Programa Fondecyt Informe Final Etapa 2017

Total Page:16

File Type:pdf, Size:1020Kb

Programa Fondecyt Informe Final Etapa 2017 PROGRAMA FONDECYT INFORME FINAL ETAPA 2017 COMISIÓN NACIONAL DE INVESTIGACION CIENTÍFICA Y TECNOLÓGICA VERSION OFICIAL Nº 2 FECHA: 30/10/2017 Nº PROYECTO : 3150238 DURACIÓN : 3 años AÑO ETAPA : 2017 TÍTULO PROYECTO : AN EXTINCTION-FREE VIEW OF STAR FORMING GALAXIES AND THEIR CONSTITUENTS THROUGH RADIO AND MM/SUB-MM OBSERVATIONS. DISCIPLINA PRINCIPAL : ASTRONOMIA GRUPO DE ESTUDIO : ASTRON.,COSMOL.Y PAR INVESTIGADOR(A) RESPONSABLE : CRISTINA ROMERO CAÑIZALES DIRECCIÓN : COMUNA : CIUDAD : Santiago REGIÓN : METROPOLITANA FONDO NACIONAL DE DESARROLLO CIENTIFICO Y TECNOLOGICO (FONDECYT) Moneda 1375, Santiago de Chile - casilla 297-V, Santiago 21 Telefono: 2435 4350 FAX 2365 4435 Email: [email protected] INFORME FINAL PROYECTO FONDECYT POSTDOCTORADO OBJETIVOS Cumplimiento de los Objetivos planteados en la etapa final, o pendientes de cumplir. Recuerde que en esta sección debe referirse a objetivos desarrollados, NO listar actividades desarrolladas. Nº OBJETIVOS CUMPLIMIENTO FUNDAMENTO 1 Exploiting high-resolution radio data to obtain an TOTAL I participated in different ISI publications extinction-free view of the star formation and contributing with the analysis and/ or AGN activity in starbursting systems. interpretation of proposed and/or archival radio observations of different galaxies which have undergone or are undergoing a merger and thus contain star-formation and AGN components. The references are Koss et al. (2015), Ricci et al. (2016), Romero-Cañizales et al. (2016) and Romero-Cañizales et al. (2017). 2 mm/sub-mm studies of the gas and dust in a rare PARCIAL The publication I am leading based on ALMA triple merger, to shed light into the star formation observations is still in preparation. New ALMA processes and the active phase of AGN in and VLA data were obtained within the past three extreme environments. years. This added needed components to our work but have turned it at the same time more complex. I expect to complete this work in the next few months and publish it during the first half of 2018. However, one article containing part of our study has already been submitted and accepted in an ISI journal (see Väisänen et al. 2017). I also participated in two publications studying the mm-continuum in dusty star-forming galaxies at high-redshift (see details in González-López et al. 2017 and Laporte et al. 2017). 3 Constraining the circumstellar medium around TOTAL I participated in different ISI publications related young CCSNe in starburst galaxies with radio and to the study of core-collapse supernovae and a mm-wavelength studies to help us characterize "new" class of transient which has risen great the progenitor stars and aid in the understanding interest in the last few years (tidal disruption of the different CCSN types. events). In some cases the transients have shown signatures expected from TDEs but also from supernovae, making their interpretation more challenging. I contributed with proposed and/or archival radio observations (analysis and/or interpretation) and also as an observer at the New Technology Telescope in La Silla in the studies published by Kangas et al. (2016), Dwarkadas et al. (2016), Leloudas et al. (2016), Kool et al. (2017), Bose et al. (2017) and Kankare et al. (2017). Otro(s) aspecto(s) que Ud. considere importante(s) en la evaluación del cumplimiento de objetivos planteados en la propuesta original o en las modificaciones autorizadas por los Consejos. RESULTS OBTAINED: For each specific goal, describe or summarize the results obtained. Relate each one to work already published and/or manuscripts submitted. In the Annex section include additional information deemed pertinent and relevant to the evaluation process. The maximum length for this section is 5 pages. (Arial or Verdana, font size 10). My FONDECYT postdoctoral project aimed at offering a more comprehensive view of galaxies which undergo a period of very active star formation probably accompanied by super-massive 6 9.5 black hole (SMBH; MBH=10 – 10 M⊙) growth and subsequent active galactic nucleus (AGN) activity. These galaxies are usually interacting systems whose energy is mostly emitted in the IR 11 with a luminosity above 10 L⊙ (Kilerci-Eser, Goto, Doi 2014), and therefore receive the name of luminous infrared galaxy (LIRG), or ultra luminous infrared galaxy (ULIRG) if its luminosity 12 surpasses 10 L⊙. The research objectives of the project were: 1) Exploiting high-resolution radio data to obtain an extinction-free view of the star formation and AGN activity in starbursting systems. 2) mm/sub-mm studies of the gas and dust in a rare triple merger, to shed light into the star formation processes and the active phase of AGN in extreme environments. 3) Constraining the circumstellar medium (CSM) around young core-collapse supernovae (CCSNe) in starburst galaxies with radio and mm-wavelength studies to help us characterize the progenitor stars and aid in the understanding of the different CCSN types. In the following, I describe the results pertaining to each research objective. Research objective 1 is an effort to build a sample of (U)LIRGs observed with radio interferometry techniques and help understand their powering mechanisms and evolution. The most significant result I obtained in the context of this research objective comes from the study of the LIRG IC883. This is an advanced merger in which the star formation dominates the global energetics of the system. However, our radio observations show that the nuclear region is dominated by an AGN that has a core-jet morphology (see Figure 1). The core has a very inverted spectrum and a low frequency turnover at ~4.4 GHz, indicating this is a young source (~3000 yr). These and other properties, make of IC883 a candidate for the nearest, the least luminous and one of the youngest Gigahertz-Peaked Spectrum (GPS) sources ever found. It has been proved in the past that there is a relation between merging galaxies and GPS sources, however, finding them in very active star- forming environments is very uncommon. Our study has opened a new window to investigate the physical environments of low-luminosity, young GPS sources, which can potentially be a numerous population among LIRGs in an advanced merger stage, but have so far been missed presumably owing to the lack of high-resolution, high-sensitivity radio data (see more details in Romero- Cañizales et al. 2017). The Luminous InfraRed Galaxy Inventory (LIRGI; http://lirgi.iaa.es/) is a high-resolution radio complement to legacy observations made with the NASA Great Observatories All-Sky LIRG Survey (GOALS) program. It includes e-MERLIN and EVN continuum, line (HI, OH) as well as polarisation observations. Although I expected these data to be ready during my FONDECYT postdoctoral project, the observations have been suffering from multiple delays and only a handful from the 42 galaxies have been observed. During a visit I made to the Jodrell Bank Centre for Astrophysics in 2016, I worked on the e-MERLIN data of galaxy Mrk 331. The continuum data did not have a high- enough signal to noise ratio and it only shows a compact source, likely the nucleus of the galaxy, and some hints of diffuse emission. Unfortunately the HI and OH line data were not useful and we are still waiting for new observations to be delivered. As an extension of this research objective, I also studied PGC043234, a post-starburst galaxy that resulted from a merger (Prieto et al. 2016) and has currently a negligible star formation. This system recently hosted the tidal disruption event (TDE) ASASSN-14li. TDEs are one of the mechanisms able to alter the accretion rate of material onto a SMBH, by means of the total or partial disruption of a star that wanders in the vicinity of the BH (e.g., Evans et al. 1989). Either at an early or at a late merger stage, a galaxy providing material for the steady or intermittent accretion onto a BH will also be the scenario for the formation of a jet. The host galaxy can be dusty and have large amounts of gas (e.g., a LIRG) or an over-density of stars (e.g., post- starburst galaxy) hence making most observations of the innermost <100 pc region (where the activity is taking place) basically infeasible. Our EVN observations of ASASSN-14li have allowed us to resolve the system into two components 2pc apart (see Figure 2). The components resemble a core-jet/outflow system, whose secondary component can be related directly to ASASSN-14li if its motion is superluminal, or to a past AGN or TDE if its motion is subluminal. The exiting possibility exists that both components are instead a binary BH system. We have been granted more EVN and global VLBI time which will help characterise these components and understand their origin (see more details in Romero-Cañizales et al. 2016). Related to this research objective, I also participated in the following studies: * NGC 3393 is a spiral galaxy with negligible star formation and a Seyfert 2 nucleus. In the past, it was reported to be the host of a dual AGN, the one with the smallest physical separation ever found (150 pc; Fabbiano et al. 2011). The aftermath of a galaxy merger is a powerful AGN, and thus, the detection of dual AGNs represent a test for the merger-driven AGN model. However, only a few cases of dual AGN at sub-kiloparsec separations have been confirmed. NGC 3393 not being an obvious present nor past merger, was an outstanding case and represented a challenge to the formation of powerful AGNs. I studied archival radio data from the VLA and VLBA and found that the large scale structure resembles an AGN with a two-sided jet rather than a dual AGN. This work, together with a re-analysis of archival X-ray and other data showed that the previously claimed detection of a dual AGN in this galaxy was indeed spurious.
Recommended publications
  • Annual Report 2016–2017 AAVSO
    AAVSO The American Association of Variable Star Observers Annual Report 2016–2017 AAVSO Annual Report 2012 –2013 The American Association of Variable Star Observers AAVSO Annual Report 2016–2017 The American Association of Variable Star Observers 49 Bay State Road Cambridge, MA 02138-1203 USA Telephone: 617-354-0484 Fax: 617-354-0665 email: [email protected] website: https://www.aavso.org Annual Report Website: https://www.aavso.org/annual-report On the cover... At the 2017 AAVSO Annual Meeting.(clockwise from upper left) Knicole Colon, Koji Mukai, Dennis Conti, Kristine Larsen, Joey Rodriguez; Rachid El Hamri, Andy Block, Jane Glanzer, Erin Aadland, Jamin Welch, Stella Kafka; and (clockwise from upper left) Joey Rodriguez, Knicole Colon, Koji Mukai, Frans-Josef “Josch” Hambsch, Chandler Barnes. Picture credits In additon to images from the AAVSO and its archives, the editors gratefully acknowledge the following for their image contributions: Glenn Chaple, Shawn Dvorak, Mary Glennon, Bill Goff, Barbara Harris, Mario Motta, NASA, Gary Poyner, Msgr. Ronald Royer, the Mary Lea Shane Archives of the Lick Observatory, Chris Stephan, and Wheatley, et al. 2003, MNRAS, 345, 49. Table of Contents 1. About the AAVSO Vision and Mission Statement 1 About the AAVSO 1 What We Do 2 What Are Variable Stars? 3 Why Observe Variable Stars? 3 The AAVSO International Database 4 Observing Variable Stars 6 Services to Astronomy 7 Education and Outreach 9 2. The Year in Review Introduction 11 The 106th AAVSO Spring Membership Meeting, Ontario, California 11 The
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]
  • The Host of the Type I SLSN 2017Egm: a Young, Sub-Solar Metallicity Environment in a Massive Spiral Galaxy
    Astronomy & Astrophysics manuscript no. PMAS2017egm_3 c ESO 2017 October 3, 2017 The host of the Type I SLSN 2017egm: A young, sub-solar metallicity environment in a massive spiral galaxy. L. Izzo1, C. C. Thöne1, R. García-Benito1, A. de Ugarte Postigo1,2, Z. Cano1, D. A. Kann1, K. Bensch 1, M. Della Valle3,4, D. Galadí-Enríquez5, R. P. Hedrosa5 1Instituto de Astrofisica de Andalucia (IAA-CSIC), Glorieta de la Astronomia s/n, 18008 Granada, Spain 2Dark Cosmology Centre, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen Ø, Denmark 3INAF-Capodimonte Observatory, Salita Moiariello 16, I-80131, Napoli, Italy 4International Center for Relativistic Astrophysics, Piazzale della Repubblica, 2, 65122, Pescara, Italy 5Centro Astronómico Hispano-Alemán, Calar Alto, CSIC-MPG, Sierra de los Filabres-04550 Gérgal (Almería), Spain ABSTRACT Context. Type-I Super-luminous-Supernova (SLSN) host galaxies are predominantly low-metallicity, highly star-forming dwarfs. One of the current key questions is whether SLSNe Type I can only occur in such environments and hosts. Aims. Here we present an integral-field study of the massive, high-metallicity spiral NGC 3191, the host of SN 2017egm, the closest SLSN Type I to date. We use data from PMAS/CAHA and the public MaNGA survey to shed light on the properties of the SLSN site and the origin of star-formation in this non-starburst spiral galaxy. Methods. We map the physical properties different H ii regions throughout the galaxy and characterize their stellar populations using the STARLIGHT fitting code. Kinematical information allows to study a possible interaction with its neighbouring galaxy as the origin of recent star formation activity which could have caused the SLSN.
    [Show full text]
  • The Superluminous Supernova Sn 2017Egm in the Nearby Galaxy Ngc 3191: a Metal-Rich Environment Can Support a Typical Slsn Evolution
    DRAFT VERSION SEPTEMBER 21, 2018 Preprint typeset using LATEX style AASTeX6 v. 1.0 THE SUPERLUMINOUS SUPERNOVA SN 2017EGM IN THE NEARBY GALAXY NGC 3191: A METAL-RICH ENVIRONMENT CAN SUPPORT A TYPICAL SLSN EVOLUTION MATT NICHOLL1 ,EDO BERGER1 ,RAFFAELLA MARGUTTI2 ,PETER K. BLANCHARD1 ,JAMES GUILLOCHON1 ,JOEL LEJA1 AND RYAN CHORNOCK3 1Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, USA; [email protected] 2Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 3Astrophysical Institute, Department of Physics and Astronomy, 251B Clippinger Lab, Ohio University, Athens, OH 45701, USA ABSTRACT At redshift z = 0:03, the recently-discovered SN 2017egm is the nearest Type I superluminous supernova (SLSN) to date, and first near the center of a massive spiral galaxy (NGC 3191). Using SDSS spectra of NGC 3191, we find a metallicity ∼ 2 Z at the nucleus and ∼ 1:3 Z for a star forming region at a radial offset similar -1 to SN 2017egm. Archival radio-to-UV photometry reveals a star-formation rate ∼ 15 M yr (with ∼ 70% 10:7 dust-obscured), which can account for a Swift X-ray detection, and stellar mass ∼ 10 M . We model the early UV-optical light curves with a magnetar central-engine model, using the Bayesian light curve fitting tool 14 MOSFiT. The fits indicate ejecta mass 2 - 4 M , spin period 4 - 6 ms, magnetic field (0:7 - 1:7) × 10 G, and kinetic energy 1-2×1051 erg. These parameters are consistent with the overall distributions for SLSNe, modeled by Nicholl et al.(2017b), although the derived mass and spin are towards the low end, possibly indicating enhanced loss of mass and angular momentum before explosion.
    [Show full text]
  • The Astronomer Magazine Index
    The Astronomer Magazine Index The numbers in brackets indicate approx lengths in pages (quarto to 1982 Aug, A4 afterwards) 1964 May p1-2 (1.5) Editorial (Function of CA) p2 (0.3) Retrospective meeting after 2 issues : planned date p3 (1.0) Solar Observations . James Muirden , John Larard p4 (0.9) Domes on the Mare Tranquillitatis . Colin Pither p5 (1.1) Graze Occultation of ZC620 on 1964 Feb 20 . Ken Stocker p6-8 (2.1) Artificial Satellite magnitude estimates : Jan-Apr . Russell Eberst p8-9 (1.0) Notes on Double Stars, Nebulae & Clusters . John Larard & James Muirden p9 (0.1) Venus at half phase . P B Withers p9 (0.1) Observations of Echo I, Echo II and Mercury . John Larard p10 (1.0) Note on the first issue 1964 Jun p1-2 (2.0) Editorial (Poor initial response, Magazine name comments) p3-4 (1.2) Jupiter Observations . Alan Heath p4-5 (1.0) Venus Observations . Alan Heath , Colin Pither p5 (0.7) Remarks on some observations of Venus . Colin Pither p5-6 (0.6) Atlas Coeli corrections (5 stars) . George Alcock p6 (0.6) Telescopic Meteors . George Alcock p7 (0.6) Solar Observations . John Larard p7 (0.3) R Pegasi Observations . John Larard p8 (1.0) Notes on Clusters & Double Stars . John Larard p9 (0.1) LQ Herculis bright . George Alcock p10 (0.1) Observations of 2 fireballs . John Larard 1964 Jly p2 (0.6) List of Members, Associates & Affiliations p3-4 (1.1) Editorial (Need for more members) p4 (0.2) Summary of June 19 meeting p4 (0.5) Exploding Fireball of 1963 Sep 12/13 .
    [Show full text]
  • Objektauswahl NGC Seite 1
    UMa – Objektauswahl NGC Seite 1 NGC 2600 NGC 2654 NGC 2688 NGC 2742 NGC 2810 NGC 2895 NGC 3009 NGC 3079 NGC 2602 NGC 2656 NGC 2689 NGC 2756 NGC 2814 NGC 2950 NGC 3010 NGC 3102 NGC 2603 NGC 2692 NGC 2762 NGC 2820 NGC 2959 NGC 3027 NGC 3111 Seite 2 NGC 2605 NGC 2675 NGC 2693 NGC 2767 NGC 2841 NGC 2961 NGC 3031 NGC 3135 NGC 2606 NGC 2676 NGC 2694 NGC 2768 NGC 2854 NGC 2976 NGC 3034 NGC 3164 Seite 3 NGC 2614 NGC 2701 NGC 2681 NGC 2769 NGC 2856 NGC 2985 NGC 3043 NGC 3168 Seite 4 NGC 2629 NGC 2684 NGC 2710 NGC 2771 NGC 2857 NGC 2998 NGC 3065 NGC 3179 NGC 2639 NGC 2685 NGC 2726 NGC 2787 NGC 2870 NGC 3005 NGC 3066 NGC 3180 Seite 5 NGC 2641 NGC 2686 NGC 2739 NGC 2800 NGC 2880 NGC 3006 NGC 3073 NGC 3181 NGC 2650 NGC 2687 NGC 2740 NGC 2805 NGC 2892 NGC 3008 NGC 3077 NGC 3182 Sternbild- Zur Objektauswahl: Nummer anklicken Übersicht Zur Übersichtskarte: Objekt in Aufsuchkarte anklicken Zum Detailfoto: Objekt in Übersichtskarte anklicken UMa – Objektauswahl NGC Seite 2 NGC 3184 NGC 3225 NGC 3298 NGC 3394 NGC 3445 NGC 3530 NGC 3553 NGC 3594 NGC 3188 NGC 3231 NGC 3310 NGC 3398 NGC 3448 NGC 3536 NGC 3554 NGC 3595 Seite 1 NGC 3191 NGC 3236 NGC 3319 NGC 3406 NGC 3470 NGC 3539 NGC 3556 NGC 3600 NGC 3198 NGC 3237 NGC 3320 NGC 3407 NGC 3471 NGC 3540 NGC 3558 NGC 3610 NGC 3202 NGC 3238 NGC 3348 NGC 3408 NGC 3478 NGC 3542 NGC 3561 NGC 3613 Seite 3 NGC 3205 NGC 3259 NGC 3353 NGC 3410 NGC 3488 NGC 3543 NGC 3569 NGC 3614 Seite 4 NGC 3206 NGC 3264 NGC 3359 NGC 3415 NGC 3499 NGC 3545 NGC 3577 NGC 3619 NGC 3207 NGC 3266 NGC 3364 NGC 3416 NGC 3516 NGC 3549 NGC 3583
    [Show full text]
  • Meteor , ,{ > Csillagászati Évkönyv 1994
    M meteor , ,{ > csillagászati * i évkönyv 1994 Számítástechnika kulcsrakészen! — 386SX, 386, 486 számítógépek minden kiépítésben, 3 év garanciával — Laptop, Notebook számítógépek — EPSON, STAR, Hewlett Packard nyomtatók — Discovery és US Robotics modemek — APC szünetmentes tápegységek — ASHTON-TATE, BORLAND, MICROSOFT, NANTUCKET, LOTUS szoftverek — Modemes távadatátviteli és BBS-rendszerek szállítása — NOVELL-hálózati szoftverek, hálózatépítés — Számítógépek és tartozékok javítása QUU€RTY High Tech Kft. Címünk: 1114 Budapest, Orlay u. 4. Üzlet: 1114 Budapest, Bartók Béla út 9. Tel.: 18-68-858, 18-52-687, 16-63-098 Fax: 18-52-687 BBS: 11-87-950 (Budapest BBS) NE FELEDJE: nevünk ott található az ÖN számítógépének billentyűzetén is! A MAGYAR CSILLAGÁSZAT) C- íYESt KÖNYVTÁRA meteor csillagászati évkönyv 1994 szerkesztette: Mizser Attila Taracsák Gábor Az évkönyv összeállításában közreműködtek: EAON (Belgium) Guman István Holl András Jean Meeus (Belgium) Sárneczky Krisztián Tepliczky István T ó th Éva Zajácz György Zalezsák Tamás A szerkesztés a Fővárosi Önkormányzat Tudományos Alapja és az M TA Csillagászati Kutatóintézete támogatásával készült Magyar Csillagászati Egyesület Budapest, 1993 Szakmailag ellenőrizte: Benkő József Szabados László Műszaki szerkesztés és illusztrációk: Taracsák Gábor ISSN 0866-2851 Felelős kiadó: Mizser Attila Készült a Kertészeti és Élelmiszeripari Egyetem Nyomdájában Felelős vezető: Wilpert Gábor Terjedelem: 13 (A5) ív Példányszám: 4000 1993. október Tartalom Bevezető..........................................................................................................................................................5
    [Show full text]
  • Alexei V. Filippenko PUBLICATIONS (∗ = Refereed Journals); 18 July 2021
    Alexei V. Filippenko PUBLICATIONS (∗ = refereed journals); 18 July 2021 Citations: >128k (ADS), >168k (Google Scholar). h-index: 150 (ADS), 172 (Google Scholar) ∗1) A. V. Filippenko and R. S. Simon (1981). Astron. Jour., 86, 671{686. \A Study of 52 RR Lyrae Stars in M15." ∗2) A. V. Filippenko (1982). Publ. Astron. Soc. Pacific, 94, 715{721. \The Importance of Atmospheric Differential Refraction in Spectrophotometry." ∗3) A. V. Filippenko and V. Radhakrishnan (1982). Astrophys. Jour., 263, 828{834. \Pulsar Nulling and Drifting Subpulse Phase Memory." 4) A. V. Filippenko, A. C. S. Readhead, and M. S. Ewing (1983). In Positron-Electron Pairs in Astrophysics (Proceedings of AIP Conference 101), ed. M. L. Burns, A. K. Harding, and R. Ramaty (New York: American Institute of Physics), 113{117. \The Effect of Nulls on the Drifting Subpulses in PSR 0809+74." ∗5) M. A. Malkan and A. V. Filippenko (1983). Astrophys. Jour., 275, 477{492. \The Stellar and Nonstellar Continua of Seyfert Galaxies: Nonthermal Emission in the Near-Infrared." ∗6) A. V. Filippenko and J. L. Greenstein (1984). Publ. Astron. Soc. Pacific, 96, 530{536. \Faint Spectrophotometric Standard Stars for Large Optical Telescopes. I." ∗7) A. V. Filippenko and J. P. Halpern (1984). Astrophys. Jour., 285, 458{474. \NGC 7213: A Key to the Nature of Liners?" ∗8) J. P. Halpern and A. V. Filippenko (1984). Astrophys. Jour., 285, 475{482. \The Nonstellar Continuum of the Seyfert Galaxy NGC 7213." 9) A. V. Filippenko (1984). Ph.D. thesis, California Institute of Technology. (Ann Arbor: University Microfilms International), \Physical Conditions in Low-Luminosity Active Galactic Nuclei." ∗10) A.
    [Show full text]
  • Spatially Resolved Manga Observations of the Host Galaxy of Superluminous Supernova 2017Egm
    Draft version September 27, 2017 Preprint typeset using LATEX style AASTeX6 v. 1.0 SPATIALLY RESOLVED MANGA OBSERVATIONS OF THE HOST GALAXY OF SUPERLUMINOUS SUPERNOVA 2017EGM Ting-Wan Chen (sw,) 1, Patricia Schady1, Lin Xiao2, J.J. Eldridge2, Tassilo Schweyer1, Chien-Hsiu Lee (N見修) 3, Po-Chieh Yu (俞伯傑) 4, Stephen J. Smartt5 and Cosimo Inserra6 1Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstraße 1, 85748, Garching, Germany; [email protected] 2Department of Physics, University of Auckland, Private Bag 92019, Auckland, New Zealand 3Subaru Telescope National Astronomical Observatory of Japan, 650 N Aohoku Pl., Hilo, HI 96720, USA 4Graduate Institute of Astronomy, National Central University, No. 300, Zhongda Rd., Zhongli Dist., Taoyuan City 32001, Taiwan 5Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, UK 6Department of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, UK ABSTRACT Superluminous supernovae (SLSNe) are found predominantly in dwarf galaxies, indicating that their progenitors have a low metallicity. However, the most nearby SLSN to date, SN 2017egm, occurred in the spiral galaxy NGC 3191, which has a relatively high stellar mass and correspondingly high metallicity. In this paper, we present detailed analysis of the nearby environment of SN 2017egm using MaNGA IFU data, which provides spectral data on kiloparsec scales. From the velocity map we find no evidence that SN 2017egm occurred within some intervening satellite galaxy, and at the SN position most metallicity diagnostics yield a solar and above solar metallicity (12 + log (O=H) ∼ 8:8 − 9:1). Additionally we measure a small Hα equivalent width (EW) at the SN position of just 34 Å, which is one of the lowest EWs measured at any SLSN or Gamma-Ray Burst position, and indicative of the progenitor star being comparatively old.
    [Show full text]
  • Steven Villanueva Jr
    Steven Villanueva Jr. – Cirriculum Vitae David G. Price Instrumentation Fellow Office: +1 (614) 292 2076 The Ohio State University, Department of Astronomy Mobile: +1 (469) 288 5037 4055 McPherson Laboratory, 140 West 18th Avenue [email protected] Columbus, OH 43210-1173 http://www.astronomy.ohio-state.edu/∼svillan/ Personal Profile United States Air Force Veteran, PhD candidate at The Ohio State University, National Science Founda- tion Graduate Research Fellow, and David G. Price Instrumentation Fellow. Interested in the discovery and characterization of exoplanets, primarily through ground-based transits, and instrumentation. Actively involved in outreach, the Society for the Advancement of Chicano/Hispanic and Native American Scientists (SACNAS), the National Society of Hispanic Physicists, and increasing diversity and minority participation in science. Employment 2017 - Present David G. Price Instrumentation Fellow, The Ohio State University, Columbus, OH 2014 - 2017 NSF GRFP Fellow, The Ohio State University, Columbus, OH 2012 - 2014 Teaching Assistant, The Ohio State University, Columbus, OH 2009 - 2012 Undergraduate Research Assistant, Texas A&M University, College Station, TX 2003 - 2007 Aerospace Ground Equipment Mechanic, United States Air Force, RAF Lakenheath, UK Education 2016 M.S. in Astronomy, The Ohio State University 2012 B.S. in Physics, Texas A&M University Fellowships and Awards 2017 David G. Price Fellowship for Instrumentation 2017 Honorable Mention, Ford Foundation Graduate Dissertation Fellowship 2016
    [Show full text]
  • CURRICULUM VITAE Benjamin John Shappee
    CURRICULUM VITAE Benjamin John Shappee Assistant Professor University of Hawaii [email protected] Institute for Astronomy http://www.ifa.hawaii.edu/users/shappee/ 2680 Woodlawn Drive Citizenship: United States of America Honolulu, HI 96822-1839 USA Research Interests Observational astrophysics with an emphasis on optical surveys, the transient universe, tidal disruption events, changing-look active galactic nuclei, and type Ia supernovae progenitors. Positions Held 2017 − : Assistant Professor University of Hawaii, Institute for Astronomy 2014 − 2017 : Hubble, Carnegie-Princeton Fellow, Carnegie Observatories 2013 − 2014 : OSU Presidential Fellow, Department of Astronomy, The Ohio State University 2013 : Research Associate, Department of Astronomy, The Ohio State University 2010 − 2013 : National Science Foundation Graduate Research Fellow, Department of Astronomy, The Ohio State University 2009 − 2010 : Teaching Associate, Department of Astronomy, The Ohio State University 2008 − 2009 : Research Assistant, Department of Physics and Astronomy, Rutgers University Advisor: Prof. Saurabh W. Jha 2006 − 2008 : Physics Demonstration Assistant, Department of Physics and Astronomy, Rutgers University Education June, 2014 : Ph.D., Astronomy, The Ohio State University, Columbus, Ohio Thesis: The Transient Universe Advisor: Professor Krzysztof Z. Stanek June, 2012 : M.S., Astronomy, The Ohio State University, Columbus, Ohio May, 2009 : B.A., Physics, Astronomy & Math, Rutgers University, New Brunswick, New Jersey Honors: Summa Cum Laude Honors & Awards 2014 : NASA Hubble Fellowship, Carnegie Observatories (National) 2014 : Carnegie-Princeton Fellowship, Carnegie Observatories (National) 2013 : Presidential Fellowship, The Ohio State University (University) 2013 : Allan Markowitz Award in Observational Astronomy, The Ohio State University (Departmental) 2010 : National Science Foundation’s Graduate Research Fellow, The Ohio State University (National) 2009 : Richard T. Weidner Prize, Rutgers University (Departmental) 2008 : Herman Y.
    [Show full text]
  • Object Type RA Dec Mag Size Constellation
    Object Type RA Dec Mag Size Constellation ------ ---- -- --- --- ---- ------------- IC 43 Galaxy 00h 42m 30.4s +29° 39' 19" 14.0 1.6'x1.4' Andromeda IC 65 Galaxy 01h 01m 03.9s +47° 41' 40" 13.5 3.9'x1.1' Andromeda IC 179 Galaxy 02h 00m 20.6s +38° 02' 02" 13.4 1.8'x1.5' Andromeda IC 239 Galaxy 02h 36m 37.5s +38° 58' 50" 11.9 4.6'x4.2' Andromeda IC 1525 Galaxy 23h 59m 23.4s +46° 54' 06" 13.2 1.9'x1.4' Andromeda M 31 Galaxy 00h 42m 52.7s +41° 16' 54" 4.3 189.1'x61.7' Andromeda M 32 Galaxy 00h 42m 50.2s +40° 52' 43" 9.1 8.5'x6.5' Andromeda M 110 Galaxy 00h 40m 30.4s +41° 41' 53" 8.9 19.5'x11.5' Andromeda NGC 21 Galaxy 00h 10m 55.2s +33° 21' 54" 13.6 1.5'x0.7' Andromeda NGC 43 Galaxy 00h 13m 09.1s +30° 55' 43" 13.7 1.6'x1.5' Andromeda NGC 76 Galaxy 00h 19m 46.0s +29° 56' 50" 14.0 1.0'x0.9' Andromeda NGC 80 Galaxy 00h 21m 19.2s +22° 22' 17" 13.2 2.2'x2.0' Andromeda NGC 83 Galaxy 00h 21m 30.9s +22° 26' 52" 13.6 1.3'x1.2' Andromeda NGC 97 Galaxy 00h 22m 38.3s +29° 45' 31" 13.4 1.5'x1.3' Andromeda NGC 108 Galaxy 00h 26m 08.0s +29° 13' 31" 13.1 2.0'x1.6' Andromeda NGC 140 Galaxy 00h 31m 28.7s +30° 48' 18" 14.0 1.5'x1.2' Andromeda NGC 160 Galaxy 00h 36m 12.5s +23° 58' 18" 13.5 2.9'x1.6' Andromeda NGC 169 Galaxy 00h 37m 00.1s +24° 00' 18" 13.2 1.8'x0.6' Andromeda NGC 183 Galaxy 00h 38m 37.7s +29° 31' 30" 13.6 2.1'x1.6' Andromeda NGC 214 Galaxy 00h 41m 36.4s +25° 30' 46" 13.0 1.9'x1.5' Andromeda NGC 233 Galaxy 00h 43m 44.9s +30° 36' 01" 13.8 1.7'x1.6' Andromeda NGC 252 Galaxy 00h 48m 10.1s +27° 38' 12" 13.4 1.4'x1.0' Andromeda NGC 262 Galaxy 00h 48m
    [Show full text]