Late Pleistocene expansion from Beringia Loog, Liisa; Thalmann, Olaf; Sinding, Mikkel Holger S.; Schuenemann, Verena J.; Perri, Angela; Germonpré, Mietje; Bocherens, Hervé; Witt, Kelsey E.; Samaniego Castruita, Jose A.; Velasco, Marcela S.; Lundstrøm, Inge K.C.; Wales, Nathan; Sonet, Gontran; Frantz, Laurent; Schroeder, Hannes; Budd, Jane; Jimenez, Elodie Laure; Fedorov, Sergey; Gasparyan, Boris; Kandel, Andrew W.; Lázniková-Galetová, Martina; Napierala, Hannes; Uerpmann, Hans Peter; Nikolskiy, Pavel A.; Pavlova, Elena Y.; Pitulko, Vladimir V.; Herzig, Karl-Heinz; Malhi, Ripan S.; Willerslev, Eske; Hansen, Anders J.; Dobney, Keith; Gilbert, M. Thomas P.; Krause, Johannes; Larson, Greger; Eriksson, Anders; Manica, Andrea Published in: Molecular Ecology DOI: 10.1111/mec.15329 Publication date: 2020 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Loog, L., Thalmann, O., Sinding, M. H. S., Schuenemann, V. J., Perri, A., Germonpré, M., Bocherens, H., Witt, K. E., Samaniego Castruita, J. A., Velasco, M. S., Lundstrøm, I. K. C., Wales, N., Sonet, G., Frantz, L., Schroeder, H., Budd, J., Jimenez, E. L., Fedorov, S., Gasparyan, B., ... Manica, A. (2020). Ancient DNA suggests modern wolves trace their origin to a Late Pleistocene expansion from Beringia. Molecular Ecology, 29(9), 1596-1610. https://doi.org/10.1111/mec.15329 Download date: 23. sep.. 2021 Received: 5 October 2018 | Revised: 16 October 2019 | Accepted: 3 December 2019 DOI: 10.1111/mec.15329 FROM THE COVER Ancient DNA suggests modern wolves trace their origin to a Late Pleistocene expansion from Beringia Liisa Loog1,2,3,4 | Olaf Thalmann5 | Mikkel-Holger S.
    [Show full text]
  • Modern Wolves Trace Their Origin to a Late Pleistocene Expansion from Beringia”
    SUPPLEMENTARY INFORMATION FOR LOOG ET AL. 2017 “MODERN WOLVES TRACE THEIR ORIGIN TO A LATE PLEISTOCENE EXPANSION FROM BERINGIA” S1 – ARCHAEOLOGICAL BACKGROUND AND SAMPLE INFORMATION 2 1.1 PALEONTOLOGICAL HISTORY OF GREY WOLVES 2 1.2 ARCHAEOLOGICAL SITE DESCRIPTIONS 7 ARMENIA 7 BELGIUM 7 CZECH REPUBLIC 10 SWITZERLAND 10 RUSSIA 11 S2 – DNA EXTRACTION, SEQUENCING AND BIOINFORMATICS. 23 2.1 DNA EXTRACTIONS 23 2.2 LIBRARY PREPARATION 24 2.3 SEQUENCE GENERATION 27 2.4 RAW SEQUENCE DATA PROCESSING 28 2.5. MOLECULAR CHARACTERISTICS OF NEWLY GENERATED, ANCIENT SEQUENCES 30 Table S2 31 Figure S1 32 Figure S2 33 S3 – DATA ANALYSES & RESULTS 36 3.1 BEAST ANALYSES & RESULTS 36 PARTITION FINDER 36 Table S3 36 MUTATION RATE CALCULATION 37 INPUT FILE SETTINGS 37 PRIORS 38 MCMC CHAIN 38 BEAST RESULTS 38 Table S4 39 Table S5 39 3.2 SPATIAL MODELLING RESULTS 39 Table S6 39 Table S7 40 Table S8 40 3.3 SUPPLEMENTARY FIGURES 42 Figure S3 42 Figure S4 43 Figure S5 44 Figure S6 45 Figure S7 46 Figure S8 47 Figure S9 48 Figure S10 49 Figure S11 50 Figure S12 51 Figure S13 52 Figure S14 53 Figure S15 54 Figure S16 55 1 S1 – Archaeological Background and Sample Information 1.1 Paleontological history of grey wolves Grey wolves (Canis lupus) are a highly adaptable species, able to live in a range of environments and with a wide natural distribution. Studies of modern grey wolves have found distinct subpopulations living in close proximity (Musani et al., 2007; Schweizer et al., 2016). This variation is closely linked to differences in habitat - specifically precipitation, temperature, vegetation, and prey specialization, which particularly affect cranio-dental plasticity (Geffen et al., 2004; Pilot et al., 2006; Flower and Schreve, 2014; Leonard, 2015).
    [Show full text]
  • Modern Wolves Trace Their Origin to a Late Pleistocene Expansion from Beringia
    bioRxiv preprint first posted online Jul. 18, 2018; doi: http://dx.doi.org/10.1101/370122. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 1 Modern wolves trace their origin to a late Pleistocene expansion from Beringia 2 Liisa Loog1,2,3*, Olaf Thalmann4†, Mikkel-Holger S. Sinding5,6,7†, Verena J. Schuenemann8,9†, 3 Angela Perri10, Mietje Germonpré11, Herve Bocherens9,12, Kelsey E. Witt13, Jose A. 4 Samaniego Castruita5, Marcela S. Velasco5, Inge K. C. Lundstrøm5, Nathan Wales5, Gontran 5 Sonet15, Laurent Frantz2, Hannes Schroeder5,15, Jane Budd16, Elodie-Laure Jimenez 11, Sergey 6 Fedorov17, Boris Gasparyan18, Andrew W. Kandel19, Martina Lázničková-Galetová20,21,22, 7 Hannes Napierala23, Hans-Peter Uerpmann8, Pavel A. Nikolskiy24,25, Elena Y. Pavlova26,25, 8 Vladimir V. Pitulko25, Karl-Heinz Herzig4,27, Ripan S. Malhi26, Eske Willerslev2,5,29, Anders J. 9 Hansen5,7, Keith Dobney30,31,32, M. Thomas P. Gilbert5,33, Johannes Krause8,34, Greger 10 Larson1*, Anders Eriksson35,2*, Andrea Manica2* 11 12 *Corresponding Authors: L.L. ([email protected]), G.L. ([email protected]), 13 A.E. ([email protected]), A.M. ([email protected]) 14 15 †These authors contributed equally to this work 16 17 1 Palaeogenomics & Bio-Archaeology Research Network Research Laboratory for 18 Archaeology and History of Art, University of Oxford, Dyson Perrins Building, South Parks 19 Road, Oxford OX1 3QY, UK 20 2 Department of Zoology, University
    [Show full text]