Fuzz Testing ROI Framework Executive Summary

Total Page:16

File Type:pdf, Size:1020Kb

Fuzz Testing ROI Framework Executive Summary Fuzz Testing ROI Framework Executive Summary Fuzz testing maximizes application security testing with a fraction of time, cost, and resources. Get insight into the type of value you can expect from your fuzzer. A review of software security investments reveals that a majority of spending is in application testing solutions, such as static analysis, software composition analysis, and scanners. These conventional testing approaches, however, test known or common attack patterns, only addressing CVEs or CWEs. But what about the unknown vulnerabilities -- the weaknesses attackers often exploit? Fuzz testing is a technique where malformed inputs are sent to an application in hopes of triggering anomalous behavior. Anomalous behavior is usually a sign of an underlying vulnerability -- typically a zero-day. Fuzzing is a proven technique that maximizes defect detection with the least amount of time and resources. As a result, it not only buys organizations time and money, it also frees scarce technical resources from manual, mundane tasks and allows them to focus on strategic initiatives that require true expertise. This framework is a model for framing the way you evaluate the economic return of investing in fuzz testing or other comparable solutions. Organizations can also use this framework to help predict which fuzz testing solutions will offer the most value based on organizational needs. Solutions In this framework, we will evaluate four • Bootstrapped Continuous Fuzzing comparable security testing techniques. Bootstrapped continuous fuzzing refers to the practice of internally developing your own continuous fuzzer • Manual Penetration Testing utilizing open-source fuzzers such as AFL. AFL is a Penetration testing, also known as pentesting or coverage-guided generational fuzzer (also known as ethical hacking, refers to the practice of a person or guided fuzzing) and, unlike protocol fuzzers, it has persons simulating attacks against a software to almost AI-like capabilities built into its engine. When it identify weaknesses that could lead to exploits. sends a test case to a target, it is able to monitor the This is offered a service where application security target’s reaction. It, then, takes in the feedback to experts leverage both manual and dynamic testing influence the next set of test cases it generates solutions to conduct testing for a determined on-the-fly. Overtime, the test cases become amount of time. increasingly closer to probing at the application's weaknesses. Additionally, this means all test cases it • Protocol Fuzzers crafts are custom generated for your applications. Protocol fuzzing is a dynamic application security testing solution for negative testing. Think of • ForAllSecure Mayhem protocol fuzzers and all other fuzzers as a team of Mayhem is an advanced fuzz testing technique that penetration testers in machine form. Unlike a combines guided fuzzing with symbolic execution, a service, you can scale up and down the number of patented technology from 10 years of academic fuzzers based on demand. Protocol fuzzers rely on research at Carnegie Mellon University. You get all the a pre-defined library of grammar or file formats test capabilities of a coverage-guided generational fuzzer, cases. These pre-built test suites are crafted by a plus more! Like AFL, Mayhem is able to intelligently team of engineers tailored for specific applications generate custom test cases on-the-fly. Unlike AFL, in specific environments. Mayhem is able to overcome technical inefficiencies of guided fuzzing thanks to the ingenuity of symbolic execution. While guided fuzzers are intelligent, they are not perfect. Guided fuzzers rely on heuristics for Want to learn more? generating its input. While it is sufficient for the Download the What is Advanced short-term, it can impact your ROI in the long run. This is where symbolic execution comes in, tracing logical Fuzz Testing whitepaper or pathways through the executable code and therefore Mayhem solution brief. offering far greater greater code coverage. Mayhem produces a win-win situation to its users. ©2020 ForAllSecure 3 Product Operations We’ll start our analysis by addressing Remember: Engineers from these vendors must a contentious and multilayered topic: manually build the library of test suites based on RFCs. product licensing. Product licensing is Therefore, test suites for newer or uncommon protocols, an obvious cost, but it is a common such as 5G or Zigbee, are either unavailable or immature. misconception that it is the largest cost. Organizations that choose to build their own test suite, Below is a detailed walk through of may find it more costly and even impossible due to lack product cost for each solution. of technical expertise in the talent market. Manual Penetration Testing Bootstrapped Continuous Fuzzing Operation Costs Bootstrapping fuzzing is an alluring alternative, because Penetration testing has no direct product license open-source fuzzers, such as AFL, are available free of or operational cost. However, we urge readers charge. However, free is never free. Security engineers to consider how service costs can impact your with ClusterFuzz and OSS-Fuzz have disclosed that organization’s budget. while it is possible to bootstrap and operate these high-performance fuzzers in production, people often Recurring service costs are considered an operational underestimate the complexity of upstanding such expense (OpEx), while annual product licenses are solutions. Their comment echoes what we’ve observed considered a capital expense (CapEx). Depending in the market as well. Customers have cited to us that on your organization, acquiring OpEx budget may be one of the biggest oversights they made was not thinking more challenging than acquiring CapEx budget. The ahead to the ongoing maintenance cost of such a availability of OpEx budget is unpredictable, hinging complicated product. on company performance or quarterly financial reporting timelines. As a result, you will have to reflect Several brave ForAllSecure customers have attempted on whether security testing is something you would to bootstrapped their own continuous fuzzing solutions. consider a luxury or necessity. Some were successful in developing a minimum viable product (MVP) that was deployed into their Protocol Fuzzing Operation Costs organization. It even gained internal buy-in and traction. Ultimately, they eventually transitioned to ForAllSecure Protocol fuzzers charge on a per protocol basis. Our Mayhem because they realized that they had become a market research revealed that vendors offer roughly development organization for their bootstrapped fuzzing 32 protocols and files in a “standard” offering for solution -- deploying bug fixes and building new features decent, mid-level fuzzing. on an ongoing basis. Eventually, maintenance became a distraction from the larger application security vision for A critical consideration for those evaluating protocol the department. fuzzers is whether your tool of choice supports your desired protocol or file format. ©2020 ForAllSecure 4 ForAllSecure Mayhem ForAllSecure Mayhem is priced based on two factors: tier and number of cores. The appropriate tier for you will be determined by the features that you seek. The number of cores you use will be determined by the scale and speed you’d like out of your analysis engine. In short, the more computing power you place behind the fuzzing engine, the more effective your analysis runs will be. Vulnerability Assessment Now that you’ve made a purchase decision, what value can you expect during the vulnerability assessment process? Vulnerability management is described as the “cyclical practice of identifying, classifying, remediating, and mitigating vulnerabilities” in software. There are eight procedural steps for a single vulnerability assessment. The sections below walk through the effort involved in conducting each step with each solution. Vulnerability Management Cycle PREWORK ASSESS PRIORITIZE ACT • Determine scope • Report • Assign value • Remediate of program • Scan • Gauge exposure • Mitigate • Define roles and responsiilities • Identify assets • Add threat context • Accept risk • Select vulnerability assessment tools • Create and refine IMPROVE RE-ASSESS policy and SLAs • Eliminate underlying issues • Rescan • Identify asset context sources • Evolve process and SLA • Validate • Evaluate metrics ©2020 ForAllSecure 5 MANUAL PENETRATION PROTOCOL BOOTSTRAPPED FORALLSECURE TESTING FUZZING CONTINUOUS FUZZING MAYHEM STEP 1 When testing applications for the first time, attack surface analysis is the first and most critical task. Attack Surface Analysis Different from in-house tools, While the labor involved in attack surface analysis can be astonishing, it is a one-time, up-front cost per services require attack application. Automated solutions leverage existing configurations and attack surface analysis for surface analysis in every future assessments. service engagement -- meaning you will be paying the cost of doing attack surface analysis each time, regardless of whether the app has been tested before. Vulnerability analysis is the process of reducing security risks in applications. The purpose is to STEP 2 uncover security flaws within a target. The output of a vulnerability assessment is a list of defects Vulnerability Analysis suspected to have caused the software-under-test (SUT) to behaveunexpectedly. The vulnerability analysis step primarily focuses on configuration and running of the fuzzing solution(s).
Recommended publications
  • Internet Security Threat Report VOLUME 21, APRIL 2016 TABLE of CONTENTS 2016 Internet Security Threat Report 2
    Internet Security Threat Report VOLUME 21, APRIL 2016 TABLE OF CONTENTS 2016 Internet Security Threat Report 2 CONTENTS 4 Introduction 21 Tech Support Scams Go Nuclear, 39 Infographic: A New Zero-Day Vulnerability Spreading Ransomware Discovered Every Week in 2015 5 Executive Summary 22 Malvertising 39 Infographic: A New Zero-Day Vulnerability Discovered Every Week in 2015 8 BIG NUMBERS 23 Cybersecurity Challenges For Website Owners 40 Spear Phishing 10 MOBILE DEVICES & THE 23 Put Your Money Where Your Mouse Is 43 Active Attack Groups in 2015 INTERNET OF THINGS 23 Websites Are Still Vulnerable to Attacks 44 Infographic: Attackers Target Both Large and Small Businesses 10 Smartphones Leading to Malware and Data Breaches and Mobile Devices 23 Moving to Stronger Authentication 45 Profiting from High-Level Corporate Attacks and the Butterfly Effect 10 One Phone Per Person 24 Accelerating to Always-On Encryption 45 Cybersecurity, Cybersabotage, and Coping 11 Cross-Over Threats 24 Reinforced Reassurance with Black Swan Events 11 Android Attacks Become More Stealthy 25 Websites Need to Become Harder to 46 Cybersabotage and 12 How Malicious Video Messages Could Attack the Threat of “Hybrid Warfare” Lead to Stagefright and Stagefright 2.0 25 SSL/TLS and The 46 Small Business and the Dirty Linen Attack Industry’s Response 13 Android Users under Fire with Phishing 47 Industrial Control Systems and Ransomware 25 The Evolution of Encryption Vulnerable to Attacks 13 Apple iOS Users Now More at Risk than 25 Strength in Numbers 47 Obscurity is No Defense
    [Show full text]
  • Vulnerability Management: Overview
    Resource ID: w-013-3774 Cybersecurity Tech Basics: Vulnerability Management: Overview SEAN ATKINSON, CIS™ (CENTER FOR INTERNET SECURITY), WITH PRACTICAL LAW INTELLECTUAL PROPERTY & TECHNOLOGY Search the Resource ID numbers in blue on Westlaw for more. A Practice Note providing an overview of what Design, implementation, or other vendor oversights that create defects in commercial IT products (see Hardware and Software cyber vulnerability management programs Defects). are, how they work, and the key role they play Poor setup, mismanagement, or other issues in the way an in any organization’s information security organization installs and maintains its IT hardware and software components (see Unsecured Configurations). program. This Note discusses common types of Vulnerability management programs address these issues. Other cyber vulnerabilities and core process steps for common vulnerabilities that organizations must also tackle in their implementing and maintaining a vulnerability information security programs include: management program to decrease cybersecurity Gaps in business processes. Human weaknesses, such as lack of user training and awareness. risks. It also addresses common pitfalls that Poorly designed access controls or other safeguards. can lead to unnecessary cyber incidents and Physical and environmental issues. data breaches. Unlike threats, organizations can often directly control their vulnerabilities and therefore minimize the opportunities for threat actors. Most organizations depend on a combination of commercial and custom-developed hardware and software products to support their Organizations that develop their own in-house software should information technology (IT) needs. These technology components use security by design techniques to avoid creating vulnerabilities. inevitably include vulnerabilities in their design, setup, or the code that For more information on assessing overall data security risks and runs them.
    [Show full text]
  • Creating a Patch and Vulnerability Management Program
    Special Publication 800-40 Version 2.0 Creating a Patch and Vulnerability Management Program Recommendations of the National Institute of Standards and Technology (NIST) Peter Mell Tiffany Bergeron David Henning NIST Special Publication 800-40 Creating a Patch and Vulnerability Version 2.0 Management Program Recommendations of the National Institute of Standards and Technology Peter Mell Tiffany Bergeron David Henning C O M P U T E R S E C U R I T Y Computer Security Division Information Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-8930 November 2005 U.S. Department of Commerce Carlos M. Gutierrez, Secretary Technology Administration Michelle O'Neill, Acting Under Secretary of Commerce for Technology National Institute of Standards and Technology William A. Jeffrey, Director CREATING A PATCH AND VULNERABILITY MANAGEMENT PROGRAM Reports on Computer Systems Technology The Information Technology Laboratory (ITL) at the National Institute of Standards and Technology (NIST) promotes the U.S. economy and public welfare by providing technical leadership for the nation’s measurement and standards infrastructure. ITL develops tests, test methods, reference data, proof of concept implementations, and technical analysis to advance the development and productive use of information technology. ITL’s responsibilities include the development of technical, physical, administrative, and management standards and guidelines for the cost-effective security and privacy of sensitive unclassified information in Federal computer systems. This Special Publication 800-series reports on ITL’s research, guidance, and outreach efforts in computer security and its collaborative activities with industry, government, and academic organizations. National Institute of Standards and Technology Special Publication 800-40 Version 2.0 Natl.
    [Show full text]
  • Malware Risks and Mitigation Report
    MALWARE RISKS AND MITIGATION REPORT June 2011 BITS A DIVISION OF THE FINANCIAL SERVICES ROUNDTABLE 1001 PENNSYLVANIA AVENUE NW SUITE 500 SOUTH WASHINGTON, DC 20004 202-289-4322 WWW.BITS.ORG BITS Malware Risk and Mitigation Report Table of Contents 1. Executive Summary ..............................................................................................................3 2. Malware Evolution................................................................................................................3 2.1 Malware Categories...............................................................................................................................5 2.2 Malware Example .................................................................................................................................8 2.3 Polymorphic Malware ........................................................................................................................10 3. Malware Supply and Demand ............................................................................................ 10 3.1 The Malware Industry ........................................................................................................................11 3.2 Malware Supply Chain........................................................................................................................13 3.3 Beyond Crime......................................................................................................................................14 4. Malware in Financial
    [Show full text]
  • Vulnerability Management in Software: Before Patch Tuesday KYMBERLEE PRICE BUGCROWD Whoami?
    Vulnerability Management in Software: Before Patch Tuesday KYMBERLEE PRICE BUGCROWD whoami? Senior Director of a Red Team PSIRT Case Manager Data Analyst Internet Crime Investigator Security Evangelist Behavioral Psychologist @kym_possible Vulnerability Management Vulnerability management is the "cyclical practice of identifying, classifying, remediating, and mitigating vulnerabilities", especially in software and firmware. Vulnerability management is integral to computer security and network security. Vulnerabilities can be discovered with a vulnerability scanner, which analyzes a computer system in search of known vulnerabilities, such as open ports, insecure software configuration, and susceptibility to malware. Unknown vulnerabilities, such as a zero-day attack may be found with fuzz testing, which can identify certain kinds of vulnerabilities, such as a buffer overflow exploit with relevant test cases. Such analyses can be facilitated by test automation. In addition, antivirus software capable of heuristic analysis may discover undocumented malware if it finds software behaving suspiciously (such as attempting to overwrite a system file). Correcting vulnerabilities may variously involve the installation of a patch, a change in network security policy, reconfiguration of software (such as a firewall), or educating users about social engineering. So Vuln Mgmt is A NetSec Issue! Cost to Fix Vulnerabilities The National Institute of Standards and Technology (NIST) estimates that code fixes performed after release can result in
    [Show full text]
  • Attackers and Their Tools Who Is Attacking Our Network? in This Presentation We Will Investigate Threat, Vulnerability, and Risk
    Principles of Cyber Security Attackers and Their Tools Who is Attacking Our Network? In this presentation we will investigate Threat, Vulnerability, and Risk . Threat • Is a potential danger to an asset such as data or the network. Vulnerability and Attack Surface • A vulnerability is a weakness in a system or its design that could be exploited by a threat. • Attack surface describes different points where an attacker could get into a system and could get to the data (Example – operating system without security patches) . Exploit • Is a mechanism used to leverage a vulnerability to compromise an asset. • A Remote exploit works over the network. • A Local exploit is when a threat actor has user or administrative access to the end system. Risk • Likelihood that a threat will exploit a vulnerability of an asset and result in an undesirable consequence. © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 2 Who is Attacking Our Network? What exactly are Hackers? Hacker vs. Threat Actor . White Hat Hackers • Ethical hackers who use their programming skills for good, ethical, and legal purposes. • Perform penetration tests to discover vulnerabilities and work with developers to address cyber issues . Grey Hat Hackers • Commit crimes and do unethical things but not for personal gain or to cause damage. Black Hat Hackers • Unethical criminals who violate security for personal gain, or for malicious reasons, such as attacking networks. It is important to note: Threat actors is a term used to describe grey and black hat hackers. © 2016 Cisco and/or its affiliates. All rights reserved. Cisco Confidential 3 Who is Attacking Our Network? Evolution of Threat Actors .
    [Show full text]
  • OWASP Vulnerability Management Guide (OVMG)
    OWASP Vulnerability Management Guide (OVMG) June 1, 2020 Copyright 2020, OWASP Foundation, Inc. OWASP Vulnerability Management Guide (OVMG) - June 1, 2020 Table of Content I. Foreword ______________________________________________________________________________ 3 About OVMG ___________________________________________________________________________ 3 II. Guide _________________________________________________________________________________ 4 1 Detection Cycle _______________________________________________________________________ 4 1.1 Scope _________________________________________________________________________ 4 1.2 Tools _________________________________________________________________________ 5 1.3 Run Tests ______________________________________________________________________ 6 1.4 Confirm Findings ________________________________________________________________ 7 2 Reporting Cycle _____________________________________________________________________ 8 2.1 Assets Groups __________________________________________________________________ 8 2.2 Metrics _______________________________________________________________________ 9 2.3 Audit Trail ____________________________________________________________________ 10 2.4 Reports ______________________________________________________________________ 11 3 Remediation Cycle _________________________________________________________________ 12 3.1 Prioritize _____________________________________________________________________ 13 3.2 Remediation __________________________________________________________________
    [Show full text]
  • Experts on Threat and Vulnerability Management
    Sponsored by Experts on Threat and Vulnerability Management Best Practice Advice On How To Prioritize Your 7Remediation with a Cutting-Edge Approach NEW EDITION INTRODUCTION: THREAT AND VULNERABILITY MANAGEMENT One of the greatest challenges security teams face is identifying, assessing, and eliminating vulnerabilities before the bad guys find them. Sometimes it seems like the bad guys are winning. Most major breaches in that past year have occurred through known vulnerabilities that for various reasons went unpatched until it was too late. Organizations know they have Mighty Guides make you stronger. vulnerabilities in their systems. They are investing in new tools, yet industry surveys show These authoritative and diverse that few are totally satisfied with their vulnerability-management practice. guides provide a full view of a topic. Part of the challenge is that managing vulnerabilities requires balancing threats and asset They help you explore, compare, criticality against known vulnerabilities, but these things are all constantly changing. To gain and contrast a variety of viewpoints a clearer understanding of these challenges and how organizations are addressing them, we so that you can determine what will partnered with RiskSense. We approached 7 cyber risk experts with the following question: work best for you. Reading a Mighty “What best-practice advice would you offer to help someone take a Guide is kind of like having your own proactive, cutting-edge approach to cyber-risk management?” team of experts. Each heartfelt and sincere piece of advice in this guide Of course, the answers depend on a lot of factors, but our experts had a number of useful and sits right next to the contributor’s revealing things to say about assessing criticality, managing remediation, and applying next- name, biography, and links so that generation tools to the problem.
    [Show full text]
  • Internet Security Threat Report VOLUME 21, APRIL 2016 TABLE of CONTENTS 2016 Internet Security Threat Report 2
    Internet Security Threat Report VOLUME 21, APRIL 2016 TABLE OF CONTENTS 2016 Internet Security Threat Report 2 CONTENTS 4 Introduction 21 Tech Support Scams Go Nuclear, 39 Infographic: A New Zero-Day Vulnerability Spreading Ransomware Discovered Every Week in 2015 5 Executive Summary 22 Malvertising 39 Infographic: A New Zero-Day Vulnerability Discovered Every Week in 2015 8 BIG NUMBERS 23 Cybersecurity Challenges For Website Owners 40 Spear Phishing 10 MOBILE DEVICES & THE 23 Put Your Money Where Your Mouse Is 43 Active Attack Groups in 2015 INTERNET OF THINGS 23 Websites Are Still Vulnerable to Attacks 44 Infographic: Attackers Target Both Large and Small Businesses 10 Smartphones Leading to Malware and Data Breaches and Mobile Devices 23 Moving to Stronger Authentication 45 Profiting from High-Level Corporate Attacks and the Butterfly Effect 10 One Phone Per Person 24 Accelerating to Always-On Encryption 45 Cybersecurity, Cybersabotage, and Coping 11 Cross-Over Threats 24 Reinforced Reassurance with Black Swan Events 11 Android Attacks Become More Stealthy 25 Websites Need to Become Harder to 46 Cybersabotage and 12 How Malicious Video Messages Could Attack the Threat of “Hybrid Warfare” Lead to Stagefright and Stagefright 2.0 25 SSL/TLS and The 46 Small Business and the Dirty Linen Attack Industry’s Response 13 Android Users under Fire with Phishing 47 Industrial Control Systems and Ransomware 25 The Evolution of Encryption Vulnerable to Attacks 13 Apple iOS Users Now More at Risk than 25 Strength in Numbers 47 Obscurity is No Defense
    [Show full text]
  • Defending Against Software Supply Chain Attacks
    TLP:WHITE Defending Against Software Supply Chain Attacks Publication: April 2021 Cybersecurity and Infrastructure Security Agency DISCLAIMER: This document is marked TLP:WHITE. Disclosure is not limited. Sources may use TLP:WHITE when information carries minimal or no foreseeable risk of misuse, in accordance with applicable rules and procedures for public release. Subject to standard copyright rules, TLP:WHITE information may be distributed without restriction. For more information on the Traffic Light Protocol, see http://www.cisa.gov/tlp/. TLP:WHITE TLP:WHITE INTRODUCTION A software supply chain attack occurs when a cyber threat actor infiltrates a software vendor’s network and employs malicious code to compromise the software before the vendor sends it to their customers. The compromised software then compromises the customer’s data or system. Newly acquired software may be compromised from the outset, or a compromise may occur through other means like a patch or hotfix. In these cases, the compromise still occurs prior to the patch or hotfix entering the customer’s network. These types of attacks affect all users of the compromised software and can have widespread consequences for government, critical infrastructure, and private sector software customers. This document provides an overview of software supply chain risks and recommendations on how software customers and vendors can use the National Institute of Standards and Technology (NIST) Cyber Supply Chain Risk Management (C-SCRM) framework and the Secure Software Development Framework (SSDF) to identify, assess, and mitigate risks. Page | 2 TLP:WHITE TLP:WHITE SOFTWARE SUPPLY CHAIN RISKS Software supply chains fit within the greater information and communications technology (ICT) supply chain framework.
    [Show full text]
  • 7 Essential Vulnerability Management Questions Answered
    essential vulnerability management 7questions answered Are monthly or quarterly audit-based assessments enough? Should my security architecture rely solely on patching? Are CVSS scores reliable? What is risk-based Should I invest in prioritization? separate patching tools? Zero-days? End-of-life? How do I deal with unpatchable Agent-based or issues? agentless scanning? Gone are the days when sysadmin simply schedule patches to their network a week or two after Patch Tuesday and call it a day. Given the complexity of the current digital landscape, i.e, the scale and diversity of endpoints, applications, and operating systems on the network spread across the globe, many organizations face greater cyber-risk today. Not to mention the rate at which vulnerabilities are burgeoning. Worse still, the coverage of attack vectors beyond the scope of vulnerabilities is constantly widening. This puts pressure on organizations to reorganize their priorities around vulnerability management. But often, organizations are overwhelmed with a flood of concerns. How often should I scan my network? Which areas should I focus on first? Will vulnerability management actually lower risks, or is it merely a compliance chore? What factors should I consider to prioritize high-profile risks? How do I define a better remediation method? Should my security architecture be entirely dependent upon patching? What if I come across a zero-day vulnerability in my network? In this e-book, we're tackling 7 essential vulnerability management questions to dispel all your doubts once and for all. This e-book is not only a consolidated source of answers to the top vulnerability management questions, but also as a guide to adopting the best possible course of action at various stages of your vulnerability management endeavors.
    [Show full text]
  • Visualizations in Vulnerability Management Marco Krebs
    Visualizations in Vulnerability Management Marco Krebs Technical Report RHUL–MA–2013– 8 01 May 2013 Information Security Group Royal Holloway, University of London Egham, Surrey TW20 0EX, United Kingdom www.ma.rhul.ac.uk/tech Title Visualizations in Vulnerability Management Version of this document 1.0 (released) Student Marco Krebs Student number 080401461 Date March 08, 2012 Supervisor William Rothwell Submitted as part of the requirements for the award of the MSc in Information Security of the University of London. ! Acknowledgements ACKNOWLEDGEMENTS! This is the place to express my thanks to all the people who have supported me over the last couple of months. However, I would like to single out a few names. For example, there is Marc Ruef with whom I touched base on the initial idea for this thesis during a lunch discussion. We share a similar experience on security testing and found out that we were both not fully satisfied with the way the results are provided to the client. Another thank you goes to Jan Monsch, the creator of DAVIX. He was able to draw my attention to the subject of visualization when we worked together as security analysts. Quite a few items of his personal library moved to my place for the duration of this thesis. I would also like to thank William Rothwell for becoming my project supervisor and for his ongoing support. He received the first status report in October last year and has been providing valuable feedback since. Few people have read the project report as many times as he did.
    [Show full text]