Introduction to Biophotonics Or the Light of Life

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Biophotonics Or the Light of Life RootsUwPE Sources BioCom Detectors Tools Introduction to Biophotonics or The Light of Life embedded in Prof. KW Kratky’s Lecture Series “Physics in physiologic Processes” Contribution by Pierre MADL Biological tissue exhibits autoluminescence, i.e. spontaneous ultra-weak photon emission (UPE) fluxes without prior photo-excitation. First discovered by A. Gurwitsch in 1923, these emissions where originally termed mitogenetic radiation (MGR) to denote that living cells and tissues generate extremely weak, yet biologically active forms of electromagnetic radiation, in particular in the ultraviolet range, and that the presence of this radiation is somehow intimately connected with the nature of living processes themselves. Although some scientist still deny their existence,[1] the availability of novel detection techniques undoubtedly proof their existence. Moreover, the classical dose-response relationship patterns fall short as these extremely weak signals reveal their maximum effect at intensities that - when viewed at from a classical perspective - seem to be counter-intuitive to any macroscopically observed experience. The Arndt–Schulz rule,[3] later extended into the Weber-Fechner law however, regain validity when such weakly interacting signals couple coherently, thereby phase-locking oscillatory processes enabling even the weakest signal to become amplified to significantly high intensities as to induce measurable, macroscopic effects. This part of the four-part lecture series attempts to shed light on these aspects and provide evidence of various types to highlight the relevance of UPE signaling originating from biotic systems. Image: artist's view of two Paramecia coordinating their metabolic activities via "flashes" of light.[2] Source: [1] Langmuir I, Hall RN (1989) Colloquium on Pathological Science. Physics Today, Vol.42(10): 36-48. [2] Fels D (2012) Electromagnetic cell communication. International Conference on Basic Research and Theory on Cell Electromagnetic Fields and their Contribution to Life Processes. Basel, Switzerland (fieldsofthecell2012.com). [3] "Weak stimuli promote, moderately strong stimuli tend to slow down and intense stimuli inhibit life processes" Contact details: Pierre MADL (PhD, MSc, EE) - University of Salzburg; Dep. of Physics & Biophysics / Hellbrunnerstr. 34 / -A-5020 Salzburg & EDGE-Institute / A-5440 Golling, AT [email protected] biophysics.scb.ac.at/talk/Why_QFT_matters-BP.pdf 0 RootsUwPE Sources BioCom Detectors Tools Overview (1/3) The lecture in a nutshell i) The Roots About myself: .... Historical aspects and how it all started • electronics engineer i) The Concept of Biophotons • MSc in ecology .... as proposed by FA Popp • PhD in biophysics • current position: i) Modes of emissions in living samples Dep. of Physics & Biophysics, .... spontaneous vs induced (delayed mode) Faculty of Natural Sciences, i) emissions from biotic samples Salzburg, AT .... from lower to higher organisms & EDGE Institute, Golling, AT i) technical aspects to measure biophotons .... photonic emissions from living tissues and organisms i) essential literature (books only) 19-03-14 Madl 1 1 RootsUwPE Sources BioCom Detectors Tools Overview (2/3) Why: What are BP and i) involved in Bio-Communication (exchange of information, where do they originate from that does not primarily rely on energy), and why does it matter? i) is an intrinsic feature of all Life-forms across kingdoms (most Eubacteria Protists, Fungi, Plantae, Animalia) Where: Synonyms: MGR (mitogenetic radiation) i) originates from within cells (DNA, Microtubuli, Proteins, etc.), LLCL (low level chemi-luminescence) i) during cellular metabolism UPE / UwPE (ultra-weak photon i) form spontaneously, but also during oxidative reactions (ROS) emission What: i) according to the Theory of • Imperfection …. by-product of photo-biochemistry (QM) Bischof & DelGiudice, 2013 • Coherence …. by-product of coherent delocalized EMF (QED) 2 -1 -2 Cifra & Bosposil, 2014 i) few quanta per second and cm (typ. 100 photonssec cm ) i) within the UV-VIS-IR-range (<200-800nm @ 1.67 - 3.41 eV) thus with very low intensities (see previous slide) 19-03-14 Madl 2 Why: The problem of bio-communication has been addressed in recent times within the frame of the molecular paradigm, which states that a living organism is an ensemble of appropriate molecules kept together solely by chemical forces, whose essential features are that they can be always reduced to pairwise interactions [1]. 1) the existence of chemical codes remains unexplained since no reason is given why a molecule is able to encounter its molecular partner in the sequence underlying the given biological cycle just in the right place at the right time; 2) spreading of information about each molecular event to the other component molecules of the organism would require the emission of signals, such as chemical messengers or electromagnetic signals, whose formation would require energy. The huge ensemble of all the signals necessary to keep other parts of the organism informed about what is going on in one part …. would demand an immense consumption of energy. There are two opposite "theories" about BP-emission, i.e., the "imperfection theory" and the "coherence theory“[1] …. see later slides …. Ultra-weak photon emission originates from the oxidative metabolic reaction in microbial, plant and animal cells. It is generally considered that electronically excited species formed during the oxidative metabolic processes are solely responsible for the ultra-weak photon emission. Spontaneous photon emission without any special dedicated high-intensity-luminescent enzymatic systems (e.g. luciferin/luciferase) is what distinguishes ultra-weak photon emission from ordinary bioluminescence. Photon emission without external stimulation by light is a feature that distinguishes ultra-weak photon emission from fluorescence and phosphorescence. Experimental evidence for other types of luminescence than chemi-luminescence (for instance mechano- luminescence and electro-luminescence in biological systems is very limited[2]. Source: [1] Bischof M, DelGiudice E (2013). Communication and the Emergence of Collective Behavior in Living Organisms: A Quantum Approach. Molecular Biology International, Vol. 2913, ID 987549: 1-19. doi:10.1155/2013/987549. [2] Cifra M, Pospsil P (2014). Ultra-weak photon emission from biological samples: Definition, mechanisms, properties, detection and applications. J Photochem Photobiol B. Vol. XX pii: S1011-1344(14)00046-3. doi: 10.1016/j.jphotobiol.2014.02.009. 2 RootsUwPE Sources BioCom Detectors Tools Overview (3/3) How can BP be harnessed? Possible applications: i) Food quality (examination & control) i) Pollution (bio-indication of toxic load) i) Drugs (efficiency & dosage …. dose-effect relation) i) Disease processes (chronic pathologies, incl. cancer) i) Cell-metabolism (development, growth, differentiation & senescence) i) Bio-communication (investigating the flow of information by non-chemical means) Popp, 1992 Despite their low intensities, biophotons have the advantage of a rather high signal/noise-ratio. In view of their correlations to many, if not all, biological functions they provide a most powerful, non-invasive tool for analyzing biological systems. Irrespective of how one interprets the results, the very sensitive dependence of biophoton emission on almost all external and internal influences has already opened up many applications, e.g.: • the examination and control of food quality, • bioindication of pollutants and other environmental factors, • research on the efficacy of drugs, • diagnostic and therapeutic treatment of different kinds of illness, such as immune diseases and cancer. A wide range of basic problems in the life sciences may be amenable to investigation by means of biophoton emission. These include molecular interactions, immunological and repair processes in aging, growth and differentiation, pattern formation in development, biocommunication and the nature of consciousness. Source: Popp FA (1992). Preface: Introductory Remarks. In: Popp FA, Li KH, Gu Q (eds) Recent Advances in Biophoton Research and its Applications. World Scientific Publ., Singapore. RootsUwPE Sources BioCom Detectors Tools A Note to the reader Brief intro for this lecture series: Module-I Biophotonics Why QFT matters The following other O modules on issues 2 raised herein are available as: 0. Why QFT matters State of H th Biophotonics QFT in Biology in QFT 4 1. UwPE (Biophotonics) Biology in EMF 2. 4th state of Water 3. EMF in Biology 4. QFT in Biology Palladio (1562). 19-03-14 Madl 4 A short note to facilitate readability and render the presented issues more digestible. This lecture series consists of 4 (+1) modules. While each can be regarded as an independent entity, references therein (due to the multidisciplinary approach of the issues raised and because the issues are much better embedded therein) often refer to topics in one of the three other modules. Hence the five modules should be regarded as a full package. However, and due to the sheer size, each module is offered individually (see below). The entire lectures series is headed by this relatively short overview and provides a quick “dive” into the main subjects and acts as a teaser for the actual modules. Thus, this introductory module entitled "Why QFT matters", should be regarded as the enclosing envelop that should tickle the reader by presenting unsolved riddles in biology that shall be gradually lifted once the reader dares to
Recommended publications
  • The Rainbow and the Worm- Mae-Wan Ho
    cover next page > Cover title: The Rainbow and the Worm : The Physics of Organisms author: Ho, Mae-Wan. publisher: World Scientific Publishing Co. isbn10 | asin: 9810234260 print isbn13: 9789810234263 ebook isbn13: 9789810248130 language: English subject Biology--Philosophy, Life (Biology) , Biophysics. publication date: 1998 lcc: QH331H6 1998eb ddc: 570.1 subject: Biology--Philosophy, Life (Biology) , Biophysics. cover next page > < previous page page_i next page > Page i The Rainbow and the Worm The Physics of Organisms 2nd Edition < previous page page_i next page > < previous page page_ii next page > Page ii This page intentionally left blank < previous page page_ii next page > < previous page page_iii next page > Page iii The Rainbow and the Worm The Physics of Organisms 2nd Edition Mae-Wan Ho < previous page page_iii next page > < previous page page_iv next page > Page iv Published by World Scientific Publishing Co. Pte. Ltd. P O Box 128, Farrer Road, Singapore 912805 USA office: Suite 1B, 1060 Main Street, River Edge, NJ 07661 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. THE RAINBOW AND THE WORM (2nd Edition) The Physics of Organisms Copyright © 1998 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA.
    [Show full text]
  • The for Report 07-08
    THE CENTER FOR INTEGRATIVE GENOMICS REPORT 07-08 www.unil.ch/cig Table of Contents INTRODUCTION 2 The CIG at a glance 2 The CIG Scientific Advisory Committee 3 Message from the Director 4 RESEARCH 6 Richard Benton Chemosensory perception in Drosophila: from genes to behaviour 8 Béatrice Desvergne Networking activity of PPARs during development and in adult metabolic homeostasis 10 Christian Fankhauser The effects of light on plant growth and development 12 Paul Franken Genetics and energetics of sleep homeostasis and circadian rhythms 14 Nouria Hernandez Mechanisms of basal and regulated RNA polymerase II and III transcription of ncRNA in mammalian cells 16 Winship Herr Regulation of cell proliferation 18 Henrik Kaessmann Mammalian evolutionary genomics 20 Sophie Martin Molecular mechanisms of cell polarization 22 Liliane Michalik Transcriptional control of tissue repair and angiogenesis 24 Alexandre Reymond Genome structure and expression 26 Andrzej Stasiak Functional transitions of DNA structure 28 Mehdi Tafti Genetics of sleep and the sleep EEG 30 Bernard Thorens Molecular and physiological analysis of energy homeostasis in health and disease 32 Walter Wahli The multifaceted roles of PPARs 34 Other groups at the Génopode 37 CORE FACILITIES 40 Lausanne DNA Array Facility (DAFL) 42 Protein Analysis Facility (PAF) 44 Core facilities associated with the CIG 46 EDUCATION 48 Courses and lectures given by CIG members 50 Doing a PhD at the CIG 52 Seminars and symposia 54 The CIG annual retreat 62 The CIG and the public 63 Artist in residence at the CIG 63 PEOPLE 64 1 Introduction The Center for IntegratiVE Genomics (CIG) at A glance The Center for Integrative Genomics (CIG) is the newest depart- ment of the Faculty of Biology and Medicine of the University of Lausanne (UNIL).
    [Show full text]
  • A Tribute to Fritz-Albert Popp on the Occasion of His 70Th Birthday
    Indian Journal of Experimental Biology Vol 46, May 2008, pp. 267-272 A tribute to Fritz-Albert Popp on the occasion of his 70th birthday Marco Bischof International Institute of Biophysics, Neuss, Germany & Future Science & Medicine, Berlin, Germany On May 11, 2008 the German biophysicist Professor Fritz-Albert Popp will celebrate his 70th birthday. This is a welcome occasion to pay tribute to the scientific achievements and human qualities of a scientist whose merits as one of the founders of biophotonics and as a pioneer of quantum biophysics increasingly find appreciation internationally. Founder of biophotonics and pioneer of quantum today some elements of his biophoton theory still biophysics remain speculative and need further testing and Popp is mainly known as the founder of a new field confirmation, these works have made Popp one of the of research in biophysics: in the mid-1970s he principal inspirers and pioneers of a new, holistic and rediscovered at the University of Marburg, at the integrative biophysics which increasingly finds same time but independently from the groups of Boris interest and application with bioscientists of many Tarusov (Russia), Terence Quickenden (Australia), countries. It is based, as one of the most fundamental Humio Inaba (Japan) and Janusz Slawinski (Poland), aspects, on a field-oriented picture of the organism. the ultraweak photon emission (UPE) from living This acts as a corrective to the massive accumulation systems. It had originally been discovered in 1922 by of detail knowledge and the disconnected the Russian biologist Alexander G. Gurwitsch who fragmentation of the biosciences by the dominating called it “mitogenetic radiation”1 and attracted world- trend of molecular biology, and provides again a wide attention in the 1920’s and 1930’s, but after chance for developing a unifying picture of life and WW II was largely forgotten and partially holistic life sciences.
    [Show full text]
  • Energy Anatomy - Biofields
    Energy anatomy - Biofields Copyright © Peter Lund Frandsen – Touchpoint 2021 www.frontierbiology.com www.touchpoint.dk Energy Anatomy II – Session III Biofields Page 2 Energy anatomy - Biofields Beverly Rubik – brubik.com Partikel - Bølge Energy Anatomy II – Session III Biofields Page 3 Do we have an ”Aura” ? Aura Aura Energy Anatomy II – Session III Biofields Page 4 Aura Aura Indian biofields Energy Anatomy II – Session III Biofields Page 5 Do we have an Aura? Aura Energy Anatomy II – Session III Biofields Page 6 Chakras Aura = Biofield? Energy Anatomy II – Session III Biofields Page 7 You have a ”new” body every 7th year Alexander Gurwitsch Energy Anatomy II – Session III Biofields Page 8 Morphogenetic field Rupert Sheldrake Morphic resonance Energy Anatomy II – Session III Biofields Page 9 What is the life force? Energy term Origin Chi, qi China Finstoflig energi - oversigt Ki Japan Prana, Vril India, Tibet Mana Polynesia Baraka North Africa Orendo Iroquese, North America Waken, Wakondo Lakota, North America Pneuma Greece Od Von Reichenbach, Germany Orgone Wilhelm Reich, Austria Time density Nikolai Kozyrev, Russia Torsion Nikolai Kozyrev, Russia Bioplasma Inyushin, Russia Biogravity Dubrov, Russia Elan Vitale Bergson, France N-emanation Rene Blondlot, France Deltron William Tiller, USA Subtle energy William Tiller, USA Life force Europe, USA Information in the biofield Energy Anatomy II – Session III Biofields Page 10 Communication Definitioner 8 Waves carry information Energy Anatomy II – Session III Biofields Page 11 What is a field?
    [Show full text]
  • Epigenetics, Obesity and Metabolism
    Epigenetics, Obesity and Metabolism Wellcome Genome Campus Conference Centre Hinxton, Cambridge, UK October 11-14, 2015 Conference Program Sunday, October 11 14:00 – 15:00 Registration 15:00 Welcome and introductions Nessa Carey & Wolf Reik Session 1: Introduction into the three fields Chair: Wolf Reik 15:00 – 15:45 Adrian Bird (University of Edinburgh, UK) DNA methylation and the brain 15:45 – 16:30 Stephen O'Rahilly (University of Cambridge, UK) Metabolic Disease: lessons from human genetics 16:30 – 17:15 Jens Bruning (Max Planck Institute, Germany) Neonatal insulin action impairs hypothalamic neurocircuit formation in response to maternal high-fat feeding 17:15 – 17:30 Abcam 17:30 – 19:30 Poster Session and welcome reception Dinner Monday, October 12 07:30 – 09:00 Breakfast Session 2: How circadian rhythms link with, and are linked by, the three topics Chair: Stephen O’Rahily and Jens Bruning 09:30 – 10:05 Wolfgang Wagner (Helmholtz Institute for Biomedical Engineering, Germany) DNA Methylation changes in replicative senescence and aging 10:05 – 10:40 Sung Hee Baek (Seoul National University, South Korea) Phosphorylation of LSD1 by PKCalpha is crucial for circadian rhythmicity and phase resetting 10:40 – 10:55 Guillaume Rey (University of Cambridge, UK) Central carbon metabolism regulates circadian oscillations Break 11:30 – 12:05 Andrew Loudon (University of Manchester, UK) The generation of the seasonal rhythm: role of circadian clock genes and epigenetics in the circannual clockwork 12:05 – 12:40 Ueli Schibler (University of Geneva,
    [Show full text]
  • Editorial Udc: 615:378 Doi: 10.18413/2313-8971-2017-3-4-3
    Pokrovskii M.V., Avtina T.V., Zakharova E.V., Belousova Yulia V. Oswald Schmiedeberg – the “father” of experimental pharmacology. Research Result: Pharmacology and Clinical 3 Pharmacology. 2017;3(4):3-19. EDITORIAL Rus. UDC: 615:378 DOI: 10.18413/2313-8971-2017-3-4-3-19 Mikhail V. Pokrovskii1 Tatyana V. Avtina T. OSWALD SCHMIEDEBERG –THE “FATHER” OF Elena V. Zakharova EXPERIMENTAL PHARMACOLOGY Yulia. V. Belousova Belgorod State National Research University, 85 Pobedy St., Belgorod, 308015 Russia Corresponding author, 1e-mail: [email protected] “Our tribute to the memory of the Teachers and those who were pioneers of pharmacology is an invaluable gift to our descendants” Abstract Biography. Oswald Schmiedeberg (1838-1921) was a son of a bailiff and a maid of honour, the eldest of the six children in the family. He was born and educated in the Russian Empire. Scientific activity. All his life he was completely devoted to science, making experimental pharmacology an independent scientific discipline, and was able to bring it to the international level. O. Schmiedeberg studied the action of muscarine and nicotine, digitoxin, hypnotics and analeptics. He was the first to introduce the concept of ―pharmacodynamics‖ and ―pharmacokinetics‖ of a drug. With his participation, the world‘s first pharmacological journal was founded, which is still published today. Science school. Working for many years at the University of Strasbourg, Schmiedeberg managed to educate about 120 students – professors from 20 countries of the world, many of whom later founded experimental pharmacology in their countries, for example, Abel in the USA, and N.P. Kravkov in Russia.
    [Show full text]
  • A N N U a L R E P O R T 2 0
    0 1 0 2 Acknowledgements T R HFSPO is grateful for the support of the following organizations: O P Australia E R National Health and Medical Research Council (NHMRC) L Canada A Canadian Institute of Health Research (CIHR) U Natural Sciences and Engineering Research Council (NSERC) N European Union N European Commission - A Directorate General Information Society (DG INFSO) European Commission - Directorate General Research (DG RESEARCH) France Communauté Urbaine de Strasbourg (CUS) Ministère des Affaires Etrangères et Européennes (MAEE) Ministère de l’Enseignement Supérieur et de la Recherche (MESR) Région Alsace Germany Federal Ministry of Education and Research (BMBF) India Department of Biotechnology (DBT), Ministry of Science and Technology Italy Ministry of Education, University and Research (CNR) Japan Ministry for Economy, Trade and Industry (METI) Ministry of Education, Culture, Sports, Science and Technology (MEXT) Republic of Korea Ministry of Education, Science and Technology (MEST) New Zealand Health Research Council (HRC) Norway Research Council of Norway (RCN) Switzerland State Secretariat for Education and Research (SER) United Kingdom The International Human Frontier Science Biotechnology and Biological Sciences Research Program Organization (HFSPO) Council (BBSRC) 12 quai Saint Jean - BP 10034 Medical Research Council (MRC) 67080 Strasbourg CEDEX - France Fax. +33 (0)3 88 32 88 97 United States of America e-mail: [email protected] National Institutes of Health (NIH) Web site: www.hfsp.org National Science Foundation (NSF) Japanese web site: http://jhfsp.jsf.or.jp HUMAN FRONTIER SCIENCE PROGRAM The Human Frontier Science Program is unique, supporting international collaboration to undertake innovative, risky, basic research at the frontiers of the life sciences.
    [Show full text]
  • Highly Multiplexed Spatially Resolved Gene Expression Profiling of Mouse Organogenesis
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.20.391896; this version posted November 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Highly multiplexed spatially resolved gene expression profiling of mouse organogenesis T. Lohoff1,2,3*, S. Ghazanfar4*, A. Missarova4,5‡, N. Koulena6‡, N. Pierson6‡, J.A. Griffiths4^, E.S. Bardot7, C.-H.L. Eng6, R.C.V. Tyser8, R. Argelaguet5, C. Guibentif1,9,10, S. Srinivas8, J. Briscoe11, B.D. Simons1,12,13, A.-K. Hadjantonakis7, B. Göttgens1,9, W. Reik1,3,14,15†, J. Nichols1,2†, L. Cai6†, J.C. Marioni4,5,15†* 1 Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK 2 Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK 3 Epigenetics Programme, Babraham Institute, Cambridge, UK 4 Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK 5 European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK 6 Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA 7 Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA 8 Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, UK 9 Department of Haematology, University of
    [Show full text]
  • Presentation Copyright 2017 J.L
    THE TWELFTH ANNUAL CONFERENCE ON THE PHYSICS, CHEMISTRY AND BIOLOGY OF WATER Sofia, Bulgaria, October 26-29, 2017 James L. Oschman, Ph.D. Nature’s Own Research Association Dover, New Hampshire USA www.energyresearch.us [email protected] Presentation Copyright 2017 J.L. Oschman A new look at memory and morphic resonance Friday October 27 Session 3 12.05-12.40 Fb/glen weimer • The morphic field • Regeneration of limbs and organs • Memory and consciousness • Memory in water • Memory in space • The structure of space Memory in water at this conference: • Won H. Kim • Vladimir Voeikov • Others The origin of form in living organisms may be the most important unsolved mystery in science. How did this kitten develop from a single cell? How did YOU develop from a single cell? One of the most important unsolved problems in science: The origin of form in living systems. Unsolved problems may be unsolved because they are difficult. If they were easy, we would already have solved them. OR: They may easy to solve but we can’t solve them because the answers are simpler than we can think! Salamanders can regenerate limbs and organs. Why can’t humans? LIMB REGENERATION IN THE SALAMANDER HEART REGENERATION IN NEWTS AND SALAMANDERS: Full regeneration of the heart occurs within 60 days after amputation of up to 1/4 of the apical myocardium. The origin of form is a problem that is widely thought to be solved, but it is not solved. Most people assume that DNA is the blueprint of life. IT IS NOT! Paul A.
    [Show full text]
  • Hepatic Macrophage Responses in Inflammation, a Function Of
    REVIEW published: 09 June 2021 doi: 10.3389/fimmu.2021.690813 Hepatic Macrophage Responses in Inflammation, a Function of Plasticity, Heterogeneity or Both? Christian Zwicker 1,2†, Anna Bujko 1,2† and Charlotte L. Scott 1,2,3* 1 Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium, 2 Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium, 3 Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland With the increasing availability and accessibility of single cell technologies, much attention has been given to delineating the specific populations of cells present in any given tissue. In recent years, hepatic macrophage heterogeneity has also begun to be examined using these strategies. While previously any macrophage in the liver was considered to be a Kupffer cell (KC), several studies have recently revealed the presence of distinct subsets of Edited by: hepatic macrophages, including those distinct from KCs both under homeostatic and Ioannis Kourtzelis, non-homeostatic conditions. This heterogeneity has brought the concept of macrophage University of York, United Kingdom plasticity into question. Are KCs really as plastic as once thought, being capable of Reviewed by: responding efficiently and specifically to any given stimuli? Or are the differential responses Ian Nicholas Crispe, University of Washington Tacoma, observed from hepatic macrophages in distinct settings due to the presence of multiple United States subsets of these cells? With these questions in mind, here we examine what is currently Takayoshi Suganami, understood regarding hepatic macrophage heterogeneity in mouse and human and Nagoya University, Japan *Correspondence: examine the role of heterogeneity vs plasticity in regards to hepatic macrophage Charlotte L.
    [Show full text]
  • The Sixth Weissenburg Symposium September 01 - 04, 2021 Venue: Kulturzentrum Karmeliterkirche, Weissenburg in Bayern, Germany
    In times of crisis, optimism and caution will be of the essence The Sixth Weissenburg Symposium September 01 - 04, 2021 Venue: Kulturzentrum Karmeliterkirche, Weissenburg in Bayern, Germany “Genome-wide Epigenetic Profiles” Dear friends of the Weissenburg Symposia, As of today, Thursday, July 22, 2021, the statistics of Covid-19 cases in Germany and Weissenburg are the following: The incidence of cases per 100.000 inhabitants during the past 7 days has been 12.2 and 5.3, respectively. Vaccination update: 60.4 % of the population in Germany have been vaccinated once, 48 % twice. With the obvious proviso that predictions about the state of the pandemic in September 2021 are impossible to make, we decided to schedule the Weissenburg Symposium September 01 to 04, 2021. Please, be assured that, should Covid-19 conditions deteriorate between now and around the end of August, we would have to postpone or cancel the date of the meeting again. Lectures will begin on Wednesday September 01, 2021 at 9:00 o’clock AM.. List of Speakers and (Preliminary) Lecture Titles Thomas R. Broker, University of Alabama, Birmingham – [email protected] Clonal selection for a single locus of transcriptionally active HPV oncogenes in cancers involving DNA methylation-mediated silencing. Louise T. Chow, University of Alabama, Birmingham – Histone deacetylase inhibitors abrogate HPV DNA replicative amplification and cause apoptosis in cervical cancer xenografts and organoids. [email protected] *Michelle Débatisse, Institut Gustave Roussy, Paris – [email protected] Title pending. *Walter Doerfler, FAU Erlangen-Nürnberg, Institute of Genetics, Cologne – [email protected] Epigenetic consequences of foreign DNA insertions into mammalian genomes.
    [Show full text]
  • Transcription and Histone Methylation Changes Correlate with Imprint Acquisition in Male Germ Cells
    The EMBO Journal (2012) 31, 606–615 | & 2012 European Molecular Biology Organization | All Rights Reserved 0261-4189/12 www.embojournal.org TTHEH E EEMBOMBO JJOURNALOURN AL Transcription and histone methylation changes correlate with imprint acquisition in male germ cells Amandine Henckel1, Karim Chebli, known why some ICRs acquire DNA methylation imprints in Satya K Kota, Philippe Arnaud2,3,* and the female germ line, while others become methylated Robert Feil3,* specifically in the male germ line. However, in both the germ lines de-novo DNA methyltransferase DNMT3A is Institute of Molecular Genetics (IGMM), CNRS, Universities of et al et al Montpellier I and II, Montpellier, France involved in imprint acquisition (Kaneda , 2004; Kato , 2007). The related DNMT3L protein can form complexes with Genomic imprinting in mammals is controlled by DNA DNMT3A and plays an essential role in imprint acquisition as methylation imprints that are acquired in the gametes, at well (Bourc’his et al, 2001; Hata et al, 2002; Kato et al, 2007). essential sequence elements called ‘imprinting control Interestingly, DNMT3L can bind to histone H3 in vitro, but H3 regions’ (ICRs). What signals paternal imprint acquisition lysine-4 dimethylation, and in particular H3-K4 trimethyla- in male germ cells remains unknown. To address this tion (H3K4me3), was found to prevent its association with question, we explored histone methylation at ICRs in chromatin (Ooi et al, 2007). Recent studies show that mouse primordial germ cells (PGCs). By 13.5 days post DNMT3A itself is also sensitive to the H3 lysine-4 methyla- coitum (d.p.c.), H3 lysine-9 and H4 lysine-20 trimethyla- tion status.
    [Show full text]