A Tribute to Fritz-Albert Popp on the Occasion of His 70Th Birthday
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Rainbow and the Worm- Mae-Wan Ho
cover next page > Cover title: The Rainbow and the Worm : The Physics of Organisms author: Ho, Mae-Wan. publisher: World Scientific Publishing Co. isbn10 | asin: 9810234260 print isbn13: 9789810234263 ebook isbn13: 9789810248130 language: English subject Biology--Philosophy, Life (Biology) , Biophysics. publication date: 1998 lcc: QH331H6 1998eb ddc: 570.1 subject: Biology--Philosophy, Life (Biology) , Biophysics. cover next page > < previous page page_i next page > Page i The Rainbow and the Worm The Physics of Organisms 2nd Edition < previous page page_i next page > < previous page page_ii next page > Page ii This page intentionally left blank < previous page page_ii next page > < previous page page_iii next page > Page iii The Rainbow and the Worm The Physics of Organisms 2nd Edition Mae-Wan Ho < previous page page_iii next page > < previous page page_iv next page > Page iv Published by World Scientific Publishing Co. Pte. Ltd. P O Box 128, Farrer Road, Singapore 912805 USA office: Suite 1B, 1060 Main Street, River Edge, NJ 07661 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. THE RAINBOW AND THE WORM (2nd Edition) The Physics of Organisms Copyright © 1998 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. -
Emission of Mitochondrial Biophotons and Their Effect on Electrical Activity of Membrane Via Microtubules
Emission of Mitochondrial Biophotons and their Effect on Electrical Activity of Membrane via Microtubules 1,2,3Majid Rahnama, 4,5Jack A. Tuszynski, 6István Bókkon, 7,8Michal Cifra, 1Peyman Sardar, 1,2,3Vahid Salari 1Department of Physics, Shahid Bahonar University of Kerman, Kerman, Iran 2Kerman Neuroscience Research Center (KNRC), Kerman, Iran 3Afzal Research Institute, Kerman, Iran 4Department of Experimental Oncology, Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada 5Department of Physics, University of Alberta, Edmonton, T6G 2J1, Canada 6Doctoral School of Pharmaceutical and Pharmacological Sciences, Semmelweis University, Hungary 7Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Prague, Czech Republic 8Department of Electromagnetic Field, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic Abstract In this paper we argue that, in addition to electrical and chemical signals propagating in the neurons of the brain, signal propagation takes place in the form of biophoton production. This statement is supported by recent experimental confirmation of photon guiding properties of a single neuron. We have investigated the interaction of mitochondrial biophotons with microtubules from a quantum mechanical point of view. Our theoretical analysis indicates that the interaction of biophotons and microtubules causes transitions/fluctuations of microtubules between coherent and incoherent states. A significant relationship between the fluctuation function of microtubules and alpha-EEG diagrams is elaborated on in this paper. We argue that the role of biophotons in the brain merits special attention. Keywords: mitochondrial biophoton, microtubule (MT), coherence, fluctuation function 1. Introduction All living cells of plants, animals and humans continuously emit ultraweak biophotons (ultraweak electromagnetic waves) in the optical range of the spectrum, which is associated with their physiological states and can be measured using special equipment1. -
Energy Anatomy - Biofields
Energy anatomy - Biofields Copyright © Peter Lund Frandsen – Touchpoint 2021 www.frontierbiology.com www.touchpoint.dk Energy Anatomy II – Session III Biofields Page 2 Energy anatomy - Biofields Beverly Rubik – brubik.com Partikel - Bølge Energy Anatomy II – Session III Biofields Page 3 Do we have an ”Aura” ? Aura Aura Energy Anatomy II – Session III Biofields Page 4 Aura Aura Indian biofields Energy Anatomy II – Session III Biofields Page 5 Do we have an Aura? Aura Energy Anatomy II – Session III Biofields Page 6 Chakras Aura = Biofield? Energy Anatomy II – Session III Biofields Page 7 You have a ”new” body every 7th year Alexander Gurwitsch Energy Anatomy II – Session III Biofields Page 8 Morphogenetic field Rupert Sheldrake Morphic resonance Energy Anatomy II – Session III Biofields Page 9 What is the life force? Energy term Origin Chi, qi China Finstoflig energi - oversigt Ki Japan Prana, Vril India, Tibet Mana Polynesia Baraka North Africa Orendo Iroquese, North America Waken, Wakondo Lakota, North America Pneuma Greece Od Von Reichenbach, Germany Orgone Wilhelm Reich, Austria Time density Nikolai Kozyrev, Russia Torsion Nikolai Kozyrev, Russia Bioplasma Inyushin, Russia Biogravity Dubrov, Russia Elan Vitale Bergson, France N-emanation Rene Blondlot, France Deltron William Tiller, USA Subtle energy William Tiller, USA Life force Europe, USA Information in the biofield Energy Anatomy II – Session III Biofields Page 10 Communication Definitioner 8 Waves carry information Energy Anatomy II – Session III Biofields Page 11 What is a field? -
Biophotons and Emergence of Quantum Coherence—A Diffusion Entropy Analysis
entropy Article Biophotons and Emergence of Quantum Coherence—A Diffusion Entropy Analysis Maurizio Benfatto 1,* , Elisabetta Pace 1 , Catalina Curceanu 1, Alessandro Scordo 1 , Alberto Clozza 1, Ivan Davoli 2, Massimiliano Lucci 2 , Roberto Francini 3 , Fabio De Matteis 3 , Maurizio Grandi 4, Rohisha Tuladhar 5 and Paolo Grigolini 6,* 1 Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, Via E. Fermi 40, 00044 Frascati, Italy; [email protected] (E.P.); [email protected] (C.C.); [email protected] (A.S.); [email protected] (A.C.) 2 Dipartimento di Fisica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Roma, Italy; [email protected] (I.D.); [email protected] (M.L.) 3 Dipartimento di Ingegneria Industriale, Università di Roma “Tor Vergata”, Via del Politecnico, 00133 Roma, Italy; [email protected] (R.F.); [email protected] (F.D.M.) 4 Istituto La Torre, Via M. Ponzio 10, 10141 Torino, Italy; [email protected] 5 Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA; [email protected] 6 Center for Nonlinear Science, University of North Texas, Denton, TX 76203-5017, USA * Correspondence: [email protected] (M.B.); [email protected] (P.G.) Abstract: We study the emission of photons from germinating seeds using an experimental technique designed to detect light of extremely small intensity. We analyze the dark count signal without Citation: Benfatto, M.; Pace, E.; germinating seeds as well as the photon emission during the germination process. -
Biophoton Emission Induced by Heat Shock
Biophoton Emission Induced by Heat Shock Katsuhiro Kobayashi1*, Hirotaka Okabe1,2, Shinya Kawano2, Yoshiki Hidaka2, Kazuhiro Hara1,2 1 The Graduate School of Systems Life Sciences, Kyushu University, Fukuoka City, Fukuoka Pref, Japan, 2 Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoka City, Fukuoka Pref, Japan Abstract Ultraweak biophoton emission originates from the generation of reactive oxygen species (ROS) that are produced in mitochondria as by-products of cellular respiration. In healthy cells, the concentration of ROS is minimized by a system of biological antioxidants. However, heat shock changes the equilibrium between oxidative stress and antioxidant activity, that is, a rapid rise in temperature induces biophoton emission from ROS. Although the rate and intensity of biophoton emission was observed to increase in response to elevated temperatures, pretreatment at lower high temperatures inhibited photon emission at higher temperatures. Biophoton measurements are useful for observing and evaluating heat shock. Citation: Kobayashi K, Okabe H, Kawano S, Hidaka Y, Hara K (2014) Biophoton Emission Induced by Heat Shock. PLoS ONE 9(8): e105700. doi:10.1371/journal. pone.0105700 Editor: Sabato D’Auria, CNR, Italy Received February 16, 2013; Accepted July 28, 2014; Published August 25, 2014 Copyright: ß 2014 Kobayashi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This work was supported by JSPS (http://www.jsps.go.jp/) KAKENHI Grant Numbers 14593004 and 17500307. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. -
Highly Sensitive Detection and Spectral Analysis of Ultraweak Photon Emission from Living Samples of Human Origin for the Measurement of Biomedical Information.†
Trans. of the Society of Instrument and Control Engineers Vol.E-1, No.1, 214/220 (2001) Highly Sensitive Detection and Spectral Analysis of Ultraweak Photon Emission from Living Samples of Human Origin for the Measurement of Biomedical Information.† Masaki Kobayashi∗, Masashi Usa∗∗ and Humio Inaba∗∗∗ Ultraweak photon emission originating from living systems and organisms is generally calledbiophoton emission and has known to occur naturally in conjunction with various vital processes of life. The aim of our study is to develop new techniques for biomedical measurements and analyses based on highly sensitive detection and characterization of biophoton emission from living samples of human origin. In this paper, we report the fun- damental techniques and instrumentation developed newly for the measurement of ultraweak photon emission intensityand its spectral distribution together with basic characteristics of ultraweak photon emission from blood plasma, urine, sputum and breath samples taken from various subjects. Key Words: biophoton, ultraweak photon emission, blood plasma, urine, sputum, breath 1. Introduction 2. Mechanism and characteristics of bio- photon emission It has been recently accepted that all living organisms emit ultraweak light during ordinary metabolic pro- A biophoton is a spontaneous photon emission, with- cesses. The phenomenon, referred to as biophoton emis- out any external photo-excitation, through chemical ex- sion, originates in the chemical excitation of molecules citation of the internal biochemical processes underlying 1)∼4) undergoing oxidative metabolism. The intensity of bio- cellular metabolism . Usually, the mechanism of the photon emission is generally less than approximately biochemical reaction process is related to the oxidative 10−15W/cm2 and is observed in the visible wavelength metabolism, which accompanies the generation of reactive range. -
Presentation Copyright 2017 J.L
THE TWELFTH ANNUAL CONFERENCE ON THE PHYSICS, CHEMISTRY AND BIOLOGY OF WATER Sofia, Bulgaria, October 26-29, 2017 James L. Oschman, Ph.D. Nature’s Own Research Association Dover, New Hampshire USA www.energyresearch.us [email protected] Presentation Copyright 2017 J.L. Oschman A new look at memory and morphic resonance Friday October 27 Session 3 12.05-12.40 Fb/glen weimer • The morphic field • Regeneration of limbs and organs • Memory and consciousness • Memory in water • Memory in space • The structure of space Memory in water at this conference: • Won H. Kim • Vladimir Voeikov • Others The origin of form in living organisms may be the most important unsolved mystery in science. How did this kitten develop from a single cell? How did YOU develop from a single cell? One of the most important unsolved problems in science: The origin of form in living systems. Unsolved problems may be unsolved because they are difficult. If they were easy, we would already have solved them. OR: They may easy to solve but we can’t solve them because the answers are simpler than we can think! Salamanders can regenerate limbs and organs. Why can’t humans? LIMB REGENERATION IN THE SALAMANDER HEART REGENERATION IN NEWTS AND SALAMANDERS: Full regeneration of the heart occurs within 60 days after amputation of up to 1/4 of the apical myocardium. The origin of form is a problem that is widely thought to be solved, but it is not solved. Most people assume that DNA is the blueprint of life. IT IS NOT! Paul A. -
Biophotons: Ultraweak Light Impulses Regulate Life Processes in Aging Hugo J Niggli* Biofoton AG, Rte
y olog & G nt er o ia r tr e i c Niggli, J Gerontol Geriat Res 2014, 3:2 G f R o e l s Journal of DOI: 10.4172/2167-7182.1000143 e a a n r r c u h o J Gerontology & Geriatric Research ISSN: 2167-7182 Review Article Open Access Biophotons: Ultraweak Light Impulses Regulate Life Processes in Aging Hugo J Niggli* BioFoton AG, Rte. d‘ Essert 27 CH-1733 Treyvaux, Switzerland Abstract As shown by the history of light, photons participate in most atomic and molecular interactions. Recent biophysical research has measured low light impulses, so-called biophotonic emission, in cells and biological tissue. It is reported throughout the world that all cells (plant, animal or human) emit a weak, so-called biophotonic radiation. Based on the photoelectric effect, appropriate photomultiplier systems have been developed in order to detect this very weak light. Although the emission is extremely low in mammalian cells, it can be efficiently induced by light leading to delayed luminescence or light induced ultraweak photon re-emission. Re-emitted photons in cells are coupled with radical reactions and are probably also linked with the DNA as an important source. In recent years, cell culture models for biophotonic measurements using fibroblastic differentiation were generated and were used as an example to test the growth stimulation efficiency of various bone cell growth factors. It is well known that fibroblasts play an essential role in skin aging, skin carcinogenesis and wound healing. Therefore the biophotonic model of cells provides a new and powerful non-invasive tool for the development of new strategies in aging research. -
Biophoton: Collection of Photon-Images
Forum Forma, 27, S45–S48, 2012 Biophoton: Collection of Photon-Images Shoichi Kai Department of Applied Quantum Physics and Nuclear Engineering, Faculty of Engineering and Graduate School of Systems Life Science, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan E-mail address: [email protected] (Received July 4, 2012; Accepted July 11, 2012) Biophoton emission is the ultra-weak chemiluminescence observed from many living systems. The origin of biophoton is the reactive oxygen species (ROS) produced from biochemical reactions in metabolic processes, for example, mitochondrial aerobic respiration. Usually such toxic ROS are detoxified by ROS scavengers in common living systems and almost no biophoton is detected. If a living system is in unpleasant states due to environmental changes as well as biological stresses, the concentration of ROS increases. As a result more biophoton is radiated from such living systems. In the present essay, a typical image of photon-radiation from plants is shown by using a high sensitive photo-sensor. Keywords: Biophoton Image, Stress, Infestation, Elicitor, Self-Defense Action, ROS 1. Biophoton Bioluminescence has been a topic of interest for more than three hundred years. We can observe it in many living systems, for example, luminescence from deep-sea fishes (e.g. Himantolophaus groenlandicus (Chohchin-ankou in Japanese)), insects (e.g. Luciola cruciata (Genjibotaru)) and plants (e.g. Mycena cyanophos (Yakoh-dake)) as well. The intensity from many of those is however rather strong and visible by our eyes because their origin is due to re- actions with specific chemicals (e.g. the luciferin-luciferase reaction). -
What Biophoton Images of Plants Can Tell Us About Biofields and Healing
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/228658862 What biophoton images of plants can tell us about biofields and healing Article in Journal of Scientific Exploration · December 2005 CITATIONS READS 9 268 3 authors, including: Katherine Creath The University of Arizona 188 PUBLICATIONS 3,826 CITATIONS SEE PROFILE All content following this page was uploaded by Katherine Creath on 28 August 2014. The user has requested enhancement of the downloaded file. Journal of Scientific Exploration, Vol. 19, No. 4, pp. 531–550, 2005 0892-3310/05 What Biophoton Images of Plants Can Tell Us about Biofields and Healing a,b,c b,c KATHERINE CREATH AND GARY E. SCHWARTZ aCollege of Optical Sciences Center, University of Arizona 1630 E. University Blvd Tucson, AZ, USA 85721-0094 e-mail: [email protected] bCenter for Frontier Medicine in Biofield Science, University of Arizona 1601 N. Tucson Blvd., Suite 17 Tucson, AZ, USA 85719 cBiofield Optics, LLC 2247 E. La Mirada St. Tucson, AZ, USA 85719 Abstract—Monitoring biofields around living organisms can provide in- formation about the system, its state of health and how it is healing. Experimental evidence gathered by various researchers since the 1920s indicates that biophotonic emission (light) plays an important role in certain biological functions and processes. Advances in low-noise, cooled, highly- sensitive CCD (charge-coupled device) cameras essentially able to count photons over thousands to millions of pixels have made it possible to image biophoton emission in completely darkened chambers. Images of biofields can now be recorded and changes can be monitored over time. -
Autoluminescence Imaging: a Non-Invasive Tool for Mapping Oxidative Stress
Review TRENDS in Plant Science Vol.11 No.10 Autoluminescence imaging: a non-invasive tool for mapping oxidative stress Michel Havaux, Christian Triantaphylide` s and Bernard Genty CEA/Cadarache, DSV, DEVM, Laboratoire d’Ecophysiologie Mole´ culaire des Plantes, UMR 6191 CEA-CNRS-Aix Marseille University, F-13108 Saint-Paul-lez-Durance, France Living organisms spontaneously emit faint light, and includes carotenoids or terpenoids, which can produce this autoluminescence is stimulated in response to many endoperoxides upon oxidation [8,9]. Singlet oxygen is pro- stresses. This phenomenon is attributable to the duced in reactions between two lipid peroxy radicals, and endogenous production of excited states during the light emission peaks in the red (at 634 and 703 nm; oxidative reactions, particularly during peroxidation of Figure 1). By contrast, the bimolecular reaction of alkoxy lipids, which generates light-emitting molecules such as radicals and the cleavage of dioxetanes lead to the forma- triplet carbonyls and singlet oxygen. Using highly sen- tion of excited triplet carbonyls, which in turn decay and sitive cameras, it is now possible to remotely image yield light in the range 350 to 480 nm (blue). Consistently, spontaneous luminescence with a good spatial spectral analyses of the luminescence emission of oxidized resolution, providing a new non-invasive tool for lipids in vitro showed the expected peaks in the blue and mapping oxidative stress and lipid peroxidation in red-near infrared domains [10]. However, in plants, triplet plants. carbonyls can also transfer excitation energy to chlorophyll molecules [11] whose deactivation is associated with The types of luminescence of living organisms photon emission at around 730 nm (far-red light) [12,13]. -
Developmental Causation: a Set of Strict Instructions Or a Self-Organized Morphogenetic Field?
THEORIA ET HISTORIA SCIENTIARUM, VOL. VI, N° 2 Ed. Nicolas Copernicus University 2002 Lev V. Beloussov Developmental Causation: A Set of Strict Instructions or a Self-organized Morphogenetic Field? Abstract Two alternative versions of interpreting the developmental events are discussed. The first of them regards the development as a set of highly specific steps each of them being caused by a unique special force, or an “instruction”. By this version, nothing outside the rigidly determined chain of events is presented, and the ultimate aim of a researcher is in making a list of specific instructions. The second version is centered around the notion of an extended spatio-temporal continuum (morphogenetic field). Any developmental trajectory is now considered to be the function of this continuum’s geometry in Euclidean and/or phase space. Within the context of such an alternative we review the classical embryological data related to inductive phenomena and embryonic regulations. The contours of a morphogenetic field theory are sketched. 1. General outline of a problem Anybody even superficially familiar with the development of multicellular organisms will agree that it is undoubtedly a most complicated and ordered set of non-artificial events ever observed in Nature. Within the course of development, the increasing number of embryonic cells are dividing, changing their shapes, moving and changing their internal structure (become differentiated) in a highly coordinated and regular way. Each time we are dealing with a highly specific and perfectly reproduced spatio-temporal succession. How does it come into being? In what way does each part of an embryo “recognize” what it should do at the given time moment and at the given space location? 136 Lev V.