Response to Mr. Cabrera’s

Affirmations Regarding Alleged

Ecosystem Impacts

Lawsuit 002-2003 Nueva Loja, Ecuador

Prepared for: Chevron Lawsuit 002-2003 Nueva Loja Superior Court, Ecuador

Response to Mr. Cabrera’s Affirmations Regarding Alleged Ecosystem Impacts

Lawsuit 002-2003 Nueva Loja, Ecuador

Field Program Biology Specialists:

Flora: Ing. Nixon Revelo, graduate of the Universidad Técnica del Norte y Dr. Efraín Freire Mayorga, graduate of the Universidad Central del Ecuador. Ornithology: Dr. Freddy Condoy, graduate of the Universidad Central del Ecuador. Mammalogy: Lincoln Segundo Nolivos Duque, graduate of the Universidad Nacional de la Amazonía Peruana and the Organización para estudios Tropicales (Organization for Tropical Studies). Herpetology: Dr. Jorge Izquierdo, graduate of the Universidad Central del Ecuador. Entomology: Dr. Pablo Araujo, graduate of the Universidad Central del Ecuador.

Executive Summary

Principal authors: Bjorn Bjorkman and Claudia Sánchez de Lozada.

Field Program Biology Specialists: Nixon Revelo and Dr. Efrain Freire Mayorga (flora); Dr. Freddy Condoy (ornithology); Lincoln Segunod Nolivos Duque (mammalogy); Dr. Jorge Izquierdo (herpetology); and Dr. Pablo Araujo (entomology).

The goal of this study was to evaluate impacts to terrestrial resources (fauna, flora and biological diversity) in the area of the former Petroecuador-Texaco Concession. As part of this study, species richness, diversity, similarity and sensitivity of five taxonomic groups were evaluated: flora, birds, mammals, reptiles/amphibians, and two groups of indicator . The primary objective was to conduct a quantitative evaluation of possible impacts to these groups that could be attributable to petroleum development, as a specific response to the claims about injury to the ecosystem presented by Mr. Cabrera in his “Summary Report of the Court’s Expert Evaluation.”

We emphasize that in his report Mr. Cabrera does not present detailed data to support his claims related to ecosystems, in that he refers to separate reports by Gallo and Martínez which were not included in the Summary Report. It is impossible to verify the claims of the court’s expert, or whether he complied with his Work Plan, in which he had stated that biological field studies would be conducted but without specifying how alleged impacts would be determined.

To allow a quantitative evaluation of impacts to biological resources, this biological evaluation was conducted on five taxonomic groups in two areas of similar landscape and ecological characteristics, differing only in one key variable: a history of petroleum development. One control zone was selected which has never been subjected to petroleum development, and a study zone was selected with a long history of petroleum exploitation. Comparison of these two otherwise similar areas would allow distinguishing between impacts related to oil and other impacts (e.g. agricultural land conversion and use, forestry, urbanization, etc.). The areas were chosen to correspond to areas defined in the regional ecological-economic zoning map (ECORAE, 2002) as not subject to “environmental conflict of use,” i.e. that the current land use does not conflict with sustainable land uses for the area, are currently in intensive agricultural use, and are not identified as areas critical to conservation of biological diversity.

The field investigation was conducted by Ecuadorian experts in the biology of the Amazon ecosystem within the area of concern, and followed methods generally accepted in Ecuador for this type of study.

The study concluded the following:

1. The study compared the control and study zone with respect to species richness, , and abundance, biological diversity indices, relative abundance of environmentally sensitive indicator species, and threatened or endangered species. No significant differences were detected between the zone with, and the zone without, petroleum development. Those differences that were observed can be attributed primarily to the natural variability inherent in biological evaluations. It can be concluded that a history of petroleum development, by itself, does not affect abundance and diversity of biological resources in this area.

2. It is not possible to retrospectively determine the chronology of impacts to biological resources. When Petroecuador assumed responsibility of the former Petroecuador-Texaco Consortium in 1990 no studies of biological diversity were conducted. Nor did the environmental audits performed by Fugro-McClelland and HBT-Agra conduct such evaluations. Not until 1995, with the promulgation of the “Environmental Regulations for Petroleum Activities in Ecuador,” by Executive Decree 2982 (R.O. 766, 24 August 1995) did the Government of Ecuador start requiring environmental impact studies for projects. For this reason no baseline of conditions prior to or during the operations of the former Petroecuador-Texaco Consortium exists.

i September 2008

3. Mr. Cabrera’s report includes references to specific studies he conducted on the same five taxonomic groups as this study, but as far as we can tell the studies do not differentiate impacts to biological resources due to petroleum development from impacts due to other causes. One should note that Mr. Cabrera supposedly evaluated diversity, sensitivity, and richness of six taxonomic groups (birds, mammals, reptiles/amphibians, , fish and benthic macroinvertebrates), but as already noted he does not include the detailed studies in his report, nor have the cited studies by Gallo and Martínez (2007) been made publicly available. Mr. Cabrera’s report does not appear to differentiate impacts related to oil operations during the period of time when the former Petroecuador-Texaco Consortium operated the lease, from any other cause. The only reference to this issue was presented in his Work Plan, where Mr. Cabrera describes his intent of comparing data using indicators of mature versus modified forests. The existence of a mature (i.e. fully developed) forest has no direct relationship with oil development, and only is an indication of whether a forest area has suffered modification. The entire region, including the former lease area, today can be considered as modified due to the expansion of the agricultural frontier. Therefore, such a comparison is meaningless.

ii September 2008

Table of Contents

1.0 Conclusions and Background...... 1-1 1.1 Professional Experience ...... 1-1 1.2 Conclusions...... 1-1 1.3 Background...... 1-2 1.4 Report Contents...... 1-3

2.0 Claims regarding biological resources and the evaluation methodology...... 2-1 2.1 Claims and affirmations presented in the lawsuit and the activities of the experts...... 2-1 2.2 Evaluation of the impacts to biological resources: biological diversity...... 2-3 2.2.1 Levels of biological diversity...... 2-3 2.2.2 Diversity indexes ...... 2-3 2.3 Limitations of the diversity indexes ...... 2-4 2.4 The baseline...... 2-5

3.0 Components of a biological resource impact assessment ...... 3-1 3.1 Ecosystem status indicators ...... 3-1 3.2 Indicators of ecosystem pressures ...... 3-2 3.3 Indicators of ecosystem use ...... 3-2 3.4 Comparison of this biological evaluation with Mr. Cabrera’s study...... 3-2

4.0 Impacts to biological resources within the former Petroecuador-Texaco Concession...... 4-1 4.1 Introduction ...... 4-1 4.2 Methodology...... 4-2 4.2.1 Ecological evaluation methodology...... 4-2 4.2.2 Baseline definition ...... 4-3 4.3 General description of the study areas ...... 4-5 4.4 Indicators of the ecosystem status...... 4-7 4.4.1 Species richness ...... 4-7 4.4.2 Diversity...... 4-9 4.4.3 Ecosystem structure indicators ...... 4-11 4.5 Indicators of ecosystem threats ...... 4-12 4.5.1 Habitat loss...... 4-12 4.5.2 Resource utilization ...... 4-15 4.5.3 Other threats to the biological resources...... 4-15 4.5.4 Ecological valuation...... 4-16

5.0 Bibliography ...... 18

i September 2008

Annexes

Annex A Authors' curricula vitae

Annex B Biological Data

Annex C Image Evaluation Methodology

Annex D References

ii September 2008

Tables

Table 1 Comparison between this study and Mr. Cabrera’s evaluation...... 3-3 Table 2 Scope of the comparative biological evaluation ...... 4-1 Table 3 Current land use within the evaluated areas...... 4-4 Table 4 Comparative table: study and control areas...... 4-6 Table 5 Species richness and abundance data ...... 4-7 Table 6 Sensitivity and relative abundance data...... 4-8 Table 7 Conservation data ...... 4-9 Table 8 Diversity data...... 4-10 Table 9 Similarity data ...... 4-11 Table 10 Percentage of remnant forests in the evaluated areas ...... 4-13 Table 11 Relative changes in forest cover in the evaluated areas...... 4-13

Figures

Figure 1 Location of evaluated areas

Figure 2 Study Area Sacha – 53

Figure 3 Control Area

Figure 4 Current land use of the evaluated areas

Figure 5 Chronological summary of the land use within the former Petroecuador-Texaco Concession

Figure 6A Chronological summary of the land use within the Study Area

Figure 6B Chronological summary of the land use within the Control Area

Figure 7 Ecologic-Economic Zoning of the former Petroecuador-Texaco Concession

Figure 8 Land use changes: 1973 - 2007

iii September 2008

1.0 Conclusions and Background

1.1 Professional Experience The main authors of this report are Bjorn Bjorkman and Claudia Sánchez de Lozada. Mr. Bjorkman is trained as an ecologist with an M.S. from the University of Minnesota. He works as an environmental consultant specialized in risk assessment and ecology, with a focus on the oil industry. Mr. Bjorkman has extensive experience in biological evaluation of Amazon ecosystems in Ecuador and Peru. Since 1995 he has completed dozens of environmental impact studies, environmental management plans, ecological sensitivity maps, biological evaluations and environmental studies in Peru, Ecuador, Argentina, Honduras and other countries. Mr. Bjorkman has prepared and evaluated biodiversity action plans for the oil industry both at the individual facility level and the regional programmatic level.

Ms. Sánchez de Lozada has over 8 years of experience managing and conducting environmental projects in the United States, Ecuador, Bolivia, Chile, Brazil, Mexico, Panama, and Africa. She has managed or participated in a wide variety of projects including environmental impact studies, air quality studies, due diligence assessments, and is experienced in surface and subsurface soil and water sampling. She has prepared documents for submittal to local and foreign government agencies. She also has been responsible for the technical editing and/or translation of documents from English to Spanish. Ms. Sánchez de Lozada is bilingual (Spanish and English) and has extensive experience working in both language environments.

The authors’ curricula vitae are included in Annex A. The comparative studies of the five terrestrial taxonomic groups were conducted by the following Ecuadorian biologists, who are experts in the ecology of the Ecuadorian Oriente. Their curricula vitae, in addition to the data collected during their comparative evaluations, are included in Annex B.

Flora: Nixon Revelo, Forestry Engineer, graduate of the Universidad Técnica del Norte; and Efraín Freire Mayorga, Doctor in Biology, graduate of the Universidad Central del Ecuador.

Ornithology: Freddy Condoy, Doctor in Biology, graduate of the Universidad Central del Ecuador.

Mammalogy: Lincoln Segundo Nolivos Duque, Postgraduate Studies in Tropical Ecosystems Ecology, graduate of the Universidad Nacional de la Amazonía Peruana and the Organización para estudios Tropicales (Organization for Tropical Studies).

Herpetology: Jorge Izquierdo, Doctor in Biology, graduate of the Universidad Central del Ecuador.

Entomology: Pablo Araujo, Doctor in Biology, graduate of the Universidad Central del Ecuador.

1.2 Conclusions The specific evaluation conducted in areas with and without a history of petroleum exploitation, the careful review of academic resources specialized in the Amazon region, and our review of documents prepared during the judicial inspections conclude:

1. The field evaluation clearly determined species richness, diversity, similarity and sensitivity of five terrestrial taxonomic groups: flora, birds, mammals, reptiles/amphibians, and insects. 2. In order to differentiate between impacts related to petroleum-related activities and other impacts, it is necessary to establish an appropriate baseline. For this study, we selected a study area and a control area with comparable landscape and ecological characteristics, as well as with similar land use. The only difference between the study area and the control area

1-1 September 2008

(baseline) is that petroleum-related activities have occurred within the study area for over 30 years.

3. The field evaluation conducted in the study and control areas followed methods generally accepted in Ecuador for this type of study (Sayre et.al., 1992; Gentry, 1986) and were conducted by Ecuadorian experts in the biology of the Amazon ecosystem (their biological data and curricula vitae are included in Annex B).

4. No significant differences in the diversity indices were detected between the area with and the area without petroleum development. The differences that were observed can be attributed primarily to the natural variability inherent in biological evaluations. The study compared the control and study zone with respect to species richness, taxonomy, and abundance, biological diversity indices, relative abundance of environmentally sensitive indicator species, and threatened or endangered species. It can be concluded that a history of petroleum development, by itself, does not affect abundance and diversity of biological resources in this area.

5. It is not possible to retrospectively determine the chronology of impacts to biological resources. When Petroecuador assumed responsibility of the former Petroecuador-Texaco Consortium in 1990 no studies of biological diversity were conducted. Nor did the environmental audits performed by Fugro-McClelland and HBT-Agra conduct such evaluations. Not until 1995, with the promulgation of the “Environmental Regulations for Petroleum Activities in Ecuador,” by the Executive Decree 2982 (R.O. 766, 24 August 1995) did the Government of Ecuador start requiring environmental impact studies for projects. For this reason no baseline of conditions prior to or during the operations of the former Petroecuador-Texaco consortium exists.

6. Mr. Cabrera’s report does not appear to differentiate impacts related to oil operations from any other impacts to biological resources. Mr. Cabrera’s report only includes generalized affirmations regarding the loss of biological diversity, when compared to the native forest, and does not even include information to support this claim. The biological studies conducted by Gallo (2007) and Martinez (2007), which supposedly support Mr. Cabrera’s affirmations, were not included in Mr. Cabrera’s report. Therefore, we cannot evaluate these studies. Based on the limited information that Mr. Cabrera presented on this topic, Mr. Cabrera’s report does not appear to differentiate impacts to biological resources due to petroleum-related activities during the operation of the former Petroecuador-Texaco Consortium from impacts due to other causes. The only reference to this issue was presented in his Work Plan, where Mr. Cabrera describes his intent of comparing data using indicators of mature versus modified forests, however without access to the information he used to support this claim, it is impossible to determine exactly what he did. The existence of a mature (i.e. fully developed) forest has no direct relationship with oil development, and only is an indication of whether a forest area has suffered modification. The entire region, including the former lease area, today can be considered as modified due to the expansion of the agricultural frontier. Therefore, such a comparison is meaningless.

1.3 Background This report includes an evaluation of the impacts to the biological resources within the framework of lawsuit No. 002-2003 initiated by María Aguinda and others against Chevron. It is important to note that biological impacts are part of the topic of biological diversity, which encompasses a series of topics related to the ecosystems, including fauna, flora, biological habitats and even the landscape.

The Convention on Biological Diversity (CBD), an International treaty to which Ecuador has subscribed, provides a global definition of biological diversity. The CBD defines biological diversity as “the variability among living organisms from all sources including, inter alia, terrestrial, marine and other aquatic ecosystems and the ecological complexes of which they are part; this includes diversity within species, between species and of ecosystems.”

1-2 September 2008

It should also be noted that the specific concept of biological diversity is not explicitly included in the legal process. However, the impact to biological resources related to and the vegetation are explicitly considered and these resources are part of the biological diversity. This is the reason why this report focuses in this topic. The claim also includes restoration, which is the recovery of the native fauna and flora to previous conditions. This topic will also be addressed in this report.

1.4 Report Contents This report evaluates the biological resources (fauna, flora and the ecosystem as a whole) within the area of the former Petroecuador-Texaco Concession (Figure 1) in response to claims that allege that petroleum-related activities have impacted these resources. Collectively, these resources are considered components of the “biological diversity”. The evaluation considered the following:

1. The definition of the regulations and the necessary considerations to scientifically evaluate if there are impacts to the biological resources that are directly related to petroleum-related activities during the operation of the former Consortium, focusing specifically on the need to use an appropriate baseline.

2. An evaluation of the research methodology used by the court-appointed expert. It must be determined if the methodology can demonstrate the presence of impacts to biological resources.

3. A comparative study of the impacts to the biological resources in areas with and without a history of petroleum-related activities. This study includes the evaluation of changes to the biological diversity. This evaluation includes a field study and the additional evaluation of satellite imagery.

The report has three main sections:

1. An analysis of the claims regarding impacts to the biological resources and the appropriate methodology for identifying impacts. The definitions of biological diversity, and the proper focus in order to evaluate the changes to the biological resources as a result of environmental impacts. This section also focuses on the key concept of a baseline.

2. A discussion of the methodology used to evaluate the impacts to the biological resources, as part of the biological diversity. This section focuses specifically on the necessary components and data needed to quantify the changes to the biological resources and the extent of the restoration.

3. A comparative evaluation of the species diversity at representative locations within the former Petroecuador-Texaco Concession in order to quantitatively evaluate if there is a decrease in biological diversity in areas with a history of petroleum-related activities. This evaluation uses commonly accepted methodologies for Rapid Ecological Assessments (REA) and incorporates a comparison to an appropriate baseline. Therefore, it provides a rigorous and scientific evaluation of the impacts to the biological resources related to petroleum development within the area of the former Petroecuador-Texaco Concession.

1-3 September 2008

2.0 Claims regarding biological resources and the evaluation methodology

2.1 Claims and affirmations presented in the lawsuit and the activities of the experts The lawsuit filed against Chevron on May 7, 2003, does not mention biological diversity directly when mentioning the alleged damages and the population that was allegedly affected (Section III). However, among the list of damages, the first clause indicates that “the procedures…destroyed the aquatic life, natural vegetation and crops” and the third clause indicates that “the ecosystem of the native fauna and domestic animals was altered. The animals ingested toxic products through the water and their food, or they simply died trapped in the pits.”

Section V of the lawsuit, which discusses the fundamentals of law, is the only section where biological diversity (or biodiversity) is mentioned directly. The second clause in this section says that “Article 86 (of the Constitution) declares that the preservation of the environment, the conservation of the ecosystems, and the biodiversity are of public interest”. This is a generalized reference and it is not related to the alleged damages in this particular case.

The claim of the lawsuit (Section VI) encompasses various issues that are within the concept of impacts to the biological resources, as defined in this report. The second clause in this section requests “the reparation of environmental damages…(b) a plan for the recovery of the native flora and fauna, wherever possible…(c) a plan for the regeneration of aquatic life.”

When authorizing Mr. Cabrera as an expert (Perito) for the evaluation of damages, the President of the Superior Court of Nueva Loja in his instructions to the Perito ordered “the Perito o Peritos…(a) will evaluate, if present, the environmental damage to…the vegetation cover, fauna, and other surrounding elements…(c) will determine the methodological parameters for restoration…based on the characteristics of each environment.”

On June 25, 2007, Mr. Cabrera presented his Workplan for the expert evaluation, where he explained how he would comply with the objectives of the order from the President of the Court. The objective of his plan was to conduct various investigations related to this case. However, Mr. Cabrera’s Summary Report of the Expert Evaluation and its Annexes, presented on March 24, 2008, does not include detailed data but rather generalized affirmations without any supporting information. The Gallo (2007) and Martinez (2007) biological reports are not publicly available and, therefore, it is impossible to evaluate them. In this section we will only consider any tasks related to any impacts to the biological resources that Mr. Cabrera presented in his Workplan, since he does not present any valid support in his Summary Report.

Among the tasks that Mr. Cabrera indicated he would complete, but for which Mr. Cabrera does not present any information that indicates that he actually completed, is “will determine, if present, the existence of significant direct and indirect impacts”. A diversity study would be conducted to evaluate the biological component, and it would include an “evaluation of the biological quality of the area. Flora, fauna; unique or threatened species; fragile habitats or protected areas, significant natural areas, etc.; species of commercial interest”. Also, the study would “try to determine the continuous risk to which, presumably, certain indicator species have been (or are) exposed to when exposed to formation waters and petroleum”. For the fauna, Mr. Cabrera’s plan proposes to evaluate the “diversity and number of species”, the “typical groups”, the “similarity or species composition”, the “diversity based on different scientific indexes” and the “indicator organisms” for various taxonomic groups.

For the evaluation of the flora, Mr. Cabrera’s Workplan indicates that it would evaluate the “number or species (diversity), the presence of species that indicate a disturbance in the forest, the presence of species that indicate the presence of mature forests,” based on “sampling in mature and disturbed forests.” However, as mentioned before, neither Mr. Cabrera’s Summary Report nor its Annexes

2-1 September 2008 include the results of the tasks that Mr. Cabrera said he would conduct as part of his biological and botanical evaluation.

These tasks would be part of a typical Rapid Ecological Assessment (REA), using the methodology described by Sayre et.al. (1992). This is an integral part of an evaluation of the impacts to the biological resources. Therefore, all of these issues are included in this report.

It is worth mentioning again that in Section 5.2 and Annex J of the Summary Report, Mr. Cabrera does not mention if the plans were completed, but rather he only presents generalized affirmations regarding the loss of biological diversity. The biological data are not included in the Summary Report, and are supposedly presented in reports that are not publicly available. The Martinez (2007) report is supposed to include the results of studies on the diversity of plant communities, while Gallo (2007) supposedly studied the fauna diversity1. Without access to these documents, it is impossible to understand how the following theoretical and methodological problems in Mr. Cabrera’s Workplan were addressed:

• Mr. Cabrera’s plan indicates that it will evaluate the “direct and indirect impacts”. This study touches briefly on the direct impacts related to petroleum exploitation. • The evaluations of the fauna are based on REA methodology. However, Mr. Cabrera’s Workplan does not indicate how these indexes will allow for a quantification of the damages; since it doesn’t indicate which baseline will be used for the comparison. The Workplan does not define the timeframe or geographical distribution of the evaluation. Both of these are key points to be able to determine if an environmental impact is present. • The vegetation evaluations that Mr. Cabrera proposes focus on a comparison between a “disturbed forest” and a “mature forest”, by evaluating species that are considered indicators of both conditions. We assume that Mr. Cabrera will use a “mature” forest as his baseline. This comparison does not allow for an evaluation of the impacts related to petroleum exploitation. Moreover, since the majority of the former Petroecuador-Texaco Concession currently has an agricultural or cattle ranching land use, and since all remaining forests are disturbed or have been “intervened” by human activities, the maturity of a forest is not necessarily linked to petroleum exploitation. • Mr. Cabrera’s Workplan also mentions that a “possible reparation” and “biotic and landscape restoration” will be evaluated. However, his plan does not define the condition or baseline that will be used to restore the landscape and biological resources. In Annex J of the Summary Report, Mr. Cabrera states, without providing any backup, that the studies conducted by Gallo and Martinez conclude that there are “few, or no, species of natural plants present in the plant communities closest to wellsite platforms”, and that the areas outside of these altered sites have “fragmented forested areas…that lack the necessary diversity to completely sustain a healthy forest ecosystem”. For fauna, it states that “the diversity of mammals, birds, reptiles and amphibians is considerably lower than the natural diversity in similar forests without impact”.

Without the necessary information to backup these affirmations, it is not possible to evaluate if the technical and methodological problems were addressed, and, even worse, it is not possible to evaluate the validity of these conclusions. Therefore, these affirmations are worthless. On the other hand, the study presented in this report does include, with all the scientific and quantitative details, an evaluation that takes into account exactly these issues. This study shows that petroleum development, in itself, has not resulted in the loss of diversity and biological resources.

1 Martínez, E.C. (2007). Botanical study at 10 wellsites operated by Texaco during 1964 and 1990 in the Ecuadorian Amazon with the purpose of restoration (Estudio botánico en 10 pozos operados por la Texaco durante 1964 y 1990 en la amazonia ecuatoriana con miras a su restauración). Gallo (2007) Diagnostic of the terrestrial fauna and macroinvertebrates at wellsites operated by Texaco (Diagnóstico de la fauna terrestre y macroinvertebrados en pozos operados por la Texaco). The titles of these studies are included in the references for Annex J of the Summary Report. However, the documents were not presented to the Court. Therefore, it is impossible to evaluate these investigations.

2-2 September 2008

2.2 Evaluation of the impacts to biological resources: biological diversity This section explains the definition of biological diversity. As stated earlier, a generalized definition of biological diversity comes from the CBD, which defines biological diversity as “the variability among living organisms from all sources including, inter alia, terrestrial, marine and other aquatic ecosystems and the ecological complexes of which they are part; this includes diversity within species, between species and of ecosystems” (CBD, Article 2).

This is the most common definition that describes the diversity of life in the planet and encompasses all the life forms and ecosystems that the planet possesses. This is a recent definition that encompasses all the genes, species and ecosystems of a region, as well as its richness, abundance and diversity (Estrella et.al, 2005). Therefore, biodiversity includes all the biological variability starting at the genetic level of populations of different species, from microorganisms to elephants, as well as communities of species and ecosystems, from landscapes to global levels of biological organization (Hubbell, 2001).

2.2.1 Levels of biological diversity As defined in the CBD, there are three levels of biological diversity:

• Genetic diversity. • Species diversity. • Ecosystem diversity. The concept of biological diversity is very broad. For example, it can include genetic diversity, which refers to the differences in the information that each organism and group of organisms have in their DNA (Trombulak et.al, 2004). Genetic diversity is an important mechanism that species use to respond to changes in their environment and, therefore, shows all the selection pressures that populations experience in different areas (Trombulak et.al, 2004). Even though this topic is of international interest, it will not be discussed in this report because it is impossible to differentiate the changes that each species has experienced due to each of the pressures that the populations have been exposed to in the Ecuadorian Oriente.

The concept of ecosystem diversity takes into account that the habitats and ecological communities are not isolated from one another, but rather are part of a mosaic of different conditions that create the flora and fauna that are typical at a regional or national level. This type of diversity is evaluated at a national or regional level. In Ecuador, conservation programs (e.g., National Systems of Protected Areas, SNAP for its name in Spanish: Sistemas Nacionales de Areas Protegidas) try to evaluate diversity at this level in order to protect the national biological resources (Pasquis y Usselman, 2003).

Species diversity is calculated by the richness, abundance and distribution of the species that live in a specific ecosystem or habitat. Within the ecological sciences, the “biological diversity” is typically determined and quantified at this level. The species diversity can be quantified using certain scientific indexes that evaluate different components. Mr. Cabrera’s work plan only considers an evaluation of the species. This report focuses on species diversity.

2.2.2 Diversity indexes Intuitively, the biological diversity, at a species level, is the number of species in a certain place. However, there is no universal scientific definition, and the calculation of diversity can be done in several ways (Magurran, 1988; Humphries et.al., 1996; EASAC, 2004)2.

2 The biological diversity, according to ecological scientific literature, is divided in three different types: alpha diversity, which is the diversity within a specific habitat; beta diversity, which is the diversity between habitats; and gamma diversity, which is the diversity at a regional level (i.e., the alpha diversity at larger scales that encompass multiple habitats).

2-3 September 2008

The species diversity has two components: the number of species or “richness” and the species distribution or “evenness.” Most of the diversity indexes try to evaluate these two components. The indexes vary mostly on the weight that they give to each of these components (Magurran, 1988). Each of the indexes has its advantages and disadvantages, and there is no “correct” index for a particular situation.

The most common indexes are:

• Species richness (S). This is the simplest index because it is just an inventory of the species that were identified. The number of species by itself does not provide information about the ecological mechanisms or impacts that determine the biological diversity and it does not take into account evenness. The calculation of the richness depends on the season, the field effort, the area and habitat studied, among other factors. It is necessary to carefully define a baseline for the comparison and to duplicate the conditions in order to draw conclusions based on this calculation. • Shannon-Weaver Index (H´). This is a very popular index. It relates the number of species observed with the relative abundance of each species. It can be used to compare different areas, but only if the field observation effort 3 is similar at both sites. • Simpson Index (D). This index is also commonly used. It measures the probability that two individuals belong to the same species. The Simpson index is frequently used to evaluate the dominance of the species. This index gives more weight to more common species (Magurran, 1988). • Other indexes. This study also takes into account the Jaccard and Sorensen similarity indexes. In order to draw defensible and quantitative conclusions regarding the differences or changes in species diversity, all these indexes need a baseline for comparison purposes and also that the sampling effort is similar in the areas that will be compared. Frequently other comparative data are used to evaluate diversity, especially when not many specific data are available. For example, the presence or absence of indicator species can be evaluated. This is the system used in the Rapid Ecological Assessments (REA, Sayre et.al., 1992). The presence or absence of these species indicates the quality of the habitat4. It is necessary to calculate these indexes in order to quantify diversity. However, as mentioned in Section 3, the indexes and the calculation of the richness by themselves are not enough for a complete assessment of the biological diversity.

2.3 Limitations of the diversity indexes The indexes used to measure biodiversity at an ecosystem level are generally studied at a species level. However, it is nearly impossible to determine the true number of species present in an ecosystem. The information available regarding this issue is so limited that we don’t know how many species inhabit the earth, or even a small part of the planet, today; we don’t even know the magnitude of this number (May,

3 The “field effort” refers to length of time and geographical extent of the study. If more time is spent in the study area or if more areas are carefully evaluated within the study area, a greater number of species and individuals will be recorded. It is very important that an ecological evaluation clearly states these criteria and that a comparative evaluation exactly duplicates the methodology, the duration of the observation, and other factors. Otherwise, the results will not be comparable.

4 For the Environmental Impact Assessments required for projects in the Ecuadorian Oriente, the evaluation includes, in many cases, a comparison of the species richness and the maximum richness recorded in areas that haven’t been altered. This comparison is appropriate for development projects in pristine areas, but in this case, where there has been an alteration, the comparison is meaningless.

2-4 September 2008

1988). It is even harder to determine the consequences of the loss of biodiversity to the ecosystems’ health and integrity.

“Biological diversity is the variety of living organisms at all levels of organization, including genes, species, higher taxonomic levels, and the variety of habitats and ecosystems” (Trombulack et.al., 2004). The important indicators that determine the integrity of an ecosystem include its structure, the relationships between its components, the organization of its communities (e.g., food webs), and the ecosystem functions like primary productivity and decomposition (Trombulack et.al, 2004; Reagan, 2006).

Certain biological diversity indicators, like species richness (total number of species) and abundance, are generally used to generate diversity indexes that can be used for comparison purposes. Other important characteristics of the ecosystems, like its organization and functions, not only depend on the variety of species present but also on the roles that these species have in the ecosystem. Some species are important because they have specific functions in an ecosystem, like energy production, pollination and population control.

Within a particular habitat or ecosystem, the biodiversity indexes are commonly used to compare disturbed ecosystems to pristine ecosystems. Because an ecosystem’s stability is related to the diversity of its species, sometimes it is erroneously assumed that a lower biological diversity indicates a proportional reduction in the ecosystem’s health and integrity. Other characteristics of the ecosystem, like its composition and function, also affect the ecosystem’s health. These aspects determine the redundancy (the number of species that have the same general function) and the resilience (the ability of an ecosystem to return to a particular state following perturbation) of the ecosystem (Trombulack et.al, 2004). The biodiversity index, by itself, does not say anything about these important characteristics of each ecosystem.

2.4 The baseline The most important variable for the quantification and evaluation of impacts to the biological resources is possibly the condition that is used for the comparison of the study area. The quantification of the biological diversity has little intrinsic value without comparative data that can be used to evaluate the results.

For studies conducted with the purpose of determining the effects of human activity, whether through habitat alteration, intervention or contamination, and the effects of natural events such as droughts, storms, volcanic eruptions, etc., it is necessary that the data collected allow for a retrospective or predictive analysis (Secretariat of the CBD, 2006).

The purpose of a retrospective evaluation is to evaluate alterations of the biological resources that have occurred in the past or that still continue. It is obvious that a retrospective evaluation requires knowledge of the conditions present prior to the alteration. The following methods can be used when there is not enough information on the past conditions of an ecosystem:

• a temporal evaluation, which involves a monitoring process throughout time in order to determine the timing and common effects of the alterations, and • a comparison with ecologically similar reference areas that have characteristics similar to those that would be present in the study area in the absence of the alteration (Secretariat of the CBD, 2006). The characteristics for the selection of the reference area are of utmost importance. In this particular case, the original condition of the area within the former Petroecuador-Texaco Concession was a tropical moist forest with a low alteration level; not pristine, because native communities were present in the area, and extraction of rubber and other Amazonian products had been documented in the area. It should be mentioned that the destruction of wildlife has been documented even in mature tropical forests. The existing conditions changed as the area was opened to oil development, colonization, the timber industry, and other economic activities. As a matter of fact, the land use has had important changes since the 1960s and, currently, large areas of the former Petroecuador-Texaco Concession are

2-5 September 2008 characterized as agricultural and cattle ranching areas and there are only altered remnants of the original forests.

These conditions are also mentioned in many of the Environmental Impact Assessments (EIA) that have been conducted within the area of the former Petroecuador-Texaco Concession. Decree 1215 requires, among other things, that the EIA determine the existing baseline prior to petroleum development projects in order to identify and quantify the impacts that these activities might have. As part of this report, we reviewed many EIAs prepared for Petroecuador projects at wellsites located within the former Petroecuador-Texaco Concession (Ecuambiente, 2002; 2003a; 2003b; 2003c; 2004; 2005; Ricthisarm, 2003; and Yawë, 2004).

The conclusions found in the EIAs agree in that large areas of the former Petroecuador-Texaco Concession (including the Lago Agrio, Sacha and Shushufindi fields) are currently completely intervened and the current land use is primarily agricultural. Therefore, the original characteristics of the area have been completely modified due to the transformation of the forest into its current agricultural land use. These agricultural activities are not related to the petroleum industry. The EIAs generally mention some forested areas, mainly secondary forests that are still present within the former Petroecuador-Texaco Concession, as was also noted during this study. The studies also mention the presence of species that are characteristic of altered areas. These EIAs confirm that in most of the former Petroecuador-Texaco Concession, the original ecosystems have been modified and the flora and fauna have disappeared or have been displaced as a result of the colonization efforts and the agricultural development.

The use of a mostly undisturbed mature forest, like a protected area (e.g., Yasuni) or a reserved indigenous territory (e.g., the Cofan territory), as a baseline for the comparison would only be appropriate if the study area was also a mostly undisturbed mature forest (similar to the baseline) but where petroleum-related activities have occurred. The area of the former Petroecuador-Texaco Concession clearly does not have these characteristics and, therefore, the use of a mostly undisturbed mature forest as a baseline for this study is clearly not appropriate. This is because all the changes to the biological resources would be evaluated and there is no way to separate the impacts directly related to petroleum activities from all the indirect impacts that are not related to the petroleum industry. Among the activities that are not related to the petroleum industry are the deforestation due to colonization and agriculture, impacts that occurred after the operations of the former Petroecuador-Texaco Consortium, timber extraction, increase in urban areas, and other activities that have negative effects on the biological diversity of the original forest.

Although Mr. Cabrera’s Workplan is not very clear on this issue, since the damages allegedly related to the petroleum industry would be a direct effect of petroleum development, an appropriate baseline for the assessment of damages to the biological resources would have to allow the separation of the direct impacts from petroleum-related activities from other impacts. As discussed in the next section, as part of this study, we defined a baseline with similar physical, ecological and land use characteristics as those of areas of petroleum development, but without the presence of petroleum exploration.

As part of the initial phase of the study, we tried to identify additional areas to conduct a comparative evaluation of impacts to the biological resources between an area that hadn’t been altered and an area that has only been affected by the petroleum industry. This evaluation could also quantify the impacts directly related to the petroleum industry, since the only potential impact would be from petroleum exploration. However, the types of areas needed for this comparison are not present within the former Petroecuador-Texaco Concession since most of the area has been altered due to the expansion of the agricultural frontier, and every area of petroleum exploration also has agricultural development. We would have to look much further from the area of interest in order to find areas appropriate for this comparison.

2-6 September 2008

3.0 Components of a biological resource impact assessment

A complete biological diversity evaluation, necessary to identify the presence of the alleged impacts to the fauna and flora, requires a series of studies. It is not possible to assess the impacts to the biological resources with only an inventory of the species, it is necessary to consider the biological diversity in its entirety.

Several international organizations have guidelines and recommendations for biological diversity assessments, including the World Bank (1998); Conservation International (no date); the CBD (SBSTTA, 2000); and the European Union (EASAC, 2004).

In 1997, the Subsidiary Body on Scientific, Technical, and Technological Advice (SBSTTA) of the CBD (SBSTTA, 2000) proposed that the biological diversity, including the impacts to the biological resources, should be evaluated5 by comparing three groups of universal and complementary indicators6:

• Ecosystem status indicators; i.e., the assessment of the current quality of the ecosystem, the extent of the ecosystem, and the presence of threatened or vulnerable species. • Indicators of ecosystem pressures; i.e., the assessment of socioeconomic factors that affect the biological diversity, like habitat loss, excessive use of resources, and other anthropic factors. • Indicators of the ecosystem use; i.e., indicators of the valuation of the biological resources, including both ecological goods and services. 3.1 Ecosystem status indicators These indicators compare the status of biological resources in a study area with a baseline area. The study conducted as part of this report takes into account the three factors that are discussed below. It should be noted that Mr. Cabrera’s Workplan discussed the second factor and part of the first factor (he did not discuss the third point). However, Mr. Cabrera’s Summary Report does not include any information regarding any of these three ecosystem status indicators. These indicators include the following three types of variables:

• Abundance, evenness, and species distribution. The calculation of these factors, which are identical to the scientific diversity indexes discussed in Section 2.2, includes the identification and quantification of common and rare species, as well as the calculation of their relative abundances. These factors are used in order to determine an increase or decrease compared to the baseline. The diversity indexes can be used as sensible indicators to quantify changes in the biological resources. This study focuses on these factors. • Species richness. This factor, also discussed in Section 2.2, involves the comparison of the species identified in a specific area with the species present in the baseline area. As the SBSTTA points out (SBSTTA, 2000), a list of identified species (presence/absence) in itself is not enough for quantitative purposes. It is important to identify species of special importance (rare and endemic species, or species of particular scientific or economic interest) and it is necessary to understand their relative abundance and their vulnerability. This study takes into account the species richness. • Ecosystem structure. At an ecosystem level, certain factors indicate the ecosystem’s operational level compared to the baseline. These factors are generally evaluated using aerial

5 The CBD instructs its member countries to develop national strategies for biological diversity that incorporate the appropriate indicators to evaluate and value their biological resources.

6 There is a fourth group: indicators of the response to threats. These evaluate the conservation or protection process for the ecosystem. These indicators were not considered in this study.

3-1 September 2008

images. They include habitat distribution, the ratio of mature forests and secondary forests, the presence of monocultures, the level of alteration and access, and the extent of the remnant natural units, among other factors. 3.2 Indicators of ecosystem pressures These four types of indicators allow us to identify and monitor the threats to the ecosystem integrity and their biological diversity (SBSTTA, 2000). Generally, it’s not easy to quantify these factors due to the lack of historical data, and due to the length of the monitoring period required to quantify the rate of the changes. For this study, the historical aerial images from the former Petroecuador-Texaco Concession allow us to evaluate, at least, the first indicator.

• Habitat loss. These factors measure the rate of conversion or loss of forests in terms of remaining percentage or area. • Habitat overuse. These factors evaluate if the land use is sustainable or if the biological resources are being overused. • Introduced species. This factor evaluates the presence and distribution of invasive or non- native species, as well as the relative dominance of non-native species in the habitats. • Environmental pollution. This factor evaluates the presence of all types of toxic materials in the habitat through an ecological risk assessment. This issue is discussed in other documents and is not evaluated as part of this study. 3.3 Indicators of ecosystem use These indicators evaluate the use of the ecosystem. The use is valuated in economic terms. It is worth noting that the valuation does not normally consider the biological diversity per se. The valuation focuses on the economic value of the goods and services generated by the biological resources, services and functions (CBD Secretariat, 2007). Among the economic valuation we have the value of tourism, wild animal and plant harvesting, and the use of traditional medicinal plants, among others. The evaluation of these factors is for economic purposes and is not considered as part of this study7. However, the valuation of the biological resources requires this type of evaluation in order to assess the extent of the impacts.

3.4 Comparison of this biological evaluation with Mr. Cabrera’s study Table 1 compares the evaluation conducted as part of this study and the evaluation that Mr. Cabrera allegedly conducted. The questions raised for Mr. Cabrera’s Workplan cannot be resolved because the biological reports (Gallo, 2007 and Martinez, 2007) that Mr. Cabrera references in his Summary Report of the Expert Evaluation were not submitted. The evaluation that Mr. Cabrera proposed in his Workplan does not comply with the necessary conditions to identify, quantify or valuate the alleged impacts to wildlife, vegetation, and other biological resources. The “conclusions” regarding the ecological surveys that Mr. Cabrera presents in his Summary Report of the Expert Evaluation without any supporting information, show that Mr. Cabrera did not consider the key points for conducting valid biological evaluations.

7 Other documents prepared as part of the response to the Summary Report evaluate the topic of valuation.

3-2 September 2008

Table 1 Comparison between this study and Mr. Cabrera’s evaluation

Factors This study Mr. Cabrera’s evaluationa Baseline selection Yes. Both the baseline and the Unknown. His workplan suggested study area have similar a comparison between a modified landscapes, they only differ in forest and a mature forest for the the presence or absence of flora. This comparison is not petroleum-related activities. applicable in this case. However, Mr. Cabrera’s “Summary Report” does not include this information. Hypothesis Yes – in areas with a similar Unknown. Mr. Cabrera’s pattern of agricultural “Summary Report” does not development and similar include this information. landscape, the impact to biological resources is similar between areas with and without petroleum-related activities. Evaluation of the abundance, Yes. Unknown. This evaluation is equitability and distribution suggested in Mr. Cabrera’s Workplan, but without establishing a baseline the evaluation would be meaningless. However, the “Summary Report” does not include this information. Species richness evaluation Yes. Unknown. Mr. Cabrera’s Workplan suggests a comparison using indicator species. However, the “Summary Report” does not include this information. Ecosystem structure Yes, partly. Unknown. evaluation Habitat loss evaluation Yes, an evaluation of the Unknown. changes in land use. Evaluation of other ecosystem No8 Unknown. pressure Evaluation of the use No Unknown. a Mr. Cabrera’s Summary Report does not contain any details of the alleged evaluation that was conducted and, therefore, does not provide answers to the questions raised by his Workplan. Moreover, the reports that supposedly include this information have not been submitted to the Court.

8 Other documents prepared as part of this judicial process evaluate the ecological risk from pollution, impacts related to agriculture and cattle ranching, among other issues.

3-3 September 2008

4.0 Impacts to biological resources within the former Petroecuador-Texaco Concession

4.1 Introduction This section summarizes the terrestrial biological surveys conducted in December 2007 in both the study and control areas (see Figure 1 for their locations). The biological surveys were conducted following the REA process (Sayre et.al., 1992), guidelines from Feinsinger (2001), and the methodologies accepted in Ecuador (e.g., Gentry, 1986). The complete data from these studies are included in Annex B. Additionally, this section also includes the findings from the ecosystem evaluation and the assessment of threats to the ecosystem, both conducted using remote sensing. This evaluation follows the evaluation guidelines of the SBSTTA (SBSTTA, 2000) that were discussed in Section 3.

This study included a comparative evaluation of five terrestrial taxonomic groups: flora, birds, mammals, reptiles/amphibians, and two taxonomic groups of indicator beetles. The studies were conducted by Ecuadorian biologists, who are experts in the Amazon ecosystem. Their curricula vitae, as well as the data collected during their studies, are included in Annex B. The studies were conducted in December 2007. The sampling was conducted during 3 days and nights in each area and the sampling efforts were identical in both areas to ensure that the results are comparable. All the significant habitats in the study area were evaluated, as shown in Table 2:

Table 2 Scope of the comparative biological evaluation

Remnant Mature Secondary Crops Grassland mature forest swamp forest forest Code Bmr Bmp Bs C P Study Area (SA-53) (Figure 2) Is the habitat Yes (Mauritia Yes Yes Yes Yes present? palm forest) Cover Evaluations Flora Quantitative -- Quantitative Quantitative Quantitative Quantitative transect (1 km in length), through all habitats except for Bs. Nets Birds installed in P and Bmr Mammals Quantitative Quantitative Quantitative9 Quantitative Reptiles/amphibians Quantitative Quantitative Quantitative Quantitative Insects Quantitative Quantitative Quantitative Quantitative Control Area (Figure 3) No (alluvial Is the habitat Yes forest is Yes Yes Yes present? present) Cover Evaluations Flora Quantitative -- Quantitative Quantitative Quantitative Quantitative transect (1 km in length), through all habitats except for Bs. Nets Birds installed in P and Bmr Mammals Quantitative Quantitative Quantitative Quantitative Reptiles/amphibians Quantitative -- Quantitative Quantitative Insects Quantitative -- Quantitative Quantitative

9 The qualitative study is limited to species identification, but it does not quantify the populations.

4-1 September 2008

Several academic sources, specialized in issues related to the ecology of the Amazon region, were reviewed as part of this study. For the review, publicly available studies and articles were preferred. Annex D includes a list of all the sources reviewed for this study.

4.2 Methodology 4.2.1 Ecological evaluation methodology A brief summary of the methodology used for the studies is included in this section. Annex B includes the reports for each study, which include a detailed description of the methodology used for each of them. These studies followed the widely accepted guidelines and effort level for REAs in Ecuador and, therefore, their quantitative results are comparable to other diversity studies in Ecuador. The studies’ comparative objective and similar level of effort in both areas allow for a quantitative comparison of the results for the areas with and without petroleum development.

For the flora study, transects of 100 meters (m) in length and 10 m wide (i.e., 0.1 hectare (ha)) were used in each habitat. Any plants bigger than 2.5 m DBH (diameter at breast height), within thetransect were identified. The grasslands were evaluated differently, as explained in the complete report (see Annex B).

For the bird study, an observation transect of 1 kilometer (km) in length was used in both areas. Thetransect crossed all the habitats (except for the secondary forest). Birds were registered, both by visual and auditory means, in the mornings and afternoon. Also, individuals were captured and identified with six mist nets (6 m by 2.5 m in dimension) deployed between the remnant mature forest and the grassland during the day.

The mammals study included qualitative observations along the transects selected for the bird study. In addition, seven mist nets (6 m by 2.5 m in dimension) were deployed at night to capture and identify bats and nocturnal birds. Also, Sherman and Tomahawk traps were installed in each habitat for three days and nights.

Photo 2 Mist nets used to trap birds

Photo 1 Methodology used to evaluate flora in grasslands

Photo 3 Sherman traps used for the evaluation of mammals

Photo 4 Tomahawk traps used for the evaluation of mammals

4-2 September 2008

The reptiles and amphibians evaluation involved walking along 50 m transects, selected inside each habitat, and making quantitative observations. The transects were inspected both during the day and night.

For the study, the trees and vegetation in each habitat were fumigated in order to collect beetles from the Carabidae and Cerambycidae families. The beetles were collected in each habitat. However, the collection in open areas was done in an area with a mix of both crops and grassland.

Photo 6 from the Carabidae Photo 5 Setting up sheets for the entomology family study

It should be noted that Mr. Cabrera had proposed to evaluate four of these taxonomic groups (his proposal did not include an evaluation of the flora), as well as two additional groups: fish and aquatic macroinvertebrates. However, as mentioned before, Mr. Cabrera’s Summary Report does not include specific data from these alleged evaluations. Also, the studies conducted by Gallo and Martinez (2007) that Mr. Cabrera mentions in his report are not publicly available.

4.2.2 Baseline definition The lawsuit against Chevron alleges damages to the fauna, flora, and other factors that comprise the biological resources, and attributes them to petroleum development. Because of the presence of other anthropogenic factors not related to petroleum development that affect the biological resources, it is necessary to establish an appropriate baseline in order to identify and differentiate any impact, if present, that is directly related to petroleum activities.

Figure 5 shows the current land use within the area of the former Petroecuador-Texaco Concession. As the figure shows, the landscape is dominated by anthropogenic activities. Currently, the remnant forest makes up 44.1% of the Petroecuador-Texaco Concession area, while 53.6% of the area consists of crops or grasslands for agricultural/cattle ranching use (Ellis, 2008). Petroleum extraction continues in the area, mainly by Petroecuador but also other companies. Petroleum extraction activities are mainly located in oil fields, including Sacha, Shushufindi, Auca, and others. There are also large areas without deposits, oil wells or pipelines. The landscape in these areas is similar to the landscape in the oilfields: a mix of mature remnant forest (Photo 7), secondary forest (Photo 8), crops (Photo 9), and grasslands (Photo 10).

4-3 September 2008

In order for the only difference between the two study areas to be the history of petroleum extraction, the baseline needs to incorporate this mosaic of landscapes. Also, based on the taxonomic groups that are being assessed, both areas (study area and Photo 7 Remnant mature forest Photo 8 Secondary Forest baseline area) have to have a minimum extension (Terborgh, 1992). A retrospective comparison of the biological diversity in these two areas with similar landscape allows for the direct evaluation of the eventual effects specific to petroleum extraction. This study includes this comparison. Photo 10 Two types of grassland Photo 9 Area with mixed crops (swamp forest in the background) A study area with a long (cacao and banana) history of petroleum development was selected for the biological evaluations. This study area is located in the Sacha oilfield, in the area of an active wellsite (SA-53).

Within an area of 16 square kilometers (km2) (4x4 km) in this portion of the Sacha field there are more than 20 oil wells with platforms, pits, access roads, and pipelines (Figure 1). A study area of 4 km2 (2x2 km) was selected within this area. The study area has two active wellsites (SA-53 and SA-63; see Figure 2). The land use within the study area (see Figure 4) was determined thorough the analysis of “Quickbird” satellite images from June, 2007. A summary of the image analysis methodology is included in Annex C.

An area of 4x4 km, east of the Sacha field, was selected as the baseline area. This area has similar physiographic, soil and landscape characteristics as the study area (Figures 3 and 4) but no current or historical presence of wellsites, stations, pipelines or other infrastructure or activities related to the petroleum industry. Within this area, a smaller area (2x2 km) with a land use as close as possible to the study area, was selected. This area was identified as the “control area” (i.e., baseline). Table 3 shows the conditions at both areas and Table 4 shows the physical, biological, and other characteristics of both areas.

Table 3 Current land use within the evaluated areas

Land use (Level 1) Study Area (SA-53) Control Area Code Cover Maximum Average Cover Maximum Average unit unit unit unit Crops and C and P 78.9% 28 ha 0.1 ha 68.9% 253 ha 6.5 ha grassland1 Remnant forests2 Bmr 19.5% 51.5 ha 1.1 ha 27.4% 57 ha 3.2 ha Bmp Water and open A 0.4% 0.1 ha 0.01 ha 3.1% 10 ha swamps Developed areas3 D 1.3% 0.9 ha 0.04 ha 0.9% 3 ha 0.1 ha 1 Includes secondary forests in cleared areas. 2 Includes mature “terra firme” forests and swamp forests.

4-4 September 2008

3 Includes roads, communities, structures, and petroleum-related infrastructure (platforms, wells).

Both areas are relatively similar in their development pattern, as the table shows. Remnant forests are present in 19.5% of the study area, while they occupy a slightly larger portion (27.4%) in the control area. The forest units are more fragmented in the study area (where the average size of a unit is 1.1 ha, with a maximum unit size of 51.5 ha) than the control area, where the average size of the remnant forest unit is larger (3.2 ha) but has similar dimensions for the maximum unit size (57 ha). The majority of both areas are occupied by annual crops, grasslands, hearts of palm plantations, African palm plantations, cacao plantations, and coffee and banana plantations (79% of the study area and 69% of the control area). The maximum size of the units used for agricultural activities is greater in the control area (253 ha) than in the study area (28 ha). The swamp areas and the areas with development represent a smaller portion in the development pattern of the study and control areas. Wellsite platforms occupy 0.2% of the study area (but they are not present in the control area, which was one of the prerequisites for this study).

4.3 General description of the study areas As discussed in Section 2, the objective of this study is the quantitative comparison of the biological diversity between two areas with similar ecological and landscape patterns, where the key variable is the presence of petroleum exploration. With this objective in mind, this study only focused on one of the ecological patterns present within the former Petroecuador-Texaco Concession. It should be noted that the area of the former Concession has other ecosystems and ecological units. However, these other ecological landscapes were not selected for this study, in part because there are no other areas with similar ecological landscapes outside of areas with petroleum development that could be used as baselines. According to the hypothesis, however, a similar conclusion is expected in other ecological landscapes. This is because the selected ecosystem is present to a larger extent inside the former Petroecuador-Texaco Concession area and the petroleum development and agricultural use is the most intense in the region. Table 4 includes comparative data for areas that were evaluated.

4-5 September 2008

Table 4 Comparative table: study and control areas

Study area SA-53 Control area Source Location Province Orellana Sucumbíos Cantón La Joya de los Sachas Shushufindi Physical Characteristics Weather Tropical humid Tropical humid Basin Napo, Río Jivino sub-basin Napo Chambira Formation (pliocene Geology Oligocene and pliocene sediments sediments) K1 Flat or rolling plains, well K1 Flat or rolling plains, well Mapa drained with “typic dystrandepts drained, with “typic dystrandepts edafológico Geomorphology and dystropepts” soils, clayey, and dystropepts” soils, clayey, de Ecuador highly fertile10 highly fertile 1983 Typic dystropepts (all crops, if Typic dystropepts (all crops, if well Soils ECORAE well managed) managed) Biological characteristics and land use Ecosystem type Human-altered area Human-altered area ECORAE Albuja et.al., Zoogeography Eastern Tropical Lowlands Eastern Tropical Lowlands 1980 Holdridge life Cañadas, Tropical moist forest Tropical moist forest zones 1983 Lowland equatorial evergreen Sierra et.al., Formación vegetal Lowland equatorial evergreen forest forest 1999 Acid loam with acid clayey Acid loam with acid clayey material Vallejo, Soil fertility material (Lhx-Cahik) (Lhx-Cahik) 1997 Hot zone crops (CZC) y sown grasses, cacao (20%), coffee (10%), Current land use ECORAE grasses (PC) palm and subsistence crops (10%) C2 – Managed and conserved crop Potential land use C2 ECORAE areas Productive area, extensive Ecological- Area with sustainable production, agricultural development, integral ECORAE economic zoning longer cycle integral farm farm Socioeconomic characteristics Legal status of the Settlers with lands awarded Settlers with lands awarded through ECORAE land through IERAC IERAC Intermediate sub-utilization Land use conflicts Low sub-utilization (SUb) ECORAE (SUm) to adequate use Sustainable Longer cycle crops Extensive agricultural development ECORAE productive system SNAP No protected areas No protected areas ECORAE

This table shows that the study and control areas have similar biological, physical and socioeconomic factors.

10 The edaphologic map of Ecuador characterizes this portion of the former Petroecuador-Texaco Concession as being “highly” fertile. This is the reason why this region has experienced a high level of settlement activity. The issue of soil fertility is discussed in depth in other documents related to this lawsuit.

4-6 September 2008

4.4 Indicators of the ecosystem status 4.4.1 Species richness Species richness and abundance The following table summarizes the species richness and the individuals identified in each taxonomic group for each habitat. There are few differences in the species richness, for each habitat, between the control and study areas. For certain taxonomic groups, more species were recorded in the study area than the control area. In general, as expected, the crops and grassland areas have a significantly lower species richness and abundance than the forests. However, there doesn’t appear to be a significant difference between both areas, when comparing each habitat (see Table 5). This indicates that the presence of petroleum-related activities does not affect, in itself, the intrinsic richness of these altered habitats.

Table 5 Species richness and abundance data

Habitat Cover Flora3 Birds4 Mammals Reptiles/Amphibians Insects2 Study area Ca11(27), Bmr 64 (128) 12 (29) 21 (29) Ce20(38) 19.5% Ca20(55), Bmp 44 (86) 12 (36) Ce8(11) Ca19(43), Bs 28 (119) 63 (337) (qualitative) 11 (15) Ce15(18) 78.9% 7(7), C H18(125) 2 (3) 5 (6) Ca3(14), Ce2(5) 2(2), P H19(46) Control area Ca19(16), Bmr 72 (158) 11 (28) 29 (39) 27.4% Ce10(13) Bmp1 -- 14 (53) -- -- Ca13(18), Bs 35(91) (qualitative) 16 (31) 52 (312) Ce8(20) 68.9% 4(4), C H9(257) 2 (2) 6 (16) Ca4(8), Ce2(4) 5(5), P H16(20) The first number corresponds to the species richness S, the second number (in parentheses) is the number of individuals (N). 1 There is no mature swamp forest in the control area. There is a forested alluvial area close to a stream. Only mammals were evaluated in this area. 2 Ca = Carabidae family; Ce = Cerambycidae family. 3 Individuals greater than 2.5 cm DBH H=herbaceous cover. 4 The birds were registered globally for all the habitats.

Sensitivity and relative abundance The following table presents two simple ecosystem quality indexes, based on each species’ classification according to scientific ecological knowledge. The relative abundance for birds simply shows how many species are considered abundant (A) or common (C), these species are generally found in altered areas (Briones et.al, 1997). Among the rare species (R) we find species of high sensitivity and species that are rarely observed. These species, almost without exception, are present in fragments of remnant mature forests.

4-7 September 2008

Sensitivity is an index of the species sensitivity to the disturbance and ecosystem alteration. For birds and reptiles and amphibians, the index is calculated using the system developed by Stotz et.al. (1996). Sensitive species (H) favor well-preserved habitats (similar to the tropical forests typical of the region) and their presence indicates that there are areas where these species can continue to live. Species that have a low sensitivity (L) are capable of adapting to altered areas. An intermediate sensitivity is indicated with an “M.” For insects, only the percentage of sensitive species (S) is calculated. These are species that are highly specialized for specific microhabitats. The loss or transformation of these microhabitats frequently leads to the loss of these species.

Table 6 shows that all taxonomic groups are dominated by species of low sensitivity, mainly generalist species that are expected in areas that have been intervened. However, several species of high sensitivity were recorded, which indicates that the forest remnants do provide the habitat for these species. The absence of highly sensitive amphibians from both areas can be attributed to their strict need for unaltered and un-fragmented forests.

The key observation with these indexes is the high degree of similarity between the control and study areas. There are no significant differences in the relative abundance or the indicator species that are present in both areas. This shows that the presence of petroleum-related activities does not affect the intrinsic factors that define the types of species that inhabit certain altered habitats.

Table 6 Sensitivity and relative abundance data Birds Mammals Reptiles/amphibians Insects Study Area Relative Abundance A 17.5% Less than 5 C 22.2% individuals of each This group is not assessed in this PC 41.3% species were category R 19.0% observed Sensitivity and Conservation H 9.5% 9.1% 0% Bmr: 27% S M 32.5% 41% 19.2% Bs: 21% Bmp:39% L 54% 50% 80.8% C, P: 0% Control Area Relative Abundance A 21.2% Less than 10 C 21.2% individuals of each This group is not assessed in this PC 38.5% species were category R 19.2% observed Sensitivity and Conservation H 8% 17% 0% Bmr: 30% S M 32% 38% 16.7% Bs: 17% S L 60% 46% 83.3% C, P: 0%

Conservation status Table 7 shows the conservation status of the species recorded during the studies. The table includes the species that are included in the Red Book of the International Union for Conservation of Nature (IUCN, 2000); the species that are listed in Appendix II of the CITES (CITES, 2006); and the species that are included in other lists of vulnerable species (Valencia et.al., 2000 for flora; Coloma and Quiguango-Ubillus, 2006 for amphibians).

None of the birds included in any of the previous lists were observed in either of the two areas that were included in this study. For mammals, four species of monkeys that are included in Appendix II of the CITES were recorded in the study area. In addition, five species (4 monkeys and the Bradypus

4-8 September 2008 variegatus sloth) that are also listed in Appendix II of the CITES were observed in the control area. For reptiles and amphibians, a turtle (Chelonoides denticulada) that is listed as vulnerable by the IUCN and included in Appendix II of the CITES was identified in the control area, as well as two species of frogs from the dendrobatidae family that are also listed by the CITES. In the study area, three species of frogs from the dendrobatidae family that are listed by the CITES (two of these species were also identified in the control area) were recorded. Additionally, two frogs of the Rhinella were observed in both areas. These frogs were classified as “DD” (no data available to determine their status) by Coloma and Quiguango-Ubillus (2006). For the flora, two species that are listed by the CITES (including the tree Pouruma petiolulata which is considered “near threatened”) were identified in the study area.

Photo 11 Ameerega hahneli (frog of the Photo 12 Chenoloides denticulada (turtle listed dendrobatidae family listed by CITES) as vulnerable by the IUCN)

In summary, the study identified several vulnerable species, but this parameter also does not show significant differences between the study area (with petroleum) and the control area (without petroleum).

Table 7 Conservation data

Group IUCN CITES II Other Flora Study area: 1 LC, -- 2 endemic species, one present in Control area: 1 NT both areas, one species only present in control area (Valencia et.al., 2000) Birds None None -- Mammals None Study area: 4 -- species; Control area: 5 species Reptiles / 1 VU (turtle in control Study area: 3 Study area: 1 frog “DD,” Control area: amphibians area) (Photo 12) species; Control 1 frog “DD,” (Coloma et.al., 2006) area: 3 species (2 shared) (Photo 11) Insects Not registered Not registered Not registered LC: least concern; NT: near threatened; VU: vulnerable: DD: insufficient data

4.4.2 Diversity Diversity indexes In order to have a more quantitative evaluation of the biological diversity, the Shannon and Simpson diversity indexes were calculated. As discussed in Section 2, these quantitative indexes are well-known,

4-9 September 2008 accepted worldwide, and useful to describe diversity11. The Shannon-Weaver index (H’) measures diversity; high values indicate high diversity. The Gini-Simpson (Ds) index measures species evenness and it is very sensitive to the total number of species observed. Generally, a high Gini-Simpson index value indicates that the species are present in similar numbers and a low value indicates that a few species dominate the habitat. These indexes can be used to qualitatively compare the diversity between both areas. Table 8 includes the Shannon-Weaver12 and Gini-Simpson13 index values for the study.

Table 8 Diversity data

Habitat Cover Birds2 Mammals Reptiles/amphibians Insects3 Study area Bmr H’=2.2 (M) H’=2.7 (M) H’=2.29/2.56 19.5% Bmp H’=1.7 (M) H’=2.64/1.89 H’= 3.742 (A) Bs -- H’=2.3 (M) H’=2.64/2.63 D =0.030 C s 78.9% H’=0.9 (B) H’=1.3 (B) H’=1.04/1.05 P Control area Bmr H’=2.1 (M) H’=3.2 (M) H’=2.01/2.13 27.4% Bmp1 H’=1.9 (M) -- -- H’=3.576 (A) Bs -- H’=2.4 (M) H’=2.39/2.85 D =0.033 C s 68.9% H’=0.7 (B) H’=1.4 (B) H’=1.2/0.34 P H’ is the Shannon-Weaver diversity index. According to Magurran (1988) this index can rate diversity as high (A), medium (M) or low (B). Ds is the Gini-Simpson diversity index. 1 There is no mature swampy forest in the control area. There is an alluvial forest area near a stream. The mammals were evaluated in this area. 2 The birds were registered globally for all habitats. 3 The first value is for the Carabidae family, and the second value corresponds to the Cerambycidae family.

The indexes show that the bird diversity is somewhat high in both areas but that the population is dominated by a few species. These are opportunistic species that can adapt to areas that have been altered. Insects, mammals, and reptiles and amphibians, show an intermediate diversity in forested habitats, but a low diversity in crops and open areas. Even though the Gini-Simpson index was not calculated for these three taxonomic groups, it can be established that their populations are more even (i.e., the abundant species are less dominant).

The index values for both areas are very similar and the diversity values show that there no significant differences in the diversity and evenness between both areas. It can be concluded that the presence of the petroleum industry doesn’t affect the intrinsic diversity of these altered areas either.

11 These indexes are easily calculated and frequently used. However, it should be noted that, as with all indexes, these are a simplification of the system and, therefore, should not be considered without additional data. But they are useful in this case for the comparison of two similar areas.

12 Formula: H´= -∑pi ln(pi), where pi is the rate of individuals of species “i” to the total number of individuals of all the species.

13 Formula: Ds= 1 - ∑(ni (ni-1))/N(N-1), where ni is the number of individuals of species “i” and N is the total number of species. The scale goes from 0 to 1. A total of 1 means complete evenness, which is that each species is represented by an identical number of individuals.

4-10 September 2008

Comparative indexes

Two simple indexes, Jaccard (Cj) 14 and Sorensen (Sj)15 that measure the species richness at two sites and the similarity between them, were used to comparatively evaluate the two areas. These indexes consider the species that are present in both areas in order to determine their similarity. However, these indexes do not consider the abundance of the species and, therefore, simplify the situation. But they are useful as a general indicator of the similarity (Table 9).

Table 9 Similarity data

Habitat Flora2 Birds3 Mammals Reptiles/amphibians Insects Bmr Sj = 0.456 Sj = 0.609 Cj=0.452 Bmp1 -- Sj = 0.417 -- Statistical Bs Sj =0.222 Cj=0.60 Sj = 0.667 Cj=0.267 analysis (see H, Sj = 0.37 Sj=0.80 C text) Ar, Sj = 0.33 Sj = 0.50 Cj=0.429 P H, Sj = 0.41 Sj: Sorensen index; Cj: Jaccard index. 1 There is no mature swampy forest in the control area. There is an alluvial forest area near a stream. The mammals were evaluated in this area. 2 H=herbaceous cover, Ar=trees 3 The birds were registered globally for all habitats.

The Jaccard and Sorensen indexes are similar, but there are no numeric evaluation scales. It can be said that a high value means that many species can be found in both areas, and a low value indicates that few species are present in both areas. In general, within the mature forests many species of birds and mammals are found in both areas. This indicates that both areas are very similar. The reptiles and amphibians, which have animals with less mobility, are generally less similar. This is mainly because these species are more specialized for certain microhabitats that are not present in both areas. For the vegetation, the mature forests are very similar, while the similarity of the secondary forests is low. This is because the pioneer species that establish themselves in open areas are highly variable depending on the specific soil and drainage conditions. This could explain, additionally, the relatively low similarity of pioneer herbaceous plants that grow in crop areas and grasslands.

For the insect evaluation, a more rigorous statistical evaluation was conducted for the two coleoptera groups that were evaluated: Carabidae family and Cerambycidae family. The comparative evaluation, using the ANOSIM statistical analysis which incorporates the species richness and abundance, determined that there are differences in the species composition in both areas. This shows that the community structure for these two terrestrial insect families (Carabidae and Cerambycidae) varies between the control and study areas. This difference could be due to several reasons, but in general insects have a high level of heterogeneity in tropical forests because of their specialized habitats. In tropical forests, the similarity between pristine forest parcels is usually lower than 0.3 (Erwin et al, 2005).

4.4.3 Ecosystem structure indicators The factors that are considered to evaluate the structure, complexity, and heterogeneity at an ecosystem level evaluate the degree of conservation of the ecosystem. For this study, factors such as the habitat distribution and cover were used in order to select a baseline.

14 Formula: Cj = j / (a+b-j), where a is the number of species in the first site, b is the number of species in the second site, and j is the number of species shared between both sites.

15 Formula: Sj = 2j / (a+b), where a is the number of species in the first site, b is the number of species in the second site, and j is the number of species shared between both sites.

4-11 September 2008

But there are other factors that are valuable in describing the ecological diversity. Among these are the ecosystem fragmentation (i.e. the size of each parcel for different habitats), the presence of impacts that subdivide these habitats (e.g., roads), the distance between parcels of the same habitat, etc. Generally, it is believed that the biological diversity decreases when similar parcels are small or are away from each other. In the areas that have been altered within the former Petroecuador-Texaco Consortium, there are practically no large remnant parcels; therefore the biological diversity is expected to be lower when compared to a pristine forest. Similarly, it is believed that a pristine forest can only exist if it is located more than 20 km away from the closest access road or access point. Any other forest that does not meet this requirement has been intervened in one way or another (SBSTTA, 2000).

In both areas that were part of the studies, the remnant forest parcels, which are the source of a big part of the biological diversity, are small (see Table 3). In the study area, the parcels of remnant forests go from small to 59.5 ha, with an average size of 1.1 ha. This represents 20% of the study area. Within the control area, the maximum remnant forest unit is 57 hectares, but the average size is a little bit larger (3.2 ha) than in the study area. This represents 27% of the control area. These parcels are small compared to the dimensions necessary to maintain a good diversity level in agricultural areas, which is at least 100 ha (SBSTTA, 2000). However, as mentioned in the previous section, the biological diversity is intermediate to high in these areas of remnant forest and there are no differences between the control and study areas. It can be concluded that the presence of petroleum development has not affected the biological resources, and that both areas have a similar and relatively high biological diversity, considering the high level of habitat fragmentation.

4.5 Indicators of ecosystem threats An integral part of a complete impact analysis of the biological resources is the evaluation of the level of threat or damage to the biological diversity. A REA and the collection of field data related to fauna and flora diversity do not address these topics. Rather, they are used to identify the areas that require more attention from a conservation point of view. However, it is important to understand the rate at which the biological resources are decreasing in order to determine the urgency of the protective or recovery measures. This issue is not included in Mr. Cabrera’s proposal. In this study, however, we use the existing data to evaluate the threat to the biological diversity. The following sections discuss two issues proposed by the SBSTTA (SBSTTA, 2000): habitat loss and resource over-utilization.

All the anthropic activities in the Oriente (e.g., colonization, cattle ranching, subsistence culture of the native communities, industry, etc.) have affected the flora and fauna in some way. Among the impacts are:

4.5.1 Habitat loss The habitat loss and fragmentation in remnant ecosystems with low intervention damage the biological resources (Trombulack et.al, 2004; Terborgh, 1992). The causes of these impacts (i.e., the changes relative to the original forest with low intervention) are multiple and are expressed as a group. Petroleum-related activities would only be one of the causes of the environmental impact. In a presentation at the International Conference for Agrarian Reform and Rural Development of Ecuador (Conferencia Internacional de la Reforma Agraria y el Desarrollo Rural del Ecuador), the Ecuadorian representative commented on the main source of impacts to the natural habitats:

“In the country, the agricultural activities cause serious impacts to the environmental conditions that they depend on for their subsistence…” (Gangotena and Cardenas, 2006).

“En el país, las actividades agropecuarias causan serios impactos en las condiciones ambientales de las cuales ellas mismas dependen para su supervivencia…”(Gangotena y Cárdenas, 2006)

The habitat fragmentation affects the fauna and flora resulting in a decline in the number of individuals of each species and the disappearance of species that cannot compete with other species or survive in the remnant fragments (Estrella et.al, 2005).

4-12 September 2008

The evaluation of the threat to the biological diversity is assisted by the quantification of the land use changes and the annual rate of changes to the important ecosystems. The changes in land use can be assessed in terms of absolute changes to the vegetation cover of different habitats (in hectares); the annual rate of change in the habitat’s extension, compared to its initial extent; and the annual rate of change of the habitat’s vegetation cover compared to the remnant vegetation cover.

An evaluation of the changes in vegetation cover within the remnant forests in both evaluated areas was conducted based on the Landsat satellite images of 1973, 1979, 1987, 2002 and the 2007 Quickbird image. Tables 10 and 11 summarize the results of this evaluation. Figures 6A and 6B include several satellite images of different years that illustrate the changes in land use in both areas.

Table 10 Percentage of remnant forests in the evaluated areas

Year Study area (SA-53) Control area (% of remnant forest) 1973 92.1 100 1979 81 94.4 1987 34.9 34.6 2002 19.6 27 2007 19.5 27.4 Based on Landsat satellite imagery, except for the year 2007 which is based on a Quickbird image.

Table 11 Relative changes in forest cover in the evaluated areas Timeframe 1973- 1979- 1987- 2002-

1979 1987 2002 2007 Study area (SA-53) % of the 1973 forest cover cleared per year 1.9 5.8 1 0 Cleared hectares per year (annual average) 7.4 23 4.1 0 % of the remaining forest cover cleared per year 2 7.1 2.9 0 during the time period Control area % of the 1973 forest cover cleared per year 0.9 7.5 1.5 0 Cleared hectares per year (annual average) 3.7 30 6.1 0 % of the remaining forest cover cleared per year 0.9 7.9 1.5 0 during the time period Approximate data, based on a land use assessment within the 4 km2 listed in Table 10. During the 2002-2007 period, a “0” indicates that the total forest cover in the area has remained the same or has increased. It does not mean that no remnant forest area was cleared during this period of time.

4-13 September 2008

Figure 8 is a graphical representation of the results.

Figure 8 Land Use Changes 1973 - 2007

100

90 Study Area (SA-53)

80 70 Control Area

60

50

40

30

20

10 Percentage of remainingforest 0 1970 1975 1980 1985 1990 1995 2000 2005 2010

Year

The previous tables and figure clearly show several important data points, including:

• The deforestation within both evaluated areas shows a similar rate and timeframe, even though petroleum development was never present in the control area. • In these areas with intense agricultural use, deforestation has practically stopped since 2000. This could be due to the fact that almost all the land suitable for crops in these areas is already being used for this purpose. As presented in Table 10, there are still large areas of remnant forest within the former Petroecuador-Texaco Concession, especially in areas less suitable for agricultural activities. • There is practically no difference between the study area with 30 years of petroleum development and the control area without any petroleum-related activities. Clearly, the deforestation pattern and the resulting important changes to the biological diversity that have occurred since the time when the forest was not intervened are similar in both areas. Therefore, the deforestation pattern is not related to petroleum development. This information coincides with the field data collected regarding the impacts to the biological resources that indicate that the study area (with petroleum development) and the control area (without petroleum development) not only share a very similar biological diversity, but also share very similar timeframes and intensity for the agricultural development. This strengthens the conclusion that petroleum development, in itself, has not resulted in important changes to the development timeframe or the biological diversity that is currently present. As discussed in the previous sections, the biological diversity in the remnant forests is intermediate, and even high for some groups. Since clearing of the remnant forests appears to have practically stopped, it is probable that the diversity level that is present today is sustainable.

Land use data, by itself, doesn’t allow for a detailed quantification of the biological resources that were present in the evaluated areas at different times. Actually, mature forests have the highest diversity and their clearing leads to a decrease in the diversity. The chronology of this decrease in diversity cannot be quantified because:

4-14 September 2008

• The timeframe of the changes in biological diversity is related to the clearing of the area, but not necessarily very closely since other factors also affect diversity, like hunting, invasions of foreign species, selective timber extraction, road construction, industrial and waste water discharges, and climate change. • There is practically no quantitative information of the biological diversity in the northeastern region for the time when the Petroecuador-Texaco Consortium operated in the area. Only since 1991, with Decreto Ejecutivo 2982, EIS were required to include an evaluation of the flora and fauna. Because of this, there is no baseline of the conditions prior to and during the operations of the Petroecuador-Texaco Consortium. Concurrently, the HBT-Agra and Fugro-McClelland audits in 1992 and 1993 did not evaluate the biological resources. Finally, it must be noted that these conclusions are based on localized studies. Throughout the whole Petroecuador-Texaco Concession, the changes in land use, biological diversity and ecological conditions vary significantly. The study presented in this report was designed to determine scientifically and quantitatively if petroleum development, in itself, impacted the biological resources. Based on this study, it can be concluded that there is no evidence of impacts directly related to petroleum development.

4.5.2 Resource utilization It is hard to quantify this issue. There are no reliable calculations regarding hunting, collection of plants and animals, timber extraction, ecotourism, or other uses of the remaining biological resources. Actually, the agricultural land use pattern indicates that the use of natural resources is not important to local residents in both study areas. According to the information provided by the landowners, many of the larger animals, like the deer and tapir, are no longer present in both evaluated areas. Hunting of smaller animals like the peccary (sajino) and guanta still continues. During the field investigations, hunters were encountered inside the remnant forest in the control area. Other animals, like snakes, are killed when the residents find them on their properties. Similarly, local residents have exterminated predators like the jaguar, oncilla (tigrillo) and puma. It was also noted that the highly valued timber species are not present in the remnant forests. Generally speaking, the animal and plant resources in each habitat are not as important as agriculture and cattle ranching to the colonists. This is mostly due to a history of resource over-utilization that has lead to the extermination of many species due to loss of habitat, hunting, timber extraction, and pest eradication programs.

4.5.3 Other threats to the biological resources Other factors, like the introduction of species and contamination not related to petroleum activities, also affect the biodiversity and can threaten the fauna and flora. Even though both factors were observed in both the study and control areas, the influence of these factors on the evaluated areas was not quantitatively evaluated as part of this study. However, these factors are briefly discussed below. Photo 13 Hunting evidence in the remnant forest in Introduced species the control area. This uncontrolled hunting affects the remaining biological resources. The introduction of foreign species into an ecosystem can result in great impacts to the native flora and fauna. The presence of introduced species is very evident in the evaluated areas. In reality, the colonization process leads to the native forest being replaced with crops (e.g., coffee, banana, hearts of palm, cacao, and pineapple) that are not native to the area (Kernan and Stern, 2006). The grasses planted in the grasslands are also introduced species. Some species, like grasses, spread indiscriminately and can change the ecological conditions in large areas. Both the control and study areas are dominated by crops and grasses.

4-15 September 2008

The african palm, an introduced species of great economic importance and farmed in large monocultures, is a special case. There are no large African palm plantations in either the study or the control areas. However, large African palm monocultures are present in neighboring areas. The negative effect that the African palm monocultures have on the biological resources is well-known (Casson, 2003) and is another factor affecting the biological diversity.

In terms of animals, some species like cattle and other domestic animals were purposely introduced. Other animals, like the common mouse (Mus musculus) were introduced accidentally (Photo 14). Mice are generally found close to communities, but it is worth noting that during the mammal study (Annex B) this species was found within the mature swamp forest in the study area. This habitat is generally not associated with common mice. The effect of the presence of this species in an area located far from populated areas is unknown.

The common vampire bat (Desmodus rotundus) is an example of how the deliberate introduction of species has resulted in impacts to the local fauna. Even though this species is native to the area, the distribution and abundance of vampire bats in Ecuador has increased as the cattle ranching areas have

Photo 15 Vampire bat of the Desmodus Photo 14 Mus musculus. Introduced species. genus. Found in the study area. Identified in the study area. increased (Tirira, 2007). Because of their relationship with the cattle, the vampire bats are more abundant in intervened areas than in the forests. This was also observed during the mammals study (Photo 15).

Contamination not related to petroleum activities Many sources that are unrelated to petroleum activities and represent a threat to the biological resources are present in the region. Among the main sources are: the uncontrolled use of pesticides, wastewater discharges, landfill emissions, industrial emissions, and vehicle emissions. Burton Suedel (2004) and Connor et.al. (2008) have submitted reports with additional information regarding the extent and effects of the use of pesticides, and wastewater discharges in the northeastern area of Ecuador, respectively, to the court.

4.5.4 Ecological valuation The Institute for the Regional Amazonia Eco-development of Ecuador (Instituto para el Ecodesarrollo Regional Amazónico de Ecuador, ECORAE) evaluated many concepts related to the biological diversity for the development of an ecological-economic zoning (ECORAE 2002 for Sucumbios; ECORAE 2002b for Orellana). A valuation of the environmental sensitivity of this region’s ecosystems, following Sierra’s (1999b) model, was conducted in order to determine the importance of the conservation of the biological diversity. Most of the former Petroecuador-Texaco Concession is within the Lowland Intervened Forest (Bosque intervenido de tierras bajas, BITB). At a provincial level, the model uses weighted values to valuate the habitats and ecosystems. The model gives a higher value to the protected ecosystems within the National System of Protected Areas of Ecuador (Sistema Nacional de Areas Protegidas de Ecuador, SNAP), the areas critical for bird protection, and areas with remnants of the original habitats. Human pressure and landscape diversity have a lower value.

4-16 September 2008

The ECORAE used a similar methodology to valuate the production of goods and services in the ecosystems, as well as the threat level from mining and petroleum activities, roads, and the use of natural resources.

Based on this evaluation, ecosystem maps, and maps of the environmental conflicts between the current use, the potential use and the protection of the ecosystems were created. The ecological- economic zoning map indicates that the study and control areas are within areas without environmental conflicts. In Section 6.4.10 of the plan for Sucumbíos (ECORAE, 2002), ECORAE states that in the evaluated areas16 “according to their potential use, even after going through a land use transformation process from original natural forest to fields for agricultural production…there are currently no environmental conflicts because the anthropic activities that have been conducted, are in agreement with the land use capacity”. Both of the evaluated areas share this valuation and they have not been identified as critical protection areas for the conservation of diversity.

Even though there has been a transformation in the land use from the original natural forest to fields of agricultural production, in many cases in agreement with the potential use, there is still an under- utilization of the land. Additionally, both the study and control areas are characterized as under-utilized by the ECORAE (intermediate under-utilization to adequate use in the study area, and low under- utilization in the control area).

16 The SA-53 study area is within the Orellana Province. The ECORAE map for Orellana agrees with the conclusions of the Sucumbios study.

4-17 September 2008

5.0 Bibliography

Albuja, L., Ibarra, M., Urgilés, J. and R. Barriga. 1980. Estudio Preliminar de los Vertebrados Ecuatorianos. Edit.Sci.Pol.Nac., 1980: 1-240, Quito.

Botkin, D.B., 1990. Discordant Harmonies: a new Ecology for the Twenty-first Century. Oxford University Press, New York.

Briones, E., A. Flachier, J. Gomez, D. Tirira, H. Medina, I. Jaramillo & C. Chiriboga. 1997. Inventario de Humedales del Ecuador. Primera Parte: Humedales Lénticos de las Provincias de Esmeraldas y Manabí. Ecociencia/INEFAN Convención Ramsar, Quito.

Cañadas, L., 1983. El mapa bioclimático y ecológico del Ecuador. MAG-PRONAREG, Banco Central del Ecuador, Quito.

Casson, A. 2003. Oil Palm, Soybeans & Critical Habitat Loss. WWF Forest Conversion Initiative. Suiza.

CITES, 2006. Convención sobre el Comercio Internacional de Especies Amenazadas de Fauna y Flora Silvestre. http://www.wcmc.org.uca/CITES/common .

Coloma, L. and Quiguango-Ubillus, 2006. Estatus de conservación de anfibios del Ecuador. Museo de Zoología, Pontificia Universidad Católica del Ecuador, Quito.

Connor, J., and Landazuri, R., 2008. Respuesta a las Afirmaciones del Sr. Cabrera con Relación a Supuestos Impactos a los Recursos de Agua en el Área de la Concesión Petroecuador-Texaco. GSI Environmental, Inc., Houston, Texas.

Conservation International, no year. Biodiversity Indicators for Monitoring Impacts and Conservation Actions. Conservation International: The Energy and Biodiversity Initiative.

EASAC, 2004. A user´s guide to biodiversity indicators. European Academies Science Advisory Council.

ECORAE, 2002. Zonificación ecológica económica de la Provincia de Sucumbíos. Proyecto de Desarrollo Sostenible del Área Fronteriza Amazónica Peruano-Ecuatoriana (PDPE) Instituto para el Ecodesarrollo Regional Amazónico de Ecuador.

ECORAE, 2002b. Zonificación ecológica económica de las Provincias de Orellana y Napo. Proyecto de Desarrollo Sostenible del Área Fronteriza Amazónica Peruano-Ecuatoriana (PDPE) Instituto para el Ecodesarrollo Regional Amazónico de Ecuador.

Ecuambiente, 2002. Estudio de Impacto Ambiental del Pozo de Desarrollo Sacha 198. Ecuambiente Consulting Group, Quito, Ecuador.

Ecuambiente, 2003a. Estudio de Impacto Ambiental Pozo de Desarrollo Lago Agrio 44. Ecuambiente Consulting Group, Quito, Ecuador.

Ecuambiente, 2003b. Estudio de Impacto Ambiental Pozo de Desarrollo Lago Agrio 45 Ecuambiente Consulting Group, Quito, Ecuador.

September 2008

Ecuambiente, 2003c. Diagnostico y Plan de Manejo Ambiental para la Perforación del Pozo Shushufindi 52B. Ecuambiente Consulting Group, Quito, Ecuador.

Ecuambiente, 2004. Estudio de Impacto Pozo de Desarrollo Sacha 185. Ecuambiente Consulting Group, Quito, Ecuador.

Ecuambiente, 2005. Estudio de Impacto Ambiental y Plan de Manejo para la Perforación Exploratoria del Pozo Drago 1. Ecuambiente Consulting Group, Quito, Ecuador.

Ellis, James. 2008. Cambios en el Uso del Suelo Evaluados por medio de Sensores Remotos. Walnut Creek, California.

Erwin, T., M. Pimienta, O. Murillo, 2005. Mapping patterns of beta diversity for beetles across the western Amazon Basin: a preliminary case for improving inventory methods and conservation strategies. Proc.Calif. Acad. Sciences 56 (Suppl I): 72-85.

Estrella, J., R. Manosalvas, J. Mariaca, and M. Rivadeneira, 2005. Biodiversidad y recursos genéticos: Una guía para su uso y acceso en el Ecuador. Ecociencia, INAP, MAE y Abya Yala, Quito.

Feinsinger, P., 2001. Designing Field Studies for Biodiversity Conservation. Nature Conservancy, Washington.

Gangotena, S.V., F.M. Cárdenas. 2006. Reforma Agrararia y Desarrollo Rural en Ecuador. Ponencia del gobierno ecuatoriano : Conferencia Internacional. Porto Alegre, Brasil, Marzo de 2006.

Gentry, A. H. 1986. Species richness and floristic composition of Chocó region plant communities. Caldasia No.15.

Hubbell, S.P. 2001. The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton, New Jersey.

Humphries, C.J., Williams, P.H., and R.I. Vane-Wright. 1996. Measuring biodiversity value for conservation. Annual Review of Ecology and Systematics 26: 93-111.

IUCN, 2000. IUCN Red List, International Union for the Conservation of Nature Species Conservation Commission.

Kernan, B.S., M. Stern. 2006. Report on Tropical Forest and Biological Diversity. Country Strategy Statement. FY2007 – FY2012. USAID/ECUADOR. Quito, Ecuador.

Magurran, A., 1988. Ecological Diversity and Its Measurement. Princeton University Press, Princeton, New Jersey.

May, R.M. 1988. How many species are there on earth? Science 241: 1441-1449.

Pasquis, R. & P Usselmann, 2003. Los Sistemas Nacionales de Áreas Protegidas (SNAP) entre necesidades de conservación de la bio y socio-diversidad e imperativos de desarrollo: elementos para el desarrollo sostenible. Lyonia 4(2): 187-220, 2003.

Pitman, N., D.K. Moskovits, W.S. Alverson, and R. Borman (eds.). 2002. Ecuador: Serranías Cofán- Bermejo, Sinangoe. Rapid Biological Inventories Report 3. Chicago, Illinois: The Field Museum.

Reagan, D.P. 2006. An ecological basis for integrated environmental management. Human and Ecological Risk Assessment, 12: 819-833.

September 2008

Ricthisarm, 2003. Diagnostico Ambiental y Plan de Manejo Ambiental – Perforación del Pozo de Desarrollo Sacha 2B. Ricthisarm Consulting Services, Quito, Ecuador.

Sayre, R. et al., 1992. Nature in Focus: Rapid Ecological Assessment. The Nature Conservancy. Island Press, Washington.

SBSTTA, 2000. Anexo 2: SBSTTA Recommendations for a Core Set of Biodiversity Indicators, Subsidiary Body on Scientific, Technical and Technological Advice (SBSTTA), Secretariat of the Convention on Biological Diversity, en “Biodiversity and Environmental Assessment Toolkit”. World Bank, March 2000.

Secretariat of the CDB, 2007. An Exploration of Tools and Methodologies for Valuation of Biodiversity and Biodiversity Resources and Functions. Technical Series no. 28, Montreal, Canada.

Secretariat of the CDB, 2006. Guidelines for the rapid ecological assessment of biodiversity in inland water, coastal and marine areas. Technical Series no. 22, Montreal, Canada.

Sierra, Rodrigo. 1999. Propuesta preliminar de un sistema de clasificación de vegetación para el Ecuador Continental. ECOCIENCIA, Proyecto INEFAN/GEF-BIRF, Quito.

Sierra, R., Campos, F. and J. Chamberlin. 1999b. Áreas prioritarias para la conservación de la biodiversidad en el Ecuador continental. Ministerio del Ambiente, EcoCiencia y WCS. Quito.

Stotz, D., J. Fitzpatrick, T, Parker III, & D. Moskovits. 1996. Neotropical Birds: Ecology and Conservation. The University of Chicago Press. U.S.A.

Suedel, B. 2004. La Presencia de Pesticidas en el Ambiente y sus Efectos a la Salud Pública. ENTRIX. Houston, Texas.

Terborgh, J., 1992. Maintenance of diversity in tropical forests. Biotropica 24:283-292.

Tirira, D. 2007. Mamíferos del Ecuador – Guía de Campo. Ediciones Murciélago Blanco, Quito, Ecuador.

Trombulack, S.C., K.S. Omland, J.A. Robinson, J.J. Lusk, T.L. Fleichner, G. Brown, and M. Damroese, 2004. Principles of conservation biology: recommended guidelines for conservation literacy for the Education Committee of the Society of Conservation Biology. Conservation Biology 18(5): 1180-90.

Valencia, R., N. Pitman, S. León-Yépez, P. Jorgensen (eds), 2000. Libro rojo de las plantas endémicas del Ecuador.

Vallejo, L., 1997. Mapa General de Capacidad – Fertilidad del Ecuador. IGM, 1997.

World Bank, 1998. Guidelines for Monitoring and Evaluation of Biodiversity Projects. World Bank, June 1998.

Yawë, 2004. Estudio de Impacto Ambiental “Pozo de Desarrollo Shushufindi 97”. Yawë – Consultaría Ambiental Compañía Ltda., Quito, Ecuador.

September 2008 Annex A

Authors’ Curricula

Bjorn Bjorkman, M.S. Risk Assessment Natural Resource Inventories Environmental Impact Assessment Aquatic Ecology Tropical Ecosystems Studies

Summary

Mr. Bjorkman is trained as an ecologist with a M.S. from the University of Minnesota. He works as an environmental consultant specialized in risk assessment and ecology, with a focus on the oil industry. Mr. Bjorkman has extensive experience in biological evaluation of Amazon ecosystems in Ecuador and Peru. Since 1995 he has completed dozens of environmental impact studies, environmental management plans, ecological sensitivity maps, biological evaluations and environmental studies in Peru, Ecuador, Argentina, Honduras and other countries. Mr. Bjorkman has prepared and evaluated biodiversity action plans fort he oil industry both at the individual facility level and the regional programmatic level.

Education

• M.S. (Aquatic Ecology/Limnology) University of Minnesota • B.A. (Environmental Biology) University of California • Certification (Environmental Inspection and Enforcement) University of Stockholm • Fluent native speaker in Spanish and Swedish, including technical writing and judicial testimony

Professional History

• ENSR (formerly RETEC), Fort Collins, Colorado, Senior Risk Assessor (1999 – present) • The SeaCrest Group, Boulder, Colorado, Environmental Impact Assessor (1995 – 1999) • ANOX Biotechnology, Lund, Sweden, Environmental Scientist (1992 – 1994)

Representative Project Experience

Environmental Risk Assessment

Railroad, Ecological Risk Assessment, Washington. Subsurface migration of hydrocarbons from a railroad fueling facility reached a major trout fishing river in the Washington Cascades. Led portions of terrestrial and aquatic ecological risk assessments, including conducting extensive toxicity testing of sediment and groundwater, and assisting in developing cleanup criteria under Washington MTCA sediment guidance. Also included a TEE (Terrestrial Ecological Evaluation).

Confidential oil and gas company, Environmental Risk Assessment - CO2 releases, Wyoming. An oil company using CO2 injection tertiary recovery experienced extensive leakage of CO2 via cracks and seeps to the surface. Participated in evaluation program of the potential effects of the CO2 leaks to surface dwelling wildlife, and the risk of human health hazards from seepage into cellars and other low areas. Evaluated ambient measured and modeled concentrations and compared to existing toxicological and health and safety data for CO2. Assisted in developing mitigation measure plan.

Bjorn Bjorkman Page 1 Oil and Gas, Environmental Impact Report - Offshore Seismic, Argentina. Managed an Environmental Impact Assessment per Argentine, World Bank and MARPOL guidelines for an off-shore gas exploration project in the South Atlantic. Particular concerns included impacts on whales, economically important fishing grounds, and seamounts with unique biota.

Occidental Bangladesh, Environmental Impact Analysis - Exploration Wells, Bangladesh. Led an Environmental Impact Assessment (per World Bank requirements) at various potential locations for a gas extraction project in native forest as well as heavily populated areas of Bangladesh. Also evaluated potential impacts from wastes left by a prior operator in the field.

Duke Energy Pipeline Services, Pipeline ecological risk evaluations, Texas and Oklahoma. Evaluated potential risk of "irreparable or irreversible" injury to rivers and stream biota potentially affected by chemical pipeline failures. Evaluation followed U.S. DOT procedures (64CFR 250 and 49CFR 195.6)for ecological assessment of High Consequence Areas.

Various Clients, Human Health Risk Assessments, Multiple States. Strategic advisor and risk assessor on many human health risk assessments, involving direct contact, ingestion, and inhalation of organic and inorganic contaminants in soil, groundwater, surface water, and sediment at industrial sites across the U.S. Guidance includes EPA risk assessment guidance and State Contaminated Site and Voluntary Remediation programs.

Biodiversity

Petroleum Company (refinery), Biodiversity Action Plan, Utah. On behalf of a petroleum industry client, developed and managed a biodiversity action plan to enhance habitat value of existing wetlands in the Salt Lake City area, in order to minimize existing environmental liabilities, enhance valuable habitat as part of corporate biodiversity goals, and provide a beneficial legacy to the community. Tasks included wetland assessment and delineation, securing of water rights, repair of water level maintenance structures, biological surveys, and the site was entered in the WHC program.

International Oil Company, Biodiversity Action Plan Guidelines, Alaska. Developed guidelines for developing Biodiversity Action Plans consistent with “green” corporate EHS goals at a major international oil company. The guidelines include a process to identify, protect and enhance biologically valuable lands and properties. The guidelines are intended for use by non-specialist site managers, and follow the corporate decision making process.

Natural Resource Damage Assessment

Petroleum Company (upstream), Natural Resource Damage Assessment, California. Representing the oil company, assisted in oil fate and transport modeling evaluation of restoration alternatives and development of compensatory restoration metrics at a coastal oil spill in California. Affected habitat included sandy shores, intertidal cliffs, abalone resources, and special status birds. Assisted in negotiating Habitat Equivalency Analysis conditions, including the use of "out of kind" compensation related to native vegetation restoration to coastal sand dunes, and use of abandoned offshore facilities as "seed areas" for aquatic life.

Railroad, Emergency Response - Derailments, Wyoming and Montana. Developed a NRDA support program for Emergency Response for railroad clients. Responded and evaluated potential natural resource damage liabilities resulting from coal and chemical spills to sensitive wetlands, streams, and endangered species habitat. This work called for site visits to evaluate natural resource injury and endangered species assessments.

Bjorn Bjorkman Page 2 International oil and gas company (upstream), Natural Resource Damage Assessment - Gas Well Blowout, Bangladesh. Led a response team assessing the damage to natural resources caused by a major gas well blowout in Bangladesh. The evaluation included habitat surveys, fire damage analysis, groundwater, drinking water and surface water evaluations, collection of aerial survey data, and interviews with local population to prepare an assessment of the scope of injuries and damages. Participated in initial negotiations with Bangladesh government. Extensive restoration and mitigation work would eventually be implemented based on these assessments.

Oil Refinery, Oil Spill Sensitivity Mapping, Peru. Developed coastal ecological sensitivity map, per NOAA guidelines, for the coastal zone covered by the Oil Spill Contingency Plan of an oil refinery south of the city of Lima. Work involved evaluation of coastal wetlands, sandy beaches, rocky intertidal areas, marinas, and evaluation of confounding factors associated with sewage outfalls.

Use Attainability Analysis

Anadarko Petroleum, Use Attainability Analysis - Site Specific Criteria, Wyoming. Project Manager for UAA in support of developing site-specific water quality criteria for creeks and rivers affected by saline produced water discharges in a producing oil field in Wyoming. Project included wetland evaluation, bioassessments, fish community evaluation, water quality and hydrology investigations, impact ti wildlife and livestock, and impact to landowner water use patterns. As part of this project conducted interviews with landowners, led public meetings with conservancy district members, and helped establish a collaborative process with the Conservancy District, the State agency, EPA, and individual landowners. A site specific criterion for chloride was established and approved for the creek, allowing discharges to continue and thus avoiding expensive reinjection or treatment programs. This was based on establishing that all CWA designated uses of the water were maintained under current conditions.

Industrial and Mining, Toxicity Identification and Reduction Evaluations, Industrial and Municipal Discharges, Various States and countries. Participated as Senior Scientist in numerous Effluent Characterizations, Toxicity Identification Evaluations, and other ecotoxicological investigations for POTW, industrial and mining concerns in Colorado, Florida, other states, and Sweden.

Fishmeal Plant, Discharge Treatment Feasibility Study, Peru. Developed a Feasibility Study on treatment options for fishmeal plant effluents, including exploring the use of created wetlands and recovery of secondary products. The work was funded by USAID and aimed to reduce discharges of effluent to the marine environment near Pisco. The study presented innovative approaches including polishing in constructed wetlands and algae aquaculture units to derive income from the process.

Kennedy Oil, Use Attainability Analysis - Stream Reclassification, Wyoming. Managed a Use Attainability Analysis directed towards justifying the reclassification of nine ephemeral and intermittent streams in Wyoming from Class 3 (with Aquatic Life) to Class 4 (do not support aquatic life), on behalf of an oil company wanting to continue surface discharge of coal bed methane process water. The UAA involved determining the extent of aquatic habitat, wetlands and other features indicating aquatic conditions. All streams were successfully reclassified.

Bjorn Bjorkman Page 3 Environmental Site Assessment

Railroad, CERCLA RI/FS, Alaska. Project Manager for ongoing RI/FS at a 600 acre railyard facility in Anchorage, Alaska, which includes railroad activities, petroleum storage, and multiple small industry. An important recreational fishing area is present on site. Responsible for RI, human health and ecological risk assessments, and oversight of feasibility study. Led ecological risk studies, including habitat surveys and aquatic surveys. Introduced innovative site investigation approaches that allowed the completion of the RI/RA in very short time, with large savings top client. Project is ongoing.

Closed metal manufacturing facility, Risk Assessment and Risk Management, Oregon. Conducted risk assessment and risk management per Oregon guidance for a closed industrial facility near Port of Portland. The site had upland issues as well as potential pathways to the harbor.

Former Refinery, RCRA RFI/RA, Wyoming. Project Manager for the North Platte River portion of one of the largest RCRA RFI/RAs in the U.S., focused on impacts at a former refinery site in Wyoming. Project included risk-based evaluations of terrestrial/aquatic media and biota evaluations. Negotiated “No Further Action” endpoints based on net environmental costs and benefits of remedial action. Major focus was residual sediment contamination issues in the river resulting. After cleanup the river was redeveloped as an aquatic park area including a kayak run. In addition led ecological risk work assessment at upland areas, post-remediation monitoring of aquatic features. A large evaporation basin was a special concern due to PAH and selenium impacts.

Active Refinery, Sediment and Surface Water Investigation, Virginia. As part of RCRA remedial action project conducted investigations and negotiated remedies for off-site ponds and salt marshes affected by discharges from an active refinery. Negotiated innovative endpoints based on recognition of relative ecological value of receptors and differentiation between sediment action levels and sediment quality goals. Conducted biological surveys including sediment camera use, macroinvertebrate and aquatic life surveys, and fish evaluation.

NWD PRP Group, Sediment Remediation, Utah. Advisor for a PRP in a sediment cleanup of a discharge canal affected by industrial and municipal discharges. Even-handed approach led to lead role in preparing an ecological risk assessment for the entire PRP group to evaluate options for sediment removal and disposal. Reduced remedy costs by developing a plan of placement of lightly contaminated excavated sediment as agricultural fill adjacent to canal.

Creosote Treatment Facility, Ecological Risk Assessment, Longview, Texas. Evaluated ecological risk to off-site creek from surface runoff and subsurface migration from a closed railroad tie treatment plant. Approach focused on evaluation of residual sediment contamination in relation to upstream urban impact to stream. Tasks included habitat surveys, biota and sediment sampling in streams, ponds and land, and completion of a ERA per TCEQ guidance.

Closed Wood Treatment Facility, Risk Assessment, Idaho. Risk assessment of contaminated sediment and bank soil in an area where Native Americans utilize river resources, including evaluation of impact on edible biota such as fish, clams, and aquatic vegetation. Helped develop sediment cleanup goals that meet stakeholder needs and good science.

Closed Refinery, RFI/CMS Risk Assessment, Missouri. Large RCRA RFI/CMS site with multiple exposure media and contaminant migration pathways, including sediment, soil and surface water at a closed refinery. Conducted terrestrial and aquatic habitat surveys, developed sediment cleanup goals appropriate for urban watershed streams, evaluated vapor inhalation issues. Project consisted of separate ecological/human health risk assessments for each of six redevelopment units. Special evaluations included evaluations for placement of a community center (including daycare and a marina.

Bjorn Bjorkman Page 4 Closed Metals Plating Facility, Risk Assessment, Pennsylvania. Closed facility had hexavalent chromium and other metal releases to off-site stream and pond sediments and surface water. Baseline evaluation included bioassays, tissue analysis, and potential effects of downstream sediment transport following planned dam removal. Strategy applied realistic site-specific exposure and toxicity data to develop reasonable Remedial Goals.

Various Clients, Ecological Risk Assessment, Various States. Advisor/ Assessor on dozens of ecological risks involving contaminated sediment, surface water, soil, and biota exposure following EPA and State Contaminated Site Program guidance in Oregon, Colorado, Illinois, Ohio, New York, North Carolina, Indiana, Texas, Idaho, Utah, California, Nebraska, Wyoming, Washington and other states.

Petroleum Storage Terminal, Site Investigation and Risk-Based Corrective Action, Peru. Project Manager for a site investigation, risk assessment and RBCA plan for a major oil terminal in Peru. This assessment was part of property transfer liability determinations and was the first application of ASTM E- 1739-95 procedures in Peru. Directed a team planning and implementing a groundwater and soil sampling program, risk assessment of field collected data using RBCA protocols, development of site-specific cleanup criteria, design of remediation options for groundwater and soil, and allocation of responsibility between previous and current owners.

Occidental Petroleum, Water Quality Studies and Monitoring Programs, Peru. Project Manager for supporting environmental protection efforts of Occidental at their Block 1A/B field in the Peruvian Amazon. Work included water quality studies on the fate and transport of produced water discharges to area rivers and streams, effects on aquatic biota of oil spills to marshes and streams (including early application of SPMD [semi-permeable membrane device] technology, and the design and implementation of water quality monitoring program.

Occidental Petroleum, Environmental Impact Reports - Seismic and Exploration, Peru. Lead and assistant PM for several separate EIAs for 2d and 3D seismic surveys, exploration well drilling, and production well expansion at Amazon area oil field. EIAs drafted according to Peruvian regulations.

Anadarko Petroleum, Environmental Impact Report - Seismic Survey, Peru. Led an EIA (Peruvian guidance) for a 3D seismic program in an undeveloped part of the western Peruvian Amazon. Led field surveys with a team including a vegetation expert, a soil scientist, a sociologist and an archaeologist. Conducted surveys of native populations and colonist populations, and collection of background information.

Various, Environmental Compliance Audits, Peru and Sweden. Led a number of audits and compliance evaluations to identify environmental liabilities and compliance with national (and international) environmental guidance for mining, chemical industry, fish meal, and paper industries.

Oil Companies, Environmental Laboratory Audits, Bangladesh and Singapore. Evaluated quality and capacity of environmental laboratories in these countries to support environmental compliance needs of U.S oil companies operating in the area.

Envirolab-Peru, Environmental Laboratory Setup and Accreditation, Peru. On-site technical manager in partnership with a Peruvian company to set up an environmental laboratory in Peru operating to U.S environmental quality standards and procedures. The lab is now one of the major laboratories in the Peruvian market.

Bjorn Bjorkman Page 5 Other Experience: Habitat Assessments

BP, Habitat Survey and RFI Work Plan, Wyoming. Conducted a qualitative habitat survey and prepared a risk assessment work plan for a planned RCRA RFI and ecological risk assessment at a closed refinery site.

Closed Refinery, Terrestrial/Aquatic Habitat Survey, Wyoming. Large RCRA remediation site with multiple exposure media/contaminant migration pathways, including sediment, soil and surface water. Conducted terrestrial/aquatic habitat surveys (bird counts, fish and macroinvertebrate studies, vegetation studies) and developed sediment cleanup goals for urban watershed streams.

Confidential, Barium bioavailability assessment, Maine. As part of a Life Cycle Analysis for barium containing drilling fluid disposal in off-shore oil platforms, prepared a barium ecotoxicity, bioavailability and geoavailability white paper based on literature sources.

Bjorn Bjorkman Page 6 CLAUDIA SANCHEZ DE LOZADA Environmental Impact Studies Environmental Assessments Due Diligence

EDUCATION B.A., Environmental Studies/Core: Biology, Macalester College, Saint Paul, MN, 2000

PROFESSIONAL HISTORY AMEC Geomatrix, Inc., Project Scientist, 2005 to date ENTRIX, Inc., Houston, TX, Staff Scientist, 2000–2004

SKILLS AND EXPERIENCE Ms. Sánchez de Lozada has over 8 years of experience managing and conducting environmental projects in the United States, Latin America, and Africa. She has managed or participated in a wide variety of projects including environmental impact studies, air quality studies, due diligence assessments, and is experienced in surface and subsurface soil and water sampling. She has prepared documents for submittal to local and foreign government agencies. She also has been responsible for the technical editing and/or translation of documents from English to Spanish. Ms. Sánchez de Lozada is bilingual (Spanish and English) and has extensive experience working in both language environments. Ms. Sánchez de Lozada is an experienced project manager and has strong skills in client communication, sampling team management, budgeting and cost control, and reporting.

REPRESENTATIVE PROJECT EXPERIENCE Litigation Services, Confidential Client, South America. Sampling Director. Participated in the field investigations during the judicial inspections for a lawsuit against a confidential client in South America. Responsibilities included directing a local sampling crew and a Geoprobe subcontractor during field sampling activities (soils, water, sediment and air); coordinating field sampling effort; assisting with the preparation of the sampling approach; and preparing inspection reports, as requested by the judge.

Environmental Investigations, Newmont Ghana Gold Ltd., Ahafo Brong Region, Ghana, West Africa. Participated in baseline biological studies as part of an addendum to the environmental impact assessment for a proposed new mine site in order to comply with Ghanaian Environmental Protection Agency (EPA) and International Finance Corporation (IFC) standards for environmental analysis. Responsibilities included collecting field data; flora evaluation inside the project area; assisting in bat sampling activities; and assisting in the preparation of the report. Also participated in a localized study to determine the potential impact of the mine’s tailings dam on the local avifauna. CLAUDIA SANCHEZ DE LOZADA PAGE 2

Environmental Impact Study (EIS) and Environmental Management Plan (EMP) for the Oleoducto de Crudos Pesados (OCP), Ecuador. Responsibilities included assisting with the selection of a pipeline route and preparation of the EIS; creating an Environmental Management Plan for both the construction and operations phases of the OCP, in accordance with Ecuadorian and World Bank regulations; preparing of responses to comments and questions from the reviewers of the EIS/EMP (including the Ecuadorian government, international experts, and NGOs); and assisting with the creation of informational booklets, training project staff and support/supervision of four information repositories in Ecuador.

Limited Due Diligences, Various Clients, Ecuador, Brazil, Mexico, Panama, Bolivia, and the United States. Conducted more than 60 international and 50 national (in the United States) Phase I/Phase II environmental site assessments and field sampling projects for different types of facilities (active and inactive oil wells; active crude oil pumping and storage facilities; construction yards; and commercial properties). Responsibilities included project planning and background data research; development of sampling methodologies and training of field sampling crews; field coordination and oversight; data review and analysis, including comparison with both in-country and international environmental regulations; and report preparation and presentations to clients.

EIS for Offshore Deepwater Exploratory Drilling, Confidential Client, Barbados. Participated in the preparation of an EIS for deepwater exploratory drilling activities offshore of Barbados. Tasks included research of protected areas, wildlife and socioeconomic factors in three potentially affected Caribbean islands, as well as involvement in the writing of the report.

Various Environmental Impact Studies (EIS) and Environmental Management Plans (EMPs), Various Clients, Ecuador, and the United States. Participated in different phases (data research, data collection, analysis, and document preparation) of multiple international environmental assessments and EISs for various pipeline projects in Ecuador and the United States (both onshore and offshore). Areas of involvement included vegetation and wildlife, air emissions and threatened and endangered species.

Environmental Impact Study (EIS) for Offshore LNG Terminals, Confidential Clients, Texas and Louisiana. Participated in the preparation of EISs for two offshore LNG terminal and pipeline projects. Tasks included research of operation and construction impacts to site geology and sediments, as well as research of essential fish habitat and threatened and endangered species in the project areas.

CLAUDIA SANCHEZ DE LOZADA PAGE 3

Site Investigations and Site Closures, Various Clients, Louisiana and Texas. Involved in the preparation and implementation of risk based site investigation work plans, site investigation reports, and site corrective action plans for multiple pipelines and facilities to address environmental impacts at sites that require closure under Louisiana and Texas regulations.

Air Emissions and Noise Inventories, Transredes, Bolivia. Participated in an air emissions and noise inventory project for pumping facilities along the Bolivian transnational gas pipeline. Tasks included field team leader, writing the draft and final versions of the report and reviewing Bolivian and World Bank regulations to verify compliance.

LANGUAGES Bilingual, Spanish - English

CERTIFICATIOINS/TRAINING 4O hour HAZWOPER and 8 hour Annual Refresher First Aid/CPR certified Basic Pipeline Corrosion Training (NACE: National Association of Corrosion Experts) TRRP: Texas Risk Reduction Program (State of Texas RBCA program) RBCA: Risk Based Corrective Action Training (Groundwater Services, Inc.) Fundamentals of Drilling Training

ANNEX B

BIOLOGICAL DATA

1 DATOS DE FLORA ...... 2

METODOLOGÍA ...... 2 FASE DE CAMPO...... 2 FASE DE LABORATORIO ...... 3 ANÁLISIS DE LA INFORMACIÓN ...... 3 DATOS DE CAMPO ...... 5 ANÁLISIS DE DATOS...... 16 FOTOGRAFÍAS ...... 17 2 DATOS ORNITOLÓGICOS...... 19

METODOLOGÍA ...... 19 FASE DE CAMPO...... 19 FASE DE GABINETE Y PROCESAMIENTO DE DATOS...... 20 DATOS DE CAMPO ...... 22 RESULTADOS DE LA EVALUACIÓN...... 25 FOTOGRAFÍAS ...... 33 3 DATOS DE MASTOFAUNA...... 38

METODOLOGÍA ...... 38 FASE DE CAMPO...... 38 FASE DE GABINETE Y PROCESAMIENTO DE DATOS...... 39 DATOS DE CAMPO ...... 41 ANÁLISIS DE DATOS ...... 44 FOTOGRAFÍAS ...... 52 4 DATOS DE HERPETOLOGÍA...... 54

METODOLOGÍA ...... 54 FASE DE CAMPO...... 54 FASE DE GABINETE...... 56 ÍNDICES DE DIVERSIDAD ...... 56 DATOS DE CAMPO ...... 58 EVALUACIÓN DE DATOS ...... 61 FOTOGRAFÍAS ...... 64 5 DATOS ENTOMOLÓGICOS ...... 66

METODOLOGÍA ...... 66 FASE DE CAMPO...... 66 FASE DE GABINETE...... 66 DATOS DE CAMPO ...... 68 ANÁLISIS DE DATOS...... 70 FOTOGRAFÍAS ...... 76

Anexo B Datos Biológicos 1 Marzo, 2008 1 DATOS DE FLORA

METODOLOGÍA FASE DE CAMPO Se desarrolló mediante el establecimiento de transectos lineales de 100 m x 10m (1000 m²) en bosques maduros, dos subtransectos de 50 x 10 en bosques secundarios, debido a la alta fragmentación de los mismos. La metodología en la que se apoyó el diagnóstico de flora, se basa en los trabajos desarrollada por (Gentry, 1986), para transectos de 0,1 hectáreas. Dentro de cada transecto se identificaron y midieron todos los árboles con un Diámetro a la Altura del Pecho (DAP) igual o superior a 2,5cm. Se realizaron colecciones botánicas para cada individuo registrado en el inventario, excepto para aquellos cuya identificación fue reconocida en el campo. Las muestras fueron colectadas con podadoras aéreas y podadoras de mano. Los resultados obtenidos en los transectos de bosques suministran datos relacionados con: área basal, densidad relativa, dominancia relativa, frecuencia y valor de importancia. En base a las imágenes satelitales y experiencia de campo, se realizó una preclasificación de los tipos de vegetación presentes en las áreas de estudio, para su posterior verificación en el campo. Estas localidades de muestreo verificadas en el campo, incluyeron algunos ejemplos de cada tipo de vegetación, tanto para la unidad control como la unidad de estudio SA-53. Para todos los muestreos de campo, se trató de estandarizar la metodología a 0,01 hectáreas por tipo de vegetación, incluyendo aquellos sitios bastante fragmentados con limitada superficie de cobertura vegetal. • Bosque maduro remanente. En los remanentes de bosque maduro intervenido, el muestreo se realizó mediante una selección al azar, utilizando cuatro fichas de papel con las direcciones de posición geográfica (Norte, Sur, Este y Oeste). Una vez elegida la dirección se procedió con el muestreo. • Bosque maduro de pantano Por ser un remanente alargado junto al Río Jivino Negro, el muestreo se realizó siguiendo el curso del mismo en una de sus orillas, con dominancia de la palma moreteo. • Bosque secundario. Debido a la limitada superficie de la vegetación secundaria, no fue posible elegir al azar las sub-áreas de muestreo, por ello en cada uno de los remanentes se trazaron dos transectos paralelos de 50 x 10 m. La dirección de los transectos se eligió Cultivos según la longitud disponible del área de muestreo. • Cultivos. En estos escenarios se cuantificaron las especies herbáceas y las plantas cultivares. Para ello dentro del transecto de 100 m de longitud, se ubicaron tres sub- parcelas de 10 x 5 m, dentro de las cuales se inventariaron todos los tallos de hierbas existentes. Este criterio adicional, fue utilizado con la finalidad de conocer la diversidad de hierbas importantes. • Pastizales. En los pastizales se trazaron transectos lineales de 100 x 10 m de longitud, dentro del cual se establecieron 11 parcelas de 1 m² cada 10 m, en donde se estimó la cobertura herbácea de los pastos, se cuantificó y recolectó las hierbas existentes en cada cuadrado de muestreo. Para esta labor se empleo un cuadrado de madera de 1 m x 1 m, dividido en cuatro partes.

Anexo B Datos Biológicos 2 Marzo, 2008 FASE DE LABORATORIO Los especimenes botánicos colectados fueron prensados y preservados en alcohol al 75%, para luego ser transportados a las instalaciones del Herbario Nacional del Ecuador QCNE (Quito Ciencias Naturales Ecuador) para su secado y procesamiento. El material recolectado fue identificado en función de la comparación con especimenes de la colección botánica del Herbario. Durante el trabajo de campo se colectaron un total de 390 muestras con números de colección (EF. 8500-8677 y NR. 1-213). Los nombres comunes y científicos registrados en el campo fueron verificados con el Catálogo de Plantas Vasculares del Ecuador (Jorgensen & León, 1999), colecciones del Herbario Nacional QCNE y la base de datos (Trópicos, 2007). ANÁLISIS DE LA INFORMACIÓN Para el análisis de los datos obtenidos en los transectos, se usaron las fórmulas propuestas por (Campbell et al. 1986). Área Basal (AB) en m2 El área basal de un árbol se define como el área del Diámetro a la Altura del Pecho (DAP) en corte transversal del tallo o tronco del individuo. El área basal de una especie determinada en un transecto es la suma de las áreas básales de todos los individuos con DAP igual o mayor a 10 cm.

AB = (π D2/4)

D = Diámetro a la altura del pecho π = Constante 3,1416 Densidad Relativa (DR) La “Densidad Relativa” de una especie determinada es proporcional al número de individuos de esa especie, con respecto al número total de árboles del transecto.

No. de individuos de una especie DR = ------x 100 No. total de individuos en el transecto Dominancia Relativa (DMR) La “Dominancia Relativa” de una especie determinada es la proporción del área basal de esa especie, con respecto al área basal de todos los árboles del transecto.

Área basal de la especie DMR = ------x 100 Área basal de todas las especies Índice del Valor de Importancia (IVI) Se suman dos parámetros (Densidad Relativa y Dominancia Relativa) para llegar al “Valor de Importancia”. La sumatoria del “Valor de Importancia” para todas las especies en el transecto es siempre igual a 200. Se puede considerar, entonces, que las especies que alcanzan un valor

Anexo B Datos Biológicos 3 Marzo, 2008 de importancia superior a 20 en el transecto (un 10% del valor total) son “importantes” y comunes componentes del bosque muestreado.

IVI = DR + DMR

Riqueza de especies El termino “riqueza” se refiere a la abundancia de especies por individuo; es decir, el número de especies dividido por el número de árboles muestreados. Este dato permite realizar una comparación directa en cuanto a la diversidad (riqueza) de especies de árboles, aún cuando el número de árboles o individuos sea variable entre muestreos (el dato siempre es un valor entre 0 y 1: si todos los árboles de los muestreos fueran de especies diferentes, tendría un valor de 1; un valor de 0,5 significa una alta diversidad de especies).

Índice de Diversidad de Simpson Este índice mide la probabilidad de que dos individuos seleccionados al azar de una población de N individuos, provengan de la misma especie. Si una especie dada i (i=1,2,..., S) es representada en la comunidad por Pi (Proporción de individuos), la probabilidad de extraer al azar dos individuos pertenece a la misma especie, es la probabilidad conjunta [(Pi) (Pi), o Pi2].

λ = ∑ pi ²

Donde: ∑ = Sumatoria pi = es el número de individuos de la especie i dividido entre el número total de individuos de la muestra. Está fuertemente influido por la importancia de las especies más dominantes (Magurran, 1988). Como el índice de Simpson (λ) refleja el grado de dominancia en una comunidad, la diversidad de la misma puede calcularse como: ID = 1 / λ. Índice de Similitud de Sorensen Es un método de evaluación basado en la presencia de especies, relaciona el número de especies en común con la media aritmética de las especies en ambos sitios (Magurran, 1988).

2C IS= ------A + B

En donde: A = número de especies en la muestra A. B = número de especies en la muestra B. C = número de las especies comunes de ambas muestras.

Este índice va de 0 a 1 para cuantificar el área de distribución de similitud hasta semejanza completa.

Nota: Todos los datos se recolectaron durante el trabajo de campo del equipo de biólogos de

Anexo B Datos Biológicos 4 Marzo, 2008 ENTRIX en Noviembre del 2007.

TABLA 1-1: PUNTOS DE MUESTREO DE FLORA UNIDAD DE CONTROL Coordenadas Muestra Fecha Hábitat X Y

TBC1 10/11/2007 302891 9976956 Bosque maduro remanente de tierra firme

TBC2A 11/11/2007 303011 9975216 Bosque secundario

TBC2B 12/11/2007 303044 9975259 Bosque secundario

TBC3 10/11/2007 303171 9976634 Cultivos

TBC4 10/11/2007 303004 9976737 Pastizales

TABLA 1-2: PUNTOS DE MUESTREO DE FLORA UNIDAD PRINCIPAL SA-53 Coordenadas Muestra Fecha Hábitat X Y

TBE1 07/11/2007 294613 9970318 Bosque maduro remanente de tierra firme

TBE2A 09/11/2007 295651 9970573 Bosque secundario

TBE2B 09/11/2007 295601 9970573 Bosque secundario

TBE3 09/11/2007 294340 9970334 Cultivos

TBE4 09/11/2007 294704 9970287 Pastizales

TBE5 09/11/2007 294936 9970585 Bosque maduro de pantano

DATOS DE CAMPO TABLA 1-3. LISTA DE ESPECIES DE FLORA BMR UNIDAD CONTROL (TRANSECTO MBC 1) Familia Nombre científico AB/sp DR Fr. DMR IVI Solanaceae Solanum altissimum 0,42 16,57 3 1,90 18,47 Fabaceae Parkia multijuga 0,35 13,93 1 0,63 14,56 Flacourticaeae Hasseltia floribunda 0,12 4,67 9 5,70 10,37 Cecropiaceae Pourouma tomentosa 0,18 7,05 5 3,16 10,21 Urticaceae Urera caracasana 0,12 4,76 7 4,43 9,19 Cecropiaceae Pourouma petiolulata 0,11 4,20 5 3,16 7,37 Solanaceae Cestrum racemosum 0,13 5,23 2 1,27 6,49 Fabaceae Brownea glandiceps 0,04 1,66 7 4,43 6,09 Meliaceae Guarea kunthiana 0,07 2,86 5 3,16 6,02 Euphorbiaceae Sapium marmieri 0,05 2,14 6 3,80 5,94 Icacinaceae Dendrobangia boliviana 0,05 1,93 5 3,16 5,10 Arecaceae Phytelephas tenuicaulis 0,04 1,45 4 2,53 3,98 Piperaceae Piper maranyonense 0,02 0,70 5 3,16 3,87 Lecythidaceae Grias neuberthii 0,03 1,29 4 2,53 3,83 Monimiaceae Siparuna macrotepala 0,02 0,65 5 3,16 3,81 Flacourtiaceae Casearia fasciculata 0,01 0,42 5 3,16 3,58 Bombacaceae Matisia obliquifolia 0,01 0,30 5 3,16 3,46 Lauraceae Endlicheria robusta 0,03 1,16 3 1,90 3,06 Staphyleaceae Huertea glandulosa 0,04 1,78 2 1,27 3,05 Bombacaceae Matisia longiflora 0,01 0,47 4 2,53 3,00

Anexo B Datos Biológicos 5 Marzo, 2008 Familia Nombre científico AB/sp DR Fr. DMR IVI Rubiaceae Pentagonia macrophylla 0,03 1,00 3 1,90 2,90 Boraginaceae Cordia nodosa 0,02 0,96 3 1,90 2,86 Fabaceae Inga marginata 0,04 1,48 2 1,27 2,74 Sapindaceae Allophyllus incanus 0,04 1,46 2 1,27 2,72 Sapindaceae Allophyllus angustatus 0,05 1,92 1 0,63 2,55 Annonaceae Mossanona papillosa 0,05 1,82 1 0,63 2,46 Caricaceae Jacaratia spinosa 0,04 1,68 1 0,63 2,32 Melastomataceae Miconia venulosa 0,01 0,39 3 1,90 2,29 Sterculiaceae Theobroma cacao 0,03 1,01 2 1,27 2,28 Sterculiaceae Herrania cuatrecasana 0,04 1,64 1 0,63 2,27 Fabaceae Inga aff. spectabilis 0,02 0,92 2 1,27 2,18 Arecaceae Astrocaryum urostachys 0,04 1,55 1 0,63 2,18 Euphorbiaceae Croton tessmannii 0,03 1,33 1 0,63 1,97 Cyatheaceae Cyathea caracasana 0,01 0,55 2 1,27 1,82 Bombacaceae Quararibea wittii 0,03 1,10 1 0,63 1,73 Meliaceae Guarea macrophylla 0,02 0,79 1 0,63 1,42 Myristicaceae Otoba parvifolia 0,02 0,79 1 0,63 1,42 Meliaceae Guarea grandifolia 0,00 0,13 2 1,27 1,39 Rubiaceae Coussarea amplifolia 0,00 0,08 2 1,27 1,35 Fabaceae Platymiscium stipulare 0,02 0,70 1 0,63 1,33 Icacinaceae Metteniusa tessmanniana 0,00 0,06 2 1,27 1,33 Arecaceae Iriartea deltoidea 0,02 0,67 1 0,63 1,30 Capparaceae Capparis osmantha 0,02 0,61 1 0,63 1,24 Cecropiaceae Cecropia ficifolia 0,01 0,51 1 0,63 1,14 Flacourtiaceae Casearia combaynensis 0,01 0,46 1 0,63 1,09 Flacourtiaceae Casearia decandra 0,01 0,46 1 0,63 1,09 Sterculiaceae Sterculia tessmannii 0,01 0,34 1 0,63 0,98 Bombacaceae Ceiba pentandra 0,01 0,25 1 0,63 0,88 Myrtaceae Calyptranthes tessmannii 0,00 0,20 1 0,63 0,83 Lauraceae Cinnamomum sp. 0,00 0,17 1 0,63 0,80 Flacourtiaceae Casearia pitumba 0,00 0,15 1 0,63 0,79 Euphorbiaceae Sapium glandulosum 0,00 0,15 1 0,63 0,79 Violaceae Leonia glycycarpa 0,00 0,14 1 0,63 0,77 Icacinaceae Calatola costaricensis 0,00 0,13 1 0,63 0,76 Violaceae Gloeospermum equatoriense 0,00 0,13 1 0,63 0,76 Bombacaceae Pachira punga-schunkei 0,00 0,10 1 0,63 0,74 Bombacaceae Matisia cordata 0,00 0,09 1 0,63 0,72 Lauraceae Nectandra sp. 0,00 0,09 1 0,63 0,72 Meliaceae Trichilia laxipaniculata 0,00 0,09 1 0,63 0,72 Lecythidaceae Gustavia longifolia 0,00 0,08 1 0,63 0,71 Tiliaceae Apeiba membranacea 0,00 0,07 1 0,63 0,70 Cecropiaceae Pourouma minor 0,00 0,06 1 0,63 0,69 Elaeocarpaceae Sloanea guianensis 0,00 0,06 1 0,63 0,69 Anacardiaceae Spondias mombin 0,00 0,06 1 0,63 0,69 Flacourtiaceae Casearia mariquitensis 0,00 0,05 1 0,63 0,69 Bombacaceae Ochroma pyramidale 0,00 0,05 1 0,63 0,69 Clusiaceae Chrysochlamys membranacea 0,00 0,05 1 0,63 0,68 Moraceae Clarisia biflora 0,00 0,03 1 0,63 0,66 Araliaceae Dendropanax arboreus 0,00 0,03 1 0,63 0,66

Anexo B Datos Biológicos 6 Marzo, 2008 Familia Nombre científico AB/sp DR Fr. DMR IVI Olacaceaee Heisteria acuminata 0,00 0,03 1 0,63 0,66 Fabaceae Myroxylon balsamum 0,00 0,03 1 0,63 0,66 Flacourtiaceae Neosprucea grandiflora 0,00 0,03 1 0,63 0,66 Total 2,52 99,95 158 100,00 199,95

TABLA 1-4. LISTA DE ESPECIES DE FLORA BOSQUE SECUNDARIO UNIDAD CONTROL (TRANSECTO MBC 2A Y MBC2B) Familia Nombre científico AB/sp DR Fr. DMR IVI BORAGINACEAE Cordia alliodora 0,55 24,18 22 34,60 58,78 TILIACEAE Heliocarpus amercianus 0,46 12,09 11 28,74 40,83 RHAMNACEAE Zizyphus cinammomum 0,28 1,10 1 17,66 18,76 PIPERACEAE Piper aduncum 0,03 10,99 10 1,67 12,66 EUPHORBIACEAE Sapium biglandulosum 0,04 3,30 3 2,32 5,62 ARECACEAE Phytelephas tenuicaulis 0,03 3,30 3 2,00 5,29 SOLANACEAE Solanum aff. abitaguense 0,01 4,40 4 0,39 4,79 MIMOSOIDEAE Inga edulis 0,04 2,20 2 2,34 4,54 FLACOURTIACEAE Hasseltia floribunda 0,02 3,30 3 1,18 4,48 SOLANACEAE Solanum aff. circinatum 0,01 3,30 3 0,36 3,65 MELASTOMATACEAE Bellucia pentamera 0,01 2,20 2 0,77 2,97 RUBIACEAE Chimarrhis glabriflora 0,01 2,20 2 0,73 2,92 SOLANACEAE Cestrum aff peruvianum 0,01 2,20 2 0,37 2,57 PIPERACEAE Piper reticulatum 0,00 2,20 2 0,15 2,35 LAURACEAE Ocotea sp. 0,02 1,10 1 1,06 2,16 FLACOURTIACEAE Casearia arborea 0,02 1,10 1 0,99 2,09 SAPINDACEAE Allophyllus floribundus 0,01 1,10 1 0,83 1,93 CARICACEAE Jacaratia espinosa 0,01 1,10 1 0,59 1,69 ANNONACEAE Guatteria glaberrima 0,01 1,10 1 0,54 1,64 ARALIACEAE Schefflera mororototoni 0,01 1,10 1 0,50 1,60 ASTERACEAE Vernanonthura patens 0,01 1,10 1 0,41 1,505 CLUSIACEAE Vismia sprucei 0,01 1,10 1 0,31 1,413 FLACOURTIACEAE Casearia fasciculata 0,00 1,10 1 0,28 1,375 BIGNONIACEAE Tabebuia crysantha 0,00 1,10 1 0,24 1,339 BOMBACEAE Ceiba samauma 0,00 1,10 1 0,21 1,306 EUPHORBIACEAE Acalypha diversifolia 0,00 1,10 1 0,12 1,222 CYATHACEAE Cyathea amazonica 0,00 1,10 1 0,12 1,222 MONIMIACEAE Siparuna macrotephala 0,00 1,10 1 0,12 1,222 RUTACEAE Esenbeckia amazonica 0,00 1,10 1 0,09 1,185 MORACEAE Trophis caucana 0,00 1,10 1 0,08 1,181 RUBIACEAE Gonzalaguna affinis 0,00 1,10 1 0,08 1,177 URTICACEAE Urera baccifera 0,00 1,10 1 0,07 1,166 ARECACEAE Astrocaryum urostachis 0,00 1,10 1 0,04 1,143 LECYTHIDACEAE Gustavia longifolia 0,00 1,10 1 0,04 1,143 LAURACEAE Ocotea javitensis 0,00 1,10 1 0,04 1,143 Total 1,60 100,00 91 100,05 200,05

TABLA 1-5. LISTA DE ESPECIES DE FLORA BMR UNIDAD SA-53 (TRANSECTO MBE1) Familia Nombre científico AB/sp DR Fr. DMR IVI Euphorbiaceae Sapium marmieri 0,45 14,00 3 2,34 16,34 Arecaceae Iriartea deltoidea 0,14 4,38 9 7,03 11,41 Meliaceae Guarea kunthiana 0,11 3,41 9 7,03 10,45

Anexo B Datos Biológicos 7 Marzo, 2008 Familia Nombre científico AB/sp DR Fr. DMR IVI Cecropiaceae Pourouma minor 0,20 6,36 5 3,91 10,27 Caricaceae Jacaratia spinosa 0,26 8,08 1 0,78 8,86 Staphyleaceae Huertea glandulosa 0,23 7,17 2 1,56 8,73 Icacinaceae Metteniusa tessmanniana 0,11 3,48 5 3,91 7,38 Euphorbiaceae Croton sampatik 0,16 4,91 3 2,34 7,25 Fabaceae Inga marginata 0,16 4,87 3 2,34 7,22 Arecaceae Astrocaryum chambira 0,18 5,62 2 1,56 7,18 Sterculiaceae Theobroma subincanum 0,15 4,71 2 1,56 6,27 Lecythidaceae Grias neuberthii 0,10 3,15 3 2,34 5,49 Myristicaceae Otoba parvifolia 0,03 0,91 5 3,91 4,82 Fabaceae Inga aff. brachyrhachis 0,10 3,21 2 1,56 4,77 Sapindaceae Allophyllus angustatus 0,07 2,20 3 2,34 4,55 Bombacaceae Matisia longiflora 0,02 0,59 5 3,91 4,50 Cecropiaceae Pourouma bicolor 0,09 2,88 2 1,56 4,44 Myristicaceae Virola peruviana 0,09 2,79 2 1,56 4,35 Polygonaceae Triplaris americana 0,06 1,98 2 1,56 3,55 Sterculiaceae Sterculia tessmannii 0,09 2,75 1 0,78 3,53 Ulmaceae Celtis schippii 0,03 1,09 3 2,34 3,44 Urticaceae Urera caracasana 0,04 1,33 2 1,56 2,89 Bombacaceae Matisia obliquifolia 0,02 0,54 3 2,34 2,88 Anacardiaceae Tapirira guianensis 0,06 2,02 1 0,78 2,80 Meliaceae Guarea macrophylla 0,01 0,43 3 2,34 2,78 Burseraceae Protium nodulosum 0,02 0,67 2 1,56 2,24 Monimiaceae Siparuna cervicornis 0,02 0,51 2 1,56 2,07 Arecaceae Socratea exorrhiza 0,02 0,49 2 1,56 2,05 Fabaceae Inga sapindoides 0,01 0,22 2 1,56 1,78 Sterculiaceae Herrania cuatrecasana 0,00 0,14 2 1,56 1,71 Bombacaceae Quararibea wittii 0,00 0,14 2 1,56 1,71 Moraceae Batocarpus orinocensis 0,00 0,14 2 1,56 1,70 Boraginaceae Cordia nodosa 0,00 0,12 2 1,56 1,68 Flacourtiaceae Hasseltia floribunda 0,02 0,67 1 0,78 1,46 Chrysobalanaceae Licania harlingii 0,02 0,65 1 0,78 1,43 Sapindaceae Allophyllus incanus 0,02 0,53 1 0,78 1,31 Monimiaceae Siparuna macrotepala 0,01 0,38 1 0,78 1,16 Sapotaceae Chrysochlamys venezuelanense 0,01 0,34 1 0,78 1,12 Capparaceae Capparis osmantha 0,01 0,24 1 0,78 1,02 Monimiaceae Siparuna tecaphora 0,01 0,21 1 0,78 0,99 Myrtaceae Calyptranthes tessmannii 0,01 0,20 1 0,78 0,98 Bombacaceae Quararibea amazonica 0,00 0,16 1 0,78 0,94 Myrtaceae Eugenia sp. 0,00 0,11 1 0,78 0,89 Violaceae Leonia glycycarpa 0,00 0,10 1 0,78 0,88 Moraceae Clarisia biflora 0,00 0,09 1 0,78 0,87 Euphorbiaceae Conceveiba guianensis 0,00 0,09 1 0,78 0,87 Rubiaceae Pentagonia amazonica 0,00 0,09 1 0,78 0,87 Moraceae Ficus maxima 0,00 0,08 1 0,78 0,86 Elaeocarpaceae Sloanea glandiflora 0,00 0,08 1 0,78 0,86 Violaceae Gloeospermum equatoriense 0,00 0,06 1 0,78 0,85 Melastomataceae Miconia venulosa 0,00 0,06 1 0,78 0,85 Euphorbiaceae Tetrorchidium macrophyllum 0,00 0,06 1 0,78 0,85

Anexo B Datos Biológicos 8 Marzo, 2008 Familia Nombre científico AB/sp DR Fr. DMR IVI Menispermaceae Abuta grandifolia 0,00 0,06 1 0,78 0,84 Moraceae Perebea xantochyma 0,00 0,05 1 0,78 0,83 Meliaceae Trichilia obovata 0,00 0,05 1 0,78 0,83 Annonaceae Cremastosperma napoense 0,00 0,04 1 0,78 0,82 Arecaceae Astrocaryum urostachys 0,00 0,02 1 0,78 0,81 Sapotaceae Micropholis venulosa 0,00 0,02 1 0,78 0,81 Combretaceae Terminalia oblonga 0,00 0,02 1 0,78 0,80 Clusiaceae Chrysochlamys membranacea 0,00 0,02 1 0,78 0,80 Fabaceae Lonchocarpus cf. utilis 0,00 0,02 1 0,78 0,80 Fabaceae Platymiscium stipulare 0,00 0,02 1 0,78 0,80 Sapindaceae Serjania grandifolia 0,00 0,02 1 0,78 0,80 Dichapetalaceae Tapura peruviana 0,00 0,01 1 0,78 0,79 Total 3,19 99,85 128 100,00 199,85

TABLA 1-6. LISTA DE ESPECIES DE FLORA BOSQUE SECUNDARIO UNIDAD SA-53 (TRANSECTO MBE2A Y MBE2B) Familia Nombre científico AB/sp DR Fr. DMR IVI Urticaceae Urera caracasana 0,23 12,01 21 17,65 29,66 Cecropiaceae Cecropia ficifolia 0,35 17,97 6 5,04 23,01 Euphorbiaceae Acalypha diversifolia 0,05 2,58 22 18,49 21,07 Bombacaceae Ochroma pyramidale 0,26 13,39 4 3,36 16,75 Solanaceae Solanum cf. circinatun 0,18 9,30 4 3,36 12,67 Boraginaceae Cordia alliodora 0,22 11,50 1 0,84 12,34 Solanaceae Solanum altissimum 0,21 11,09 1 0,84 11,93 Arecaceae Iriartea deltoidea 0,06 3,16 7 5,88 9,05 Piperaceae Piper reticulatum 0,03 1,38 9 7,56 8,94 Piperaceae Piper aduncum 0,03 1,30 9 7,56 8,86 Ulmaceae Celtis schippii 0,04 1,86 4 3,36 5,22 Moraceae Ficus insipida 0,08 4,21 1 0,84 5,05 Flacourtiaceae Casearia fasciculata 0,01 0,65 5 4,20 4,85 Tiliaceae Apeiba membranacea 0,03 1,63 3 2,52 4,15 Bombacaceae Ceiba pentandra 0,03 1,62 3 2,52 4,15 Euphorbiaceae Acalypha stachyura 0,01 0,57 4 3,36 3,93 Moraceae Trophis racemosa 0,02 0,95 2 1,68 2,63 Combretaceae Terminalia oblonga 0,02 0,89 2 1,68 2,57 Rubiaceae Pentagonia macrophylla 0,01 0,65 2 1,68 2,33 Sapotaceae Pouteria sp. 0,02 1,07 1 0,84 1,91 Moraceae Clarisia biflora 0,01 0,73 1 0,84 1,57 Lecythidaceae Grias neuberthii 0,01 0,40 1 0,84 1,24 Caricaceae Carica papaya 0,01 0,37 1 0,84 1,21 Euphorbiaceae Jacaratia spinosa 0,01 0,32 1 0,84 1,16 Annonaceae Oxandra mediocris 0,00 0,20 1 0,84 1,04 Cyatheaceae Cyathea amazonica 0,00 0,18 1 0,84 1,02 Piperaceae Piper churruyacoanum 0,00 0,07 1 0,84 0,91 Sterculiaceae Herrania cuatrecasana 0,00 0,04 1 0,84 0,88 Total 1,93 100,10 119 100,00 200,10

Anexo B Datos Biológicos 9 Marzo, 2008 TABLA 1-7. LISTA DE ESPECIES DE FLORA BOSQUE MADURO DE PANTANO UNIDAD SA-53 (TRANSECTO MBE5) Familia Nombre científico AB/sp DR Fr. DMR IVI Arecaceae Mauritia flexuosa 0,79 11,49 10 34,36 45,86 Moraceae Ficus piresiana 0,51 2,.30 2 22,29 24,59 Arecaceae Attalea butyriacea 0,36 5,75 5 15,80 21,54 Combretaceae Terminalia amazonia 0,20 9,20 8 8,76 17,95 Euphorbiaceae Acalypha diversifolia 0,01 8,05 7 0,28 8,32 Acanthaceae Sanchezia skutchii 0,01 6,90 6 0,23 7,13 Myristicaceae Virola pavonis 0,10 2,30 2 4,15 6,45 Arecaceae Astrocaryum urostachis 0,04 1,15 1 1,81 2,95 Lecythidaceae Grias neuberthii 0,01 2,30 2 0,60 2,90 Mimosoideae Inga marginata 0,01 2,30 2 0,56 2,86 Fabaceae Dioclea aff.mollicoma 0,01 2,30 2 0,32 2,62 Apocynaceae Lacmella oblongata 0,01 2,30 2 0,31 2,61 Mimosoideae Inga ruiziana 0,01 2,30 2 0,27 2,57 Boraginaceae Cordia hebeclada 0,01 2,30 2 0,24 2,54 Myrtaceae Calyptranthes manuensis 0,01 2,30 2 0,24 2,54 Cecropiaceae Coussapoa trinervia 0,03 1,15 1 1,37 2,51 Flacourtiaceae Casearia sp1. 0,00 2,30 2 0,16 2,46 Arecaceae Euterpe precatoria 0,03 1,15 1 1,27 2,42 Flacourtiaceae Casearia sp2. 0,00 2,30 2 0,11 2,41 Bignoniaceae Tabebuia chrysantha 0,02 1,15 1 0,84 1,99 Caricaceae Jacaratia spinosa 0,02 1,15 1 0,82 1,97 Fabaceae Swartzia aff. carchosperma 0,02 1,15 1 0,77 1,92 Arecaceae Wettinia maynensis 0,01 1,15 1 0,51 1,66 Cecropiaceae Cecropia ficifolia 0,01 1,15 1 0,41 1,56 Flacourtiaceae Casearia mariquitensis 0,01 1,15 1 0,34 1,49 Myristicaceae Otoba parvifolia 0,01 1.15 1 0,23 1,38 Eleaocarpaceae Sloanea macrophylla 0,01 1,15 1 0,23 1,38 Moraceae Pourouma mollis 0,01 1,15 1 0,22 1,37 Mimosoideae Inga vismifolia 0,00 1,15 1 0,14 1,28 Euphorbiaceae Sapium marmieri 0,00 1,15 1 0,12 1,27 Mimosoideae Inga ruiziana 0,00 1,15 1 0,09 1,23 Bombacaceae Ceiba samauma 0,00 1,15 1 0,07 1,22 Mimosoideae Inga aff.vismiifolia 0,00 1,15 1 0,07 1,22 Sapindaceae Allophyllus floribundus 0,00 1,15 1 0,05 1,20 Mimosoideae Inga punctata 0,00 1,15 1 0,05 1,20 Rubiaceae Pantagonia macrophylla 0,00 1,15 1 0,05 1,20 Moraceae Trophis caucana 0,00 1,15 1 0,05 1,20 Rubiaceae Chomelia melanoides 0,00 1,15 1 0,04 1,19 Sapindaceae Cupania cinerea 0,00 1,15 1 0,04 1,19 no determ. No determinado 0,00 1,15 1 0,04 1,19 Lauraceae Ocotea javitensis 0,00 1,15 1 0,04 1,19 Burseraceae Protium nodolosum 0,00 1,15 1 0,03 1,18 Flacourtiaceae Tetratylacium macrophyllum 0,00 1,15 1 0,03 1,18 Clusiaceae Vismia sprucei 0,00 1,15 1 0,03 1,18 Total 2,30 100,00 86 100,00 200,00

Anexo B Datos Biológicos 10 Marzo, 2008

TABLA 1-8: ESPECIES VEGETALES EN BMR UNIDAD CONTROL Familia Nombre Científico Fr AB DR DMR IVI Solanaceae Solanum altissimum 3 0,42 16,57 1,90 18,47 Fabaceae Parkia multijuga 1 0,35 13,93 0,63 14,56 Flacourticaeae Hasseltia floribunda 9 0,12 4,67 5,70 10,37 Cecropiaceae Pourouma tomentosa 5 0,18 7,05 3,16 10,21 Urticaceae Urera caracasana 7 0,12 4,76 4,43 9,19 Cecropiaceae Pourouma petiolulata 5 0,11 4,20 3,16 7,37 Solanaceae Cestrum racemosum 2 0,13 5,23 1,27 6,49 Fabaceae Brownea glandiceps 7 0,04 1,66 4,43 6,09 Meliaceae Guarea kunthiana 5 0,07 2,86 3,16 6,02 Euphorbiaceae Sapium marmieri 6 0,05 2,14 3,80 5,94 Icacinaceae Dendrobangia boliviana 5 0,05 1,93 3,16 5,10 Arecaceae Phytelephas tenuicaulis 4 0,04 1,45 2,53 3,98 Piperaceae Piper maranyonense 5 0,02 0,70 3,16 3,87 Lecythidaceae Grias neuberthii 4 0,03 1,29 2,53 3,83 Monimiaceae Siparuna macrotepala 5 0,02 0,65 3,16 3,81 Flacourtiaceae Casearia fasciculata 5 0,01 0,42 3,16 3,58 Bombacaceae Matisia obliquifolia 5 0,01 0,30 3,16 3,46 Lauraceae Endlicheria robusta 3 0,03 1,16 1,90 3,06 Staphyleaceae Huertea glandulosa 2 0,04 1,78 1,27 3,05 Bombacaceae Matisia longiflora 4 0,01 0,47 2,53 3,00 Total: 158 individuos > 2,5 cm DAP, 72 especies. Área basal total: 2,52 m2 Fr: Frecuencia; AB: Área Basal; DR: Densidad Relativa; DMR: Dominancia Relativa; IVI: Índice de Valor de Importancia

TABLA 1-9: ESPECIES VEGETALES EN BOSQUE SECUNDARIO UNIDAD CONTROL Familia Nombre Científico Fr AB DR DMR IVI Boraginaceae Cordia alliodora 22 0,55 24,18 34,60 58,78 Tiliaceae Heliocarpus americanus 11 0,46 12,09 28,74 40,83 Rhamnaceae Zizyphus cinammomum 1 0,28 1,10 17,66 18,76 Piperaceae Piper aduncum 10 0,03 10,99 1,67 12,66 Euphorbiaceae Sapium biglandulosum 3 0,04 3,30 2,32 5,62 Arecaceae Phytelephas tenuicaulis 3 0,03 3,30 2,00 5,29 Solanaceae Solanum aff. abitaguense 4 0,01 4,40 0,39 4,79 Mimosaceae Inga edulis 2 0,04 2,20 2,34 4,54 Flacourtiaceae Hasseltia floribunda 3 0,02 3,30 1,18 4,48 Solanaceae Solanum aff. circinatum 3 0,01 3,30 0,36 3,65 Melastomataceae Bellucia pentamera 2 0,01 2,20 0,77 2,97 Rubiaceae Chimarrhis glabriflora 2 0,01 2,20 0,73 2,92 Solanaceae Cestrum aff peruvianum 2 0,01 2,20 0,37 2,57 Piperaceae Piper reticulatum 2 0,00 2,20 0,15 2,35 Lauraceae Ocotea sp. 1 0,02 1,10 1,06 2,16 Flacourtiaceae Casearia arborea 1 0,02 1,10 0,99 2,09 Sapindaceae Allophyllus floribundus 1 0,01 1,10 0,83 1,93 Caricaceae Jacaratia espinosa 1 0,01 1,10 0,59 1,69 Annonaceae Guatteria glaberrima 1 0,01 1,10 0,54 1,64 Araliaceae Schefflera morototoni 1 0,01 1,10 0,50 1,60

Anexo B Datos Biológicos 11 Marzo, 2008 Familia Nombre Científico Fr AB DR DMR IVI Total: 91 individuos > 2,5 cm DAP, 35 especies. Área basal total: 1,60 m2 Fr: Frecuencia; AB: Área Basal; DR: Densidad Relativa; DMR: Dominancia Relativa; IVI: Índice de Valor de Importancia

TABLA 1-10: ESPECIES VEGETALES EN CULTIVOS UNIDAD CONTROL

Familias Especies de cultivos Fr Pi Pi² Sterculaiceae Theobroma cacao 29 0,42 0,18 Musaceae Musa paradisiaca 21 0,30 0,09 Rubiaceae Coffea arabica 19 0,42 0,18 Familias Especies de hierbas Fr Pi Pi² Fabaceae Desmodium axillare 80 0,31 0,10 Poaceae Brachearia decumbens 60 0,23 0,05 Poaceae Paspalum conjugatum 50 0,19 0,04 Urtiaceae Urera baccifera 15 0,06 0,00 Cyperaceae Cyperus chalaranthus 9 0,04 0,00 Asteraceae Vernonanthura patens 5 0,02 0,00 Araceae Xanthosoma purpuratum 5 0,02 0,00 Euphorbiaceae Acalypha diversifolia 3 0,01 0,00 Poaceae Paspalum sp. 30 0,12 0,01 Familia Especies de árboles Fr AB (m2) Lauraceae Caryodaphnopsis fosteri 1 0,80 Total: Cultivos: tres especies, 69 individuos. Herbáceas: nueve especies, 257 individuos. Árboles: una especie, un individuo, Área basal total: 0.8 m2

TABLA 1-11: ESPECIES VEGETALES EN EL PASTIZAL CON PENNISETUM PURPUREUM UNIDAD CONTROL Familias Especies de hierbas Fr Pi Pi2 Fabaceae Desmodium axillare 3 0,15 0,0225 Acanthaceae Cyathula prostrata 2 0,1 0,01 Poaceae Paspalum conjugatum 2 0,1 0,01 Piperaceae Piper aduncum 2 0,1 0,01 Piperaceae Chlorospatha longipoda 1 0,05 0,0025 Araceae Philodendron sp. 1 0,05 0,0025 Caryophyllaceae Stellaria ovata 1 0,05 0,0025 Heliconiaceae Heliconia stricta 1 0,05 0,0025 Fabaceae Ormosia amazonica 1 0,05 0,0025 Malvaceae Pavonia aff. Leucantha 1 0,05 0,0025 Cyperaceae Cyperus luzulae 1 0,05 0,0025 Commeliniaceae Commelina aff. Difusa 1 0,05 0,0025 Aristolochiaceae Aristolochia cf. Lingulata 1 0,05 0,0025 Pterydophyta Helecho 1 0,05 0,0025 indeterminada Indeterminada 1 0,05 0,0025 Familias Especies de árboles Fr AB (m2) -- Boraginaceae Cordia allidodora 1 0,01 Myrtaceae Psidium guajava 1 0,01 Verbenaceae Vitex cymosas 1 0,02 Meliaceae Cabralea canjerana 1 0,02 Staphyleacea Huertea glandulosa 1 0,02 Total: Especie: Pennisetum purpureum, Cobertura: 60 %, 16 especies de hierbas y 20 individuos y 5 especies de árboles: > 2,5 cm DAP con 0.07 m2 de Área basal total: Fr: Frecuencia; AB: Área Basal. Fr: Frecuencia; AB: Área Basal

Anexo B Datos Biológicos 12 Marzo, 2008 TABLA 1-12 ESPECIES VEGETALES EN BMR UNIDAD SA-53 Familia Nombre Científico Fr AB DR DMR IVI Euphorbiaceae Sapium marmieri 3 0,45 14,00 2,34 16,34 Arecaceae Iriartea deltoidea 9 0,14 4,38 7,03 11,41 Meliaceae Guarea kunthiana 9 0,11 3,41 7,03 10,45 Cecropiaceae Pourouma minor 5 0,20 6,36 3,91 10,27 Caricaceae Jacaratia spinosa 1 0,26 8,08 0,78 8,86 Staphyleaceae Huertea glandulosa 2 0,23 7,17 1,56 8,73 Icacinaceae Metteniusa tessmanniana 5 0,11 3,48 3,91 7,38 Euphorbiaceae Croton sampatik 3 0,16 4,91 2,34 7,25 Fabaceae Inga marginata 3 0,16 4,87 2,34 7,22 Arecaceae Astrocaryum chambira 2 0,18 5,62 1,56 7,18 Sterculiaceae Theobroma subincanum 2 0,15 4,71 1,56 6,27 Lecythidaceae Grias neuberthii 3 0,10 3,15 2,34 5,49 Myristicaceae Otoba parvifolia 5 0,03 0,91 3,91 4,82 Fabaceae Inga aff. brachyrhachis 2 0,10 3,21 1,56 4,77 Sapindaceae Allophyllus angustatus 3 0,07 2,20 2,34 4,55 Bombacaceae Matisia longiflora 5 0,02 0,59 3,91 4,50 Cecropiaceae Pourouma bicolor 2 0,09 2,88 1,56 4,44 Myristicaceae Virola peruviana 2 0,09 2,79 1,56 4,35 Polygonaceae Triplaris americana 2 0,06 1,98 1,56 3,55 Sterculiaceae Sterculia tessmannii 1 0,09 2,75 0,78 3,53 Total: 128 individuos > 2,5 cm DAP, 64 especies. Área basal total: 3,19 m2 Fr: Frecuencia; AB: Área Basal; DR: Densidad Relativa; DMR: Dominancia Relativa; IVI: Índice de Valor de Importancia

TABLA 1-13: ESPECIES VEGETALES EN BOSQUE MADURO DE PANTANO UNIDAD SA-53 Familia Nombre Científico Fr AB DR DMR IVI Arecaceae Mauritia flexuosa 10 0,79 11,49 34,36 45,86 Moraceae Ficus piresiana 2 0,51 2,30 22,29 24,59 Arecaceae Attalea butyracea 5 0,36 5,75 15,80 21,54 Combretaceae Terminalia amazonia 8 0,20 9,20 8,76 17,95 Euphorbiaceae Acalypha diversifolia 7 0,01 8,05 0,28 8,32 Acanthaceae Sanchezia skutchii 6 0,01 6,90 0,23 7,13 Myristicaceae Virola pavonis 2 0,10 2,30 4,15 6,45 Arecaceae Astrocaryum urostachys 1 0,04 1,15 1,81 2,95 Lecythidaceae Grias neuberthii 2 0,01 2,30 0,60 2,90 Mimosoideae Inga marginata 2 0,01 2,30 0,56 2,86 Fabaceae Dioclea aff.mollicoma 2 0,01 2,30 0,32 2,62 Apocynaceae Lacmella oblongata 2 0,01 2,30 0,31 2,61 Mimosaceae Inga ruiziana 2 0,01 2,30 0,27 2,57 Boraginaceae Cordia hebeclada 2 0,01 2,30 0,24 2,54 Myrtaceae Calyptranthes manuensis 2 0,01 2,30 0,24 2,54 Cecropiaceae Coussapoa trinervia 1 0,03 1,15 1,37 2,51 Flacourtiaceae Casearia sp1. 2 0,00 2,30 0,16 2,46 Arecaceae Euterpe precatoria 1 0,03 1,15 1,27 2,42 Flacourtiaceae Casearia sp2. 2 0,00 2,30 0,11 2,41 Bignoniaceae Tabebuia chrysantha 1 0,02 1,15 0,84 1,99 Total: 86 individuos > 2,5 cm DAP, 44 especies. Área basal total: 2,30 m2 Fr: Frecuencia; AB: Área Basal; DR: Densidad Relativa; DMR: Dominancia Relativa; IVI: Índice de Valor de Importancia

Anexo B Datos Biológicos 13 Marzo, 2008

TABLA 1-14: ESPECIES VEGETALES DE BOSQUE SECUNDARIO UNIDAD SA-53 Familia Nombre Científico Fr AB DR DMR IVI Urticaceae Urera caracasana 21 0,23 12,01 17,65 29,66 Cecropiaceae Cecropia ficifolia 6 0,35 17,97 5,04 23,01 Euphorbiaceae Acalypha diversifolia 22 0,05 2,58 18,49 21,07 Bombacaceae Ochroma pyramidale 4 0,26 13,39 3,36 16,75 Solanaceae Solanum cf. circinatun 4 0,18 9,30 3,36 12,67 Boraginaceae Cordia alliodora 1 0,22 11,50 0,84 12,34 Solanaceae Solanum altissimum 1 0,21 11,09 0,84 11,93 Arecaceae Iriartea deltoidea 7 0,06 3,16 5,88 9,05 Piperaceae Piper reticulatum 9 0,03 1,38 7,56 8,94 Piperaceae Piper aduncum 9 0,03 1,30 7,56 8,86 Ulmaceae Celtis schippii 4 0,04 1,86 3,36 5,22 Moraceae Ficus insipida 1 0,08 4,21 0,84 5,05 Flacourtiaceae Casearia fasciculata 5 0,01 0,65 4,20 4,85 Tiliaceae Apeiba membranacea 3 0,03 1,63 2,52 4,15 Bombacaceae Ceiba pentandra 3 0,03 1,62 2,52 4,15 Euphorbiaceae Acalypha stachyura 4 0,01 0,57 3,36 3,93 Moraceae Trophis racemosa 2 0,02 0,95 1,68 2,63 Combretaceae Terminalia oblonga 2 0,02 0,89 1,68 2,57 Rubiaceae Pentagonia macrophylla 2 0,01 0,65 1,68 2,33 Sapotaceae Pouteria sp. 1 0,02 1,07 0,84 1,91 Total: 119 individuos > 2,5 cm DAP, 28 especies. Área basal total: 1,93 m2 Fr: Frecuencia; AB: Área Basal; DR: Densidad Relativa; DMR: Dominancia Relativa; IVI: Índice de Valor de Importancia

TABLA 1-15: ESPECIES VEGETALES EN CULTIVOS UNIDAD SA-53 Familias Especies de cultivos Fr Pi Pi2 Sterculiaceae Theobroma cacao 7 0,11 0,01 Musaceae Musa paradisiaca 54 0,89 0,78 Familias Especies de hierbas Fr Pi Pi2 Urticaceae Urera baccifera 27 0,22 0,05 Heliconiacea Heliconia stricta 20 0,16 0,03 Euphorbiacea Alcalypha diversifolia 14 0,11 0,01 Piperaceae Pilea aff. pubescens 13 0,10 0,01 Cyperaceae Cyperus chalaranthus 11 0,09 0,01 Aaraceae Xanthosoma purpuratum 10 0,08 0,01 Heliconiacea Heliconia episcopalis 6 0,05 0,00 Urticaceae Pilea aff. pubescens 5 0,04 0,00 Marantaceae Calathea standleyi 4 0,03 0,00 Araceae Dieffenbachia harlingii 4 0,03 0,00 Zingiberaceae Costus scaber 2 0,02 0,00 Poaceae Pariana radiciflora 2 0,02 0,00 Solanaceae Witheringia solanacea 2 0,02 0,00 Marantaceae Ischnosiphon inflatus 1 0,01 0,00 Piperaceae Piper aduncum 1 0,01 0,00 Ulmaceae Celtis aff. schiipi 1 0,01 0,00 Araceae Chlorospatha longipoda 1 0,01 0,00 Poaceae Paspalum sp. 1 0,01 0,00

Anexo B Datos Biológicos 14 Marzo, 2008 Familias Especies de árboles Fr AB(m²) Apocyanceae Lacmella floribunda 1 0,04 Sterculiaceae Sterculia colombiana 1 0,07 Myristicaceae Otoba parvifolia 1 0,15 Cecropiaceae Cecropia herthae 1 0,13 Mimosaceae Inga edulis 1 0,05 Total: 2 Especies de cultivo, 18 especies de hierbas y 125 individuos y 5 especies de árboles: > 2,5 cm DAP con 0,43 m2 de Área basal total: Fr: Frecuencia; AB: Área Basal

TABLA 1-16: ESPECIES VEGETALES EN PASTIZAL CON PANNICUM MAXIMUN UNIDAD SA-53 Familias Especies de hierbas Fr Pi Pi2 Fabaceae Desmodium axillare 8 0,17 0,03 Poaceae Paspalum conjugatum 5 0,11 0,01 Acanthaceae Cyathula prostrata 4 0,09 0,01 Caryophyllaceae Stellaria ovata 4 0,09 0,01 Piperaceae Piper aduncum 4 0,09 0,01 Menispermaceae Cissampelos aff. pareira 3 0,07 0 Maranthaceae Calathea aff. propinqua 2 0,04 0 Cyperaceae Cyperus luzulae 2 0,04 0 Araceae Rhodospatha parvifolia 2 0,04 0 Araceae Philodendron hooveri 1 0,02 0 Cucurbitaceae Melothria pendula 1 0,02 0 Cucurbitaceae Cyclanthera cf. multisolida 1 0,02 0 Cucurbitaceae Melothria dulcis 1 0,02 0 Acanthaceae Fittonia albivenis 1 0,02 0 Bignoniaceae Macfadyena uncota 1 0,02 0 Malvaceae Pavonia aff. Leucantha 1 0,02 0 Urticaceae Pilea aff. pubescens 1 0,02 0 Myrtaceae Psidium guajava 1 0,02 0 Aristolochiaceae Aristolochia aff. lingulata 1 0,02 0 Pterydophyta Helechos 2 0,04 0 Familias Especies de arboles Fr Pi Arecaceae Iriartea deltoidea 2 0,07 Annonaceae Rollinia dolichopetala 1 0,16 Total: Pasto Panicum maximum, cobertura vegetal : 80 %, 19 especies de hierbas y 46 individuos y 2 especies de árboles: > 2,5 cm DAP con 0,23 m2 de Área basal total: Fr: Frecuencia; AB: Área Basal

Anexo B Datos Biológicos 15 Marzo, 2008 ANÁLISIS DE DATOS TABLA 1-17: ANÁLISIS COMPARATIVO DE LOS VALORES DE COMPOSICIÓN Y DIVERSIDAD DE LAS ÁREAS DE BOSQUES MADUROS Y SECUNDARIOS REMANENTES. Áreas de estudio Especies No. Ind. AB (m²) Riqueza ID(Simpson) Bosque maduro remanente MBC1 (Unidad Control) 72 158 2,52 0,45 42,31 MBE1 (Unidad SA-53) 64 128 3,19 0,50 37,92 Bosque maduro de pantano MBE2 (Unidad SA-53) 44 86 2,30 0,51 21,20 Bosque secundario MBC3 (Unidad Control) 35 91 1,60 0,38 10,36 MBE3 (Unidad SA-53) 28 119 1,93 0,28 10,80

TABLA 1-18: ANÁLISIS COMPARATIVO DE LOS VALORES DE LA DIVERSIDAD DE LAS ESPECIES HERBÁCEAS Y ARBÓREAS EN LAS ÁREAS CULTIVOS.

Cultivos Habito Especies No. Ind. AB (m2) Riqueza ID (Simpson) Cultivos 3 3 1 MBC4 (Control) Herbáceas 9 257 0,04 4,8 Árboles 1 1 0,80 1 Cultivos 2 2 1 MBE4 (SA-53) Herbáceas 18 125 0,14 8,6 Árboles 5 5 0,43 1

TABLA 1-19: ANÁLISIS COMPARATIVO DE LOS VALORES DE LA DIVERSIDAD DE LAS ESPECIES HERBÁCEAS Y ARBÓREAS EN LAS ÁREAS DE PASTIZALES.

ID Pastizales Hábito Especies No. Ind. AB (m2) Riqueza (Simpson) MBC5 Hierbas 16 20 0,8 12,3 (Pennisetum purpureum) Unidad Control Árboles 5 5 0,07 1,0 MBE5 Hierbas 19 46 0,4 12,5 (Panicum maximum) Unidad SA-53 Árboles 2 2 0,23 1,0

TABLA 1-20: CATEGORÍAS DE CONSERVACIÓN SEGÚN LA UICN CON RESPECTO A LAS ESPECIES REGISTRADAS EN LAS ÁREAS DE ESTUDIO.

Bmr Bmr Bs Bs Categoría Especie Unidad Unidad Unidad Unidad UICN Control SA-53 Control SA-53

Astrocaryum urostachys X X X LC

Pourouma petiolulata X NT

Anexo B Datos Biológicos 16 Marzo, 2008

FOTOGRAFÍAS

Foto 1. Muestreo de Flora-Cultivo industrial de Foto 2. Muestreo de Flora-Transecto MBC1- “palmito” Bactris sp. Noviembre, 2007 “chamburo” Jacaratia spinosa. Noviembre, 2007

Foto 3. Muestreo de Flora-Transecto MBC1- Foto 4. Muestreo de Flora-Transecto MBC4- Hasseltia floribunda. Noviembre, 2007 Heliconia epicopalis. Noviembre, 2007

Foto 5. Transecto MBE1- Matisia obliquifolia. Foto 6. Transecto MBE3- “piton” Grias neuberthii Noviembre, 2007 Noviembre, 2007.

Foto 7. Transecto MBC1- Heisteria acuminata Foto 8. Transecto MBE3- Acalypha diversifolia Noviembre, 2007 Noviembre, 2007

Anexo B Datos Biológicos 17 Marzo, 2008

Foto 9. Transecto MBE1- Endlicheria robusta Foto 10. Transecto MBC1- Brownea grandiceps Noviembre, 2007 Noviembre, 2007

Anexo B Datos Biológicos 18 Marzo, 2008 2 DATOS ORNITOLÓGICOS

METODOLOGÍA En la presente investigación se aplicó la metodología consultada en el manual de métodos para Inventarios de Vertebrados terrestres (Suárez y Mena, 1994). Para realizar el diagnóstico de la ornitofauna en las áreas de influencia de las dos unidades de estudio, se ejecutó 2 fases de trabajo; una de campo y una de laboratorio y procesamiento de datos. La aplicación de metodologías de investigación dependió directamente de las condiciones de conservación del ecosistema existente en las áreas de influencia, por lo cual la metodología original fue adaptada a las condiciones del estudio. FASE DE CAMPO Para obtener datos sobre la diversidad y abundancia de la ornitofauna en los diferentes puntos de muestreo y sitios de evaluación se utilizaron observaciones directas, capturas con redes de neblina y grabación de cantos. A más de los datos obtenidos en el campo se obtuvo información de estudios previos relacionados al sector y mediante apoyo bibliográfico se confirmó la distribución y preferencias alimenticias de las especies. La taxonomía para la ornitofauna se basa en los patrones de coloración y los cantos de cada especie, ayudado por la distribución y preferencias de hábitats. Observación directa.- Se realizaron recorridos de observación, con la ayuda de binoculares 8 X 35, en un transecto de aproximadamente 1 Km. y abarcando todos los tipos de hábitats presentes en el área de estudio (Remanentes de bosque maduro, pastizales con especies arbóreas dispersas y cultivos), los recorridos se efectuaron entre las 06h30 a 08h00 y de 16h30 a 18h00, durante 3 días. Capturas con redes de neblina.- Se estableció 1 transecto o estación de captura, para lo cual se utilizaron 6 redes de neblina de 6 m x 2,5 m, 6 guías y cocos de 16 mm, las redes se colocaron en forma lineal una seguida de otra y el área de captura se estableció según los tipos de hábitat, las características generales de la estación de muestreo y la experiencia del investigador. Las redes permaneciendo abiertas durante 3 días de 06h30 a 18h00 y fueron revisadas cada 40 minutos. Las aves capturadas fueron identificadas, fotografiadas y posteriormente liberadas. Para la captura de aves nocturnas se utilizaron las redes de Quirópteros utilizadas por el estudio de mastofauna, las cuales permanecieron abiertas de 18h00 a 22h00. Registros auditivos.- Se realizaron grabaciones durante 3 días, en los mismos transectos de observación y junto al punto de muestreo, los horarios de grabación fueron de 06h30 a 09h00 y de 16h00 a 18h30, pues en estos horarios las aves presentan mayor actividad. Las voces fueron utilizadas para registrar aquellas aves que no se reportaron en las capturas o visualmente o para confirmar el registro de las reportadas visualmente, Para los registros auditivos se utilizó una grabadora convencional Sony y un Micrófono Dinámico

Anexo B Datos Biológicos 19 Marzo, 2008 Unidireccional Saul Mineroff Electronics, Inc. SME-ATR55, para luego realizar el respectivo análisis de los datos obtenidos. FASE DE GABINETE Y PROCESAMIENTO DE DATOS Antes de iniciar los trabajos de campo, se revisaron mapas de cobertura vegetal de las dos unidades de estudio, de esta manera se establecieron los sitios de ubicación de los transectos y estaciones de captura. Una vez obtenidos los datos de campo y revisión de cantos en el laboratorio, se procedió al análisis, tabulación, ordenamiento e interpretación de los datos, referente a los diferentes grupos de ornitofauna, sobre los cuales se integró el informe final. Para el análisis de datos se procedió de la siguiente manera: para la estimación de la abundancia relativa se anotó el número de individuos de cada especie, ubicándolos en 4 categorías: 1 individuo raro, de 2 a 5 individuos poco común, de 6 a 9 individuos común y 10 o más individuos Abundante (Stotz, et al., 1996). Para la descripción cuantitativa de la diversidad se utilizó los índices de Simpson y de Shannon-Weaver. El de Simpson tiene una capacidad discriminatoria moderada, tiene una baja sensibilidad al tamaño muestreal y pone énfasis en la dominancia de especies (Magurran, 1989). Por tanto es un índice estimador de la abundancia relativa, su cálculo gira en torno al valor de abundancia proporcional de todas las especies, por lo que es sensible a los valores de las especies más abundantes (Yánez, 2005). Los valores del índice de diversidad de Simpson van de 0,1 a 1,0, los sitios con valores de 0,1 a 0,33 se consideran de baja diversidad, los sitios con valores de 0,34 a 0,66 se consideran de diversidad media y los sitios con valores superiores a 0,66 son de alta diversidad. La fórmula es la siguiente.

D = ∑ pi² Donde: ∑ = sumatoria Pi = proporción de individuos por especie con respecto al total de individuos del sistema. En lo que a al índice de Shannon se refiere, su capacidad discriminatoria es pobre, tiene una moderada sensibilidad al tamaño muestreal, pone énfasis en la uniformidad o equitabilidad de las especies (Magurran, 1989), los valores de este índice se ubican 0,1 a 5,0; los sitios con valores de 0,1 a 1,5 se consideran de baja diversidad absoluta, los sitios con valores de 1,6 a 3,0 se consideran de diversidad absoluta media y los sitios con valores superiores a 3,1 se consideran de alta diversidad absoluta. Su fórmula es la siguiente

H’ = - ∑ pi ln pi Donde: H’ = contenido de la información de la muestra o índice de diversidad ∑ = sumatoria pi = proporción de la muestra (ni/n) ln= logaritmo natural

Anexo B Datos Biológicos 20 Marzo, 2008 Cave señalar que esta división utilizada por Magurran, es una descripción de la Diversidad absoluta. Para realizar una comparación de diversidad entre las dos unidades de estudio, se utilizó los coeficientes de similitud de Jaccard y Sorensen (Yánez, 2005), los dos coeficientes nos dan la similitud en porcentaje. El primero efectúa una consideración matemática importante sobre las especies exclusivas de cada sitio y también considera las especies compartidas. Su fórmula es la siguiente. Cj = a /a + b + c * 100

Donde: Cj = coeficiente de Jaccard a = número de especies compartidas en los dos sitios b = número de especies presentes solo en el sitio 1. C = número de especies presentes solo en el sitio 2.

En lo que al coeficiente de Sorensen se refiere, este pone mayor énfasis en las especies compartidas, Su fórmula es la siguiente S = 2C / (A+B)

Donde: S = índice de Sörensen A = número de especies en el sitio 1 B = número de especies en el sitio 2 C = número de especies compartidas en los sitios 1 y 2

Sustento bibliográfico • Para la clasificación taxonómica y su nomenclatura en español, se utilizó las referen- cias sistemáticas de Ridgely el al., (1998) y Ridgely & Greenfield (2001). • Para la ubicación de especies en peligro de extinción o endémicas, sé tomó el criterio de la publicación del Libro Rojo de las Aves del Ecuador (Granizo, et al., 2002) y una lista anotada de las aves del Ecuador continental (Ridgely el al., 1998). • Para determinar el nivel de sensibilidad de las especies registradas, se utilizó la publi- cación de Stotz, et al. (1996). • Para determinar el nicho trófico se consideró la dieta de la familia a la que taxonómi- camente pertenece la especie, en base a la publicaciones de Ortiz y Carrión (1991) y Ridgely & Greenfield (2001). • Para obtener los valores de diversidad en porcentajes, se comparó el número total de aves para el Ecuador Continental y el número de aves registradas en el presente estu- dio. • Los registros auditivos se obtuvieron en base a la experiencia del Investigador y con la ayuda de la publicación en CD de Birds of Eastern Ecuador, English & Parker III (1993).

Anexo B Datos Biológicos 21 Marzo, 2008

Nota: Todos los datos se recolectaron durante el trabajo de campo del equipo de biólogos de ENTRIX en Noviembre del 2007.

TABLA 2-1: PUNTOS DE MUESTREO UNIDAD DE CONTROL Coordenadas Muestra Hábitat Descripción X Y

Se recorre: remanentes de Inicio del Transecto de observación y bosque primario, pastizales con A2 (inicio) 302890 9976829 grabación de cantos. vegetación secundaria dispersa y cultivos 1 km. Se recorre: remanentes de bosque natural, pastizales con Final del Transecto de observación y A2 (final) 303252 9976231 vegetación secundaria dispersa y grabación de cantos. cultivos Remanente de bosque natural Ubicación de redes de neblina para captura PMA2 302880 9976822 junto a pastizales de aves

TABLA 2-2: PUNTOS DE MUESTREO UNIDAD PRINCIPAL SA-53 Coordenadas Muestra Hábitat Descripción X Y

Se recorre: remanentes de Inicio del Transecto de observación y bosque natural, pastizales con A1 (inicio) 294823 9970768 grabación de cantos. vegetación secundaria dispersa y cultivos 1 km. Se recorre: remanentes de bosque natural, pastizales con Final del Transecto de observación y A1 (final) 293903 9970571 vegetación secundaria dispersa y grabación de cantos. cultivos Remanente de bosque natural Ubicación de redes de neblina para captura PMA1 294877 9970655 junto a pastizales de aves

DATOS DE CAMPO TABLA 2-3 LISTA DE ESPECIES DE AVES REGISTRADAS EN LA UNIDAD CONTROL Orden Especie Nombre Común CA S GA TR NI TH Tinamiformes Tinamidae Tinamus major Tinamú grande U M F-S Au 2 Rb Crypturellus undulatus Tinamú ondulado C L F-S V,Au 7 Rb,Pa Ciconiformes Ardeidae Bubulcus ibis Garza bueyera A L I V 11 Pa Cathartidae Coragyps atratus Gallinazo negro A L Car V 13 Pa,Cu Cathartes melambrotus Gallinazo U M Car V 5 Pa Falconiformes Accipitridae Buteo magnirostris Gavilán caminero U L Ca V 4 Pa Elanoides forficatus Elanio tijereta C M Ca V 6 Rb,Pa Falconidae Herpetotheres cachinnans Halcón reidor U L Ca V,Au 2 Pa Daptrius alter Caracara negro U L Ca V,Au 4 Pa Galliformes Cracidae Ortalis gutata Pacharaca C L F-S V,Au 9 Rb,Pa Columbiformes Columbidae Columbina minuta Tortolita menuda U L F-S V 2 Pa

Anexo B Datos Biológicos 22 Marzo, 2008 Orden Especie Nombre Común CA S GA TR NI TH Geotrigon montana Paloma R M F-S Au 1 Rb Psitaciformes Psitacidae Brotogeris cyanoptera Perico alicobáltico A L F-S V,Au 15 Pa,Cu Pionus menstruns Loro azul U L F-S V 3 Pa,Cu Amazona farinosa Lora real U M F-S V,Au 2 Rb Cuculiformes Cculidae Crotophaga ani Garrapatero menor A L I V 22 Pa,Cu Strigiformes Srigidae Glaucidium brasilianum Mochuelo ferruginoso R L Ca Co 1 Pa Apodiformes Tochilidae Phaethornis malaris Ermitaño U M N Co 2 Rb Threnetes niger Barbita colipálida R L N Co 1 Rb,Pa Coraciiformes Momotidae Momotus momota Momoto coroniazul C L I Co,Au 7 Rb,Pa Alcedinidae Chloroceryle amazona Martín amazónico U L Ca V 2 Pa Piciformes Galbulidae Galbalcyrhynchus leucotis Jacamar orejiblanco C M I V 6 Rb,Pa Bucconidae Monasa nigrifrons Monja frentinegra C M I V 9 Rb Picidae Melanerpes cruentatus Carpintero U L I V 4 Pa Dryocopus lineatus Carpintero lineado U L I V 3 Pa Ramphastidae Pteroglossus inscriptus Arasari letreado U M F-S V 2 Rb,Pa Pteroglossus castamotis Arasari orejicastaño R H F-S V 1 Rb,Pa Pteroglossus azara Arasari piquimarfil U H F-S V 2 Rb,Pa Selenidera reinvardtii Tucancillo R H F-S Co 1 Rb Passeriformes Dendrocolaptidae Glyphorynchus spirurus Trepa. Piquicuña U M I Au 2 Rb Thamnophilidae Hypocnemis cantator Hormiguero gorjeador R M I Au 1 Rb Cercomacra cinerascens Hormiguero Gris R H I Au 1 Rb Tyrannidae Tolmomyias viridiceps Picoancho U L I V 4 Pa Tyrannulus elatus Tiranolete U M I V 3 Rb Tyrannus melancholicus Tirano tropical A L I Co,V 10 Pa,Cu Zimmerius chrysops Tiranolete caridorado U M I V,Au 2 Rb Phylobydor lictor Bienteveo menor U L I V,Au 4 Pa Pipridae Lepidothrix coronata Saltarín coroniazul C M I Co 6 Rb Corvidae Cyanocorax violaceus Urraca Violácea A L O V,Au 16 Rb,Pa,Cu trogloytidae Troglodytes aedon Sotorrey criollo A L I V,Au 14 Pa Turdidae Turdus ignobilis Mirlo piquinegro C L F-S V,Au 9 Pa Thraupidae Thraupis episcopus Tangara azuleja A L F-S V 13 Pa,Cu Tangara chilensis Tangara paraiso C M F-S V,Au 8 Pa Thraupis palmarum Tangara palmera C L F-S V 8 Rb,Pa Cissopis leveriana Tangara Urraca U M F-S V,Au 2 Rb,Pa Cyanerpes caeruleus Mielero purpúreo R M F-S Au 1 Rb Ramphocelus carbo T. Concha de Vino R L F-S V 1 Pa Emberizidae Ammodramus aurifrons Sabanero cejiamarillo C L Se V 9 Pa Icteridae Cacicus cela Cacique A M O V 12 Rb,Pa,Cu Icterus croconotus Turpial R L O V 1 Pa Psarocolius angustifrons Oropéndola A L O V 25 Rb,Pa,Cu Psarocolius decumanus Oropéndola A L O V 11 Rb,Pa

Anexo B Datos Biológicos 23 Marzo, 2008 Orden Especie Nombre Común CA S GA TR NI TH SIMBOLOGIA: CA= categoría de abundancia, R = raro, U = poco común, C = común, A = abundante. S = sensibilidad, L = baja, H = alta, M = media. GA = gremio alimenticio, Car = carroñero, Ca = carnívoro, F-S = frugívoro - semillero, N = nectarívoro, I = insectívoro, O = omnívoro; TR=tipo de registro, V=visual, Co=colectado y liberado, Au=auditivo; NI= número de individuos; TH= tipo de hábitat, Rb=remanente de bosque natural intervenido, Pa=pastizales con vegetación secundaria dispersa, Cu=cultivos

TABLE 2-4 LISTA DE ESPECIES DE AVES REGISTRADAS EN LA UNIDAD SA-53 Orden Especie Nombre Común CA S GA TR NI TH Tinamiformes Tinamidae Tinamus major Tinamú grande R M F-S Au 1 Rb Crypturellus undulatus Tinamú ondulado C L F-S V,Au 6 Rb Crypturellus cinereus Tinamú cenizo R L F-S Au 1 Rb Ciconiformes Ardeidae Bubulcus ibis Garza bueyera A L I V 15 Pa Cathartidae Coragyps atratus Gallinazo negro C L Car V 9 Pa,Cu Falconiformes Accipitridae Buteo magnirostris Gavilán caminero C L Ca V 6 Pa Elanoides forficatus Elanio tijereta U M Ca V 3 Rb,Pa Falconidae Falco rufigularis Cazamurciélagos U L Ca V,Au 2 Pa Herpetotheres cachinnans Halcón reidor U L Ca V,Au 3 Pa Daptrius alter Caracara negro U L Ca Vi,Au 3 Pa Galliformes Cracidae Ortalis gutata Pacharaca C L F-S Vi,Au 6 Rb,Pa Columbiformes Columbidae Columba cayannensis Paloma ventripálida U M F-S Au 2 Rb Columbina minuta Tortolita menuda U L F-S Co,V 4 Pa Geotrigon montana Paloma R M F-S Co 1 Rb Psitaciformes Psitacidae Touit huetii Perico hombrirrojo U H F-S V,Au 2 Rb,Pa Pionites melanocephala Loro coroninegro U H F-S Vi 3 Rb,Pa Brotogeris cyanoptera Perico alicobáltico A L F-S V,Au 12 Pa,Cu Pionus menstruns Loro azul C L F-S V 6 Pa,Cu Amazona farinosa Lora real U M F-S V,Au 3 Rb Amazona amazonica Lora cariamarilla U M F-S V 2 Rb Cuculiformes Cuculidae Piaya cayana Cuco ardilla R L I Au 1 Rb Crotophaga ani Garrapatero menor A L I V 19 Pa,Cu Strigiformes Srigidae Pulsatrix perspicillata Búho de anteojos R M Ca Co 1 Rb Glaucidium brasilianum Mochuelo ferruginoso R L Ca V 1 Pa

Caprimulgiformes Nyctibiidae Nyctibius griseus Nictibio común R M I V 1 Pa Apodiformes Trochilidae Phaethornis malaris Ermitaño U M N Co 2 Rb Threnetes niger Barbita colipálida R L N Co 1 Rb,Pa Glaucis hirsuta Ermitaño pechicanelo U L N Co 2 Rb,Pa Coraciiformes Momotidae Momotus momota Momoto coroniazul U L I V,Au 3 Rb,Pa

Anexo B Datos Biológicos 24 Marzo, 2008 Orden Especie Nombre Común CA S GA TR NI TH Piciformes Bucconidae Monasa nigrifrons Monja frentinegra A M I Co,V 13 Rb,Pa Picidae Melanerpes cruentatus Carpintero U L I V 4 Pa Veniliornis affinis Carpintero rojo U M I V 3 Rb,Pa Dryocopus lineatus Carpintero lineado U L I V 3 Pa Ramphastidae Pteroglossus pluricinctus Arasari bifajeado C H F-S V,Au 7 Rb,Pa Pteroglossus inscriptus Arasari letreado C M F-S V 7 Rb,Pa Pteroglossus castamotis Arasari orejicastaño U H F-S V 2 Rb,Pa Passeriformes Dendrocolaptidae Glyphorynchus spirurus Trepa. Piquicuña U M I V,Au 2 Rb Dendrocincla fuliginosa Trepatronco pardo U M I Au 2 Rb Thamnophilidae Hypocnemis cantator Hormiguero gorjeador R M I Au 1 Rb,Pa Myrmeciza fortis Hormiguero Tiznado R H I Au 1 Rb Tyrannidae Tolmomyias viridiceps Picoancho U L I V 2 Pa Tyrannus melancholicus Tirano tropical A L I Co,V 12 Pa,Cu Phylobydor lictor Bienteveo menor C L I V,Au 7 Pa Cotingidae Querula purpurata Querula golipúrpura U M F-S V 3 Rb,Pa Pipridae Lepidothrix coronata Saltarín coroniazul C M I Co 6 Rb Corvidae Cyanocorax violaceus Urraca Violácea A L I V,Au 13 Rb,Pa,Cu Trogloytidae Troglodytes aedon Sotorrey criollo A L I V,Au 10 Pa Turdidae Turdus ignobilis Mirlo piquinegro C L F-S V,Au 6 Pa Thraupidae Thraupis episcopus Tangara azuleja A L F-S V 13 Pa,Cu Tangara chilensis Tangara paraiso C M F-S V,Au 7 Pa Thraupis palmarum Tangara palmera C L F-S V 6 Rb,Pa Cissopis leveriana Tangara Urraca C M F-S V,Au 6 Rb,Pa Tachiphonus luctuosus Tangara negra R M F-S V 1 Rb Tachiphonus surinamus Tangara crestifulva R M F-S Co 1 Rb Cyanerpes caeruleus Mielero purpúreo U M F-S Au 2 Rb Parulidae Basileuterus fraseri Reinita Grisidorada U H I Au 2 Rb Emberizidae Ammodramus aurifrons Sabanero cejiamarillo C L Se V 7 Pa Oryzoborus angolensis Semillero menor U L Se Co 2 Pa Icteridae Cacicus cela Cacique A M O V 16 Rb,Pa,Cu Icterus croconotus Turpial U L O V 2 Rb,Pa Cacicus solitarius Cacique solitario U L O Vi,Au 3 Pa Psarocolius angustifrons Oropéndola A L O V 30 Rb,Pa,Cu Psarocolius decumanus Oropéndola A L O V 14 Rb,Pa SIMBOLOGIA: CA= categoría de abundancia, R = raro, U = poco común, C = común, A = abundante. S = sensibilidad, L = baja, H = alta, M = media. GA = gremio alimenticio, Car = carroñero, Ca = carnívoro, F-S = frugívoro - semillero, N = nectarívoro, I = insectívoro, O = omnívoro; TR=tipo de registro, V=visual, Co=colectado y liberado, Au=auditivo; NI= número de individuos; TH= tipo de hábitat, Rb=remanente de bosque natural intervenido, Pa=pastizales con vegetación secundaria dispersa, Cu=cultivos

RESULTADOS DE LA EVALUACIÓN TABLA 2-5: DIVERSIDAD DE ESPECIES A NIVEL DE ORDEN Órdenes Nº de Especies Porcentajes TINAMIFORMES 2 4 % CICONIFORMES 3 5,5 % FALCONIFORMES 4 8 % GALLIFORMES 1 2 %

Anexo B Datos Biológicos 25 Marzo, 2008 Órdenes Nº de Especies Porcentajes COLUMBIFORMES 2 4 % PSITACIFORMES 3 5,5 % CUCULIFORMES 1 2 % STRIGIFORMES 1 2 % APODIFORMES 2 4 % CORACIIFORMES 2 4 % PICIFORMES 8 15 % PASSERIFORMES 23 44 % TOTAL 52 100 %

TABLA 2-6: ESPECIES DE AVES CON MAYOR DENSIDAD POBLACIONAL – UNIDAD CONTROL Familia Nombre Científico Nombre Común Ardeidae Bubulcus ibis Garza bueyera Cathartidae Coragyps atratus Gallinazo negro Psitacidae Brotogeris cyanoptera Perico alicobáltico Cuculidae Crotophaga ani Garrapatero menor Tyrannidae Tyrannus melancholicus Tirano tropical Corvidae Cyanocorax violaceus Urraca Violácea Troglodytidae Troglodytes aedon Sotorrey criollo Thraupidae Thraupis episcopus Tangara azuleja Icteridae Cacicus cela Cacique Icteridae Psarocolius angustifrons Oropéndola Icteridae Psarocolius decumanus Oropéndola

TABLA 2-7: ESPECIES DE AVES CATALOGADAS COMO RARAS – UNIDAD CONTROL Familia Nombre Científico Nombre Común Columbidae Geotrigon montana Paloma Srigidae Glaucidium brasilianum Mochuelo ferruginoso Trochilidae Threnetes niger Barbita colipálida Ramphastidae Pteroglossus castamotis Arasari orejicastaño Ramphastidae Selenidera reinvardtii Tucancillo Thamnophilidae Hypocnemis cantator Hormiguero gorjeador Thamnophilidae Cercomacra cinerascens Hormiguero Gris Thraupidae Cyanerpes caeruleus Mielero purpúreo Thraupidae Ramphocelus carbo T. Concha de Vino Icteridae Icterus croconotus Turpial

Anexo B Datos Biológicos 26 Marzo, 2008 GRÁFICO 2-1. ESPECIES DE AVES SEGÚN LAS CATEGORÍAS DE ABUNDANCIA – UNIDAD CONTROL

25

20 S

15 No DE ESPECIE 10

5

0 Abundantes Comunes Poco comunes Raras

CATEGORIAS DE ABUNDANCIA

TABLA 2-8 ÍNDICES DE DIVERSIDAD PARA LA POBLACIÓN DE AVES REGISTRADAS – UNIDAD CONTROL Índice de Simpson Índice de shannon Interpretación 0,967 3,576 Alta diversidad

TABLA 2-9: NICHO TRÓFICO DE LA AVIFAUNA - UNIDAD CONTROL. Hábitos Alimenticios Número de Especies Porcentaje Insectívoros 17 32, 5 % Frugívoros - Semilleros 20 38,5 % Carnívoros 6 11,5 % Carroñeros 2 4 % Omnívoros 5 9,5 % Nectarívoros 2 4 % Total 52 100%

GRÁFICO 2-2: PORCENTAJES DE SENSIBILIDAD DE ESPECIES – UNIDAD CONTROL

70%

60%

50%

S 40%

30% PORCENTAJE

20%

10%

0% A LTA SENSIBILIDA D SENSIBILIDA D MEDIA BA JA SENSBILIDA D CATEGORIAS DE SENSIBILIDAD

Anexo B Datos Biológicos 27 Marzo, 2008

TABLA 2-10 ESPECIES DE AVES INDICADORAS DE BUENA CALIDAD DEL HÁBITAT Familia Nombre Científico Nombre Común Ramphastidae Pteroglossus castamotis Arasari orejicastaño Ramphastidae Pteroglossus azara Arasari piquimarfil

Ramphastidae Selenidera reinvardtii Tucancillo Thamnophilidae Cercomacra cinerascens Hormiguero Gris

TABLA 2-11: DIVERSIDAD DE ESPECIES A NIVEL DE ORDEN SA - 53 Órdenes Nº de Especies Porcentajes TINAMIFORMES 3 5 % CICONIFORMES 2 3 % FALCONIFORMES 5 8 % GALLIFORMES 1 1,5 % COLUMBIFORMES 3 5 % PSITACIFORMES 6 9,5% CUCULIFORMES 2 3 % STRIGIFORMES 2 3 % CAPRIMULGIFORMES 1 1,5 % APODIFORMES 3 5 % CORACIIFORMES 1 1,5 % PICIFORMES 7 1,5 % PASSERIFORMES 27 42,5 % TOTAL 63 100 %

TABLA 2-12: ESPECIES DE AVES CON MAYOR DENSIDAD POBLACIONAL SA - 53 Familia Nombre Científico Nombre Común Ardeidae Bubulcus ibis Garza bueyera Psitacidae Brotogeris cyanoptera Perico alicobáltico Cuculidae Crotophaga ani Garrapatero menor Bucconidae Monasa nigrifrons Monja frentinegra Tyrannidae Tyrannus melancholicus Tirano tropical Corvidae Cyanocorax violaceus Urraca Violácea Troglodytidae Troglodytes aedon Sotorrey criollo Thraupidae Thraupis episcopus Tangara azuleja Icteridae Cacicus cela Cacique Icteridae Psarocolius angustifrons Oropéndola Icteridae Psarocolius decumanus Oropéndola

TABLA 2-13: ESPECIES DE AVES CATALOGADAS COMO RARAS SA - 53 Familia Nombre Científico Nombre Común Tinamidae Tinamus major Tinamú grande Tinamidae Crypturellus cinereus Tinamú cenizo Columbidae Geotrigon montana Paloma Cuculidae Piaya cayana Cuco ardilla

Anexo B Datos Biológicos 28 Marzo, 2008 Familia Nombre Científico Nombre Común Srigidae Pulsatrix perspicillata Búho de anteojos Srigidae Glaucidium brasilianum Mochuelo ferruginoso Caprimulgidae Caprimulgus sp. Chotacabras Trochilidae Threnetes niger Barbita colipálida Thamnophilidae Hypocnemis cantator Hormiguero gorjeador Thamnophilidae Myrmeciza fortis Hormiguero Tiznado Thraupidae Tachiphonus luctuosus Tangara negra Thraupidae Tachiphonus surinamus Tangara crestifulva

GRÁFICO 2-3: ESPECIES DE AVES SEGÚN LAS CATEGORÍAS DE ABUNDANCIA SA - 53

25

20 S

15 No DE ESPECI E 10

5

0 Abundantes Comunes Poco comunes Raras CATEGORIAS DE ABUNDANCIA

TABLA 2-14: ÍNDICES DE DIVERSIDAD PARA LA POBLACIÓN DE AVES REGISTRADA SA - 53 Índice de Simpson Índice de Shannon Interpretación 0,97 3,742 Alta diversidad

TABLA 2-15: NICHO TRÓFICO DE LA AVIFAUNA, SA - 53 Hábitos Alimenticios Nº de Especies Porcentaje Insectívoros 20 31,5 % Frugívoros – Semilleros 27 42,5 % Carnívoros 7 11 % Carroñeros 2 3 % Omnívoros 5 7,5 % Nectarívoros 3 4,5 % Total 63 100%

Anexo B Datos Biológicos 29 Marzo, 2008 GRÁFICO 2-4 PORCENTAJES DE SENSIBILIDAD DE ESPECIES, SA – 53.

60%

50%

40% S

30% PORCENTAJE 20%

10%

0% ALTA SENSIBILIDAD SENSIBILIDAD MEDIA BAJA SENSBILIDAD CATEGORIAS DE SENSIBILIDAD

TABLA 2-16 ESPECIES DE AVES INDICADORAS DE BUENA CALIDAD DEL HÁBITAT SA-53 Familia Nombre Científico Nombre Común Psitacidae Touit huetii Perico hombrirrojo Psitacidae Pionites melanocephala Loro coroninegro Ramphastidae Pteroglossus pluricinctus Arasari bifajeado Ramphastidae Pteroglossus castamotis Arasari orejicastaño Thamnophilidae Myrmeciza fortis Hormiguero tiznado Parulidae Basileuterus fraseri Reinita grisidorada

TABLA 2-17: SIMILITUD ENTRE LAS DOS ZONAS, SEGÚN LOS COEFICIENTES DE JACCARD Y SORENSEN ZONA DE ESTUDIO SA – 53 ZONA CONTROL 60 % - JACCARD - ZONA CONTROL 80 % - SORENSEN -

TABLA 2-18: ESTIMACIÓN DEL GRADO DE ABUNDANCIA ENTRE LAS DOS UNIDADES DE ESTUDIO Categorías Unidad Control Unidad SA - 53 Abundante 11 11 Común 11 14 Poco común 20 26 Raro 10 12

Anexo B Datos Biológicos 30 Marzo, 2008 GRÁFICO 2-5: COMPARACIÓN DE LA ABUNDANCIA RELATIVA DE ESPECIES ENTRE LAS DOS UNIDADES

TABLA 2-19: ÍNDICES DE DIVERSIDAD EN LAS DOS UNIDADES DE ESTUDIO. Unidad Índice de Simpson Índice de shannon Interpretación CONTROL 0,967 3,576 Alta diversidad SA-53 0,97 3,742 Alta diversidad

GRÁFICO 2-6: COMPARACIÓN DE LOS ÍNDICES DE DIVERSIDAD EN LAS DOS UNIDADES DE ESTUDIO

4

3,5

3

2,5 S

RE 2 VALO 1,5

1

0,5

0 I. SIMPSON I. SHANNON U. CONTROL INDICES DE DIVERSIDAD U. PRINCIPA L

Anexo B Datos Biológicos 31 Marzo, 2008

TABLA 2-20: COMPARACIÓN DE ESPECIES SEGÚN LAS TRES CATEGORÍAS DE SENSIBILIDAD Especies de Alta Especies de Sensibilidad Especies de Baja

Sensibilidad Media Sensibilidad U. CONTROL 8 % (4 spp.) 32 % (18 spp.) 60 % (30 spp.) U. PRINCIPAL 9,5 % (6 spp.) 36,5 % (23 spp.) 54 % (34 spp.)

GRAFICO 2-7: PORCENTAJES DE SENSIBILIDAD DE ESPECIES PARA LAS DOS UNIDADES DE ESTUDIO.

70%

60%

50% S 40%

RCENTAJE 30% PO

20%

10%

0% SEN. ALTA SEN. MEDIA SEN. BAJA U. CONTROL CATEGORIAS DE SENSIBILIDAD U. PRINCIPA L

TABLA 2-21: SÍNTESIS DE LOS DATOS OBTENIDOS PARA LAS 2 UNIDADES DE ESTUDIO

Indicadores SA-53 Unidad Control

Riqueza de especies 63 52 No total de individuos 337 312 I. de diversidad de SIMPSON 0,97 0,967 I. de diversidad de SHANNON 3,742 3,576 Especies abundantes 11 11 Especies comunes 14 11 Especies poco comunes 26 20 Especies raras 12 10 % Especies de alta sensibilidad 9,5 8 % Especies de sensibilidad media 36,5 32 % Especies de baja sensibilidad 54 60

Anexo B Datos Biológicos 32 Marzo, 2008

FOTOGRAFÍAS

Foto 1. Bubulcus ibis, especie de zonas abiertas Foto 2. Coragyps atratus, especie de baja Abundante en las 2 unidades de estudio. sensibilidad. Se registró en las 2 unidades de Noviembre 2007. estudio. Noviembre 2007.

Foto 3. Cathartes melambrotus, especie de Foto 4. Buteo magnirostris, pequeña rapaz de baja sensibilidad media. Se registró únicamente en sensibilidad. Se registró en las 2 unidades. la unidad control. Noviembre 2007. Noviembre 2007.

Foto 5. Elanoides forficatus, pequeña rapaz de Foto 6. Herpetotheres cachinnans, rapaz de baja sensibilidad media. Se reportó en las 2 sensibilidad. Se registró en las 2 unidades de unidades de estudio. Noviembre 2007. estudio. Noviembre 2007.

Anexo B Datos Biológicos 33 Marzo, 2008

Foto 7. Columbina minuta, especie de baja Foto 8. Geotrigon montana, especie de sensibilidad sensibilidad. Se registró en las 2 unidades de media. Se registró en las 2 unidades de estudio. estudio. Noviembre 2007. Noviembre 2007.

Foto 9. Pionus menstruns, especie de baja Foto 10. Amazona farinosa, lora de gran tamaño y sensibilidad, frecuenta cultivos. Se registró en sensibilidad media. Se registró en las 2 unidades de las dos unidades de estudio. Noviembre 2007. estudio. Noviembre 2007.

Foto 11. Amazona amazonica, especie de Foto 12. Crotophaga ani, especie de baja sensibilidad media Se registró únicamente en la sensibilidad y colonizadora Abundante en las 2 unidad principal SA – 53. Noviembre 2007. unidades de estudio. Noviembre 2007.

Foto 13. Glaucidium brasilianum, pequeño Foto 14. Pulsatrix perspicillata, rapaz nocturna de mochuelo nocturno de baja sensibilidad. Se gran tamaño. El mayor búho de la Amazonía registró en las 2 unidades de estudio. ecuatoriana, sensibilidad media. Se registró Noviembre 2007. únicamente en SA-53. Noviembre 2007.

Anexo B Datos Biológicos 34 Marzo, 2008

Foto 15. Phaethornis malaris, especie de Foto 16. Threnetes niger, especie de baja sensibilidad media. Se registró en las 2 sensibilidad. Se registró en las 2 unidades de unidades de estudio. Noviembre 2007. estudio. Noviembre 2007.

Foto 17. Glaucis hirsuta, especie de baja Foto 18. Momotus momota, especie de baja sensibilidad. Se registró únicamente en la sensibilidad. Se registró en las 2 unidades de unidad principal SA – 53. Noviembre 2007. estudio. Noviembre 2007.

Foto 19. Galbalcyrhynchus leucotis, especie de Foto 20. Monasa nigrifrons, especie de sensibilidad sensibilidad media. Se registró únicamente en media. Abundante en la unidad principal y común en la unidad control. Noviembre 2007. la unidad control. Noviembre 2007.

Foto 21. Melanerpes cruentatus, especie de Foto 22. Nyctibius griseus, especie de sensibilidad baja sensibilidad típica de zonas abiertas. Se media. Se registró únicamente en la unidad principal registró en las 2 unidades de estudio. SA – 53. Noviembre 2007. Noviembre 2007.

Anexo B Datos Biológicos 35 Marzo, 2008

Foto 23. Pteroglossus castamotis, especie de Foto 24. Selenidera reinvardtii, especie de alta alta sensibilidad. Se registró en las 2 unidades sensibilidad. Se registró únicamente en la unidad de estudio. Noviembre 2007. control. Noviembre 2007.

Foto 25. Tyrannus melancholicus, especie de Foto 26. Lepidothrix coronata, hembra, especie de baja sensibilidad y colonizadora. Abundante en sensibilidad media. Común en remanentes y bordes las 2 unidades de estudio. Noviembre 2007. de bosque. Se registró en las 2 unidades de estudio. Noviembre 2007.

Foto 27. Thraupis episcopus, especie de baja Foto 28. Tachiphonus luctuosus, especie de sensibilidad y colonizadora. Abundante en las 2 sensibilidad media. Se registró únicamente en la unidades de estudio. Noviembre 2007. unidad principal SA – 53. Noviembre 2007.

Foto 29. Tachiphonus surinamés, especie de Foto 30. Ammodramus aurifrons, especie de baja sensibilidad media. Se registró únicamente en sensibilidad. Común en las 2 unidades de estudio. la unidad principal SA – 53. Noviembre 2007. Noviembre 2007.

Anexo B Datos Biológicos 36 Marzo, 2008

Foto 31. Cacicus cela, especie de sensibilidad Foto 32. Psarocolius angustifrons, especie de baja media. Abundante en las 2 unidades de estudio. sensibilidad y colonizadora. La especie con mayor Noviembre 2007. densidad poblacional en las 2 unidades de estudio. Noviembre 2007.

Anexo B Datos Biológicos 37 Marzo, 2008 3 DATOS DE MASTOFAUNA

METODOLOGÍA FASE DE CAMPO Las técnicas aplicadas en el campo se fundamentaron en las metodologías de Evaluación Ecológica Rápida (Sayre et al., 2002) y fueron las siguientes: Observación Directa.- Es una de las técnicas más elementales en cuanto a equipo requerido. Dependiendo del caso se utilizaron binoculares. Identificación de huellas y otros rastros.- Con esta técnica se identifican huellas (pisadas) y otros rastros (madrigueras, comederos, saladeros, huesos, heces fecales, orina) que determinen la presencia de una especie de mamífero, así como la identificación de sonidos y vocalizaciones. Captura mediante trampas y redes.- Para el estudio de mamíferos terrestres pequeños tales como roedores, marsupiales e insectívoros (Suárez y Mena, 1994). Se utilizaron trampas (capturas vivas), 60 Sherman y 8 Tomahawk para los puntos de muestreo cuantitativo establecidos (M1, M2, M3 en la zona “SA-53” y M5, M6, M7 en la zona “Control”). Se estableció un transecto lineal (100m) para cada punto de muestreo cuantitativo, en el cual se instalaron 20 trampas tipo Sherman (capturas vivas). Estas trampas fueron colocadas en 10 estaciones de dos trampas cada una, con una distancia de separación de 10m (entre estaciones). Las ocho trampas Tomahawk fueron ubicadas en un mismo transecto lineal único compartido con trampas Sherman en cada punto de muestreo cuantitativo. Se colocaron tres trampas en cada transecto, a excepción del área de cultivo y pastizal en la cual se ubicaron únicamente dos trampas Tomahawk. Para el muestreo se utilizó como cebo: esencia de vainilla, mantequilla de maní, atún y avena. Las trampas Sherman y Tomahawk permanecieron activadas durante las 24 horas del día, y fueron revisadas una vez por día. La permanencia de los transectos en cada punto de muestreo cuantitativo fue de tres días y tres noches consecutivos. El estudio de murciélagos fue realizado con la ubicación de siete redes de nylon (12 m x 2,5 m), las mismas que fueron ubicadas en cada punto de muestreo cuantitativo a lo largo de en un transecto, sitios considerados apropiados (sendero en bosque maduro, bosque secundario, borde de ríos y esteros) para el cruce de quirópteros tomando en cuenta las sugerencias de Kunz et al (1996). Las redes permanecieron abiertas entre las 18h00 y las 22h00 (cuatro horas red/noche) durante tres noches consecutivas, en el sitio de muestreo cuantitativo. Los mamíferos capturados fueron registrados e identificados en el campo de manera definitiva, y en su mayoría liberados. La disposición del número de redes de nylon fueron: en la zona

Anexo B Datos Biológicos 38 Marzo, 2008 “Control” M1=3; M2=3; M3=1 (total= 7 redes), y en la zona “SA-53” M5=3; M6=3; M7=1 (total= 7 redes). Entrevistas.- De manera adicional a las técnicas descritas, se realizaron entrevistas informales a los habitantes de la zona de estudio (Colonos). Esta actividad tuvo la finalidad de completar e identificar ciertas especies de mamíferos no registradas durante el trabajo de campo, así como conocer el uso e importancia de las especies de fauna conocidas por los pobladores. Se utilizaron libros especializados con láminas a color y/o fotografías (Emmons y Feer, 1999; Albuja, 1999, Tirira, 2007) que facilitaron la identificación de las especies por parte de las personas entrevistadas. Los habitantes que fueron entrevistados y colaboraron con la información de la mastofauna en cada zona fueron: en la unidad “Control” Edison Parreño; y en “SA-53” Luis Yumbo Estos métodos de evaluación rápida de la mastofauna permite el registro de aproximadamente el 40-50% de las especies que podrían habitar las áreas de muestreo (Albuja, 2001). FASE DE GABINETE Y PROCESAMIENTO DE DATOS Abundancia Relativa.- Para la estimación de la abundancia relativa o riqueza de las especies se categorizó a las mismas en cuatro grupos, de acuerdo a la frecuencia de registro y el número de individuos, así: Abundante, más de 10 individuos; Común, 6–10 individuos; Poco común, 2–5 individuos; Raro, 1 individuo (Briones, 1997). Índice de Diversidad.- La evaluación de la diversidad en los puntos de muestreo cuantitativo se realizó a través del cálculo del Índice de Shannon-Weaver (Magurran, 1989), mediante la siguiente fórmula. H’ = - Σpi ln pi

Donde; H’ = contenido de la información de la muestra o índice de diversidad Σ = sumatoria ln = logaritmo natural pi = proporción de la muestra (ni/n)

Los valores del Índice de Shannon-Weaver inferiores a 1,5 se consideran como diversidad absoluta baja, los valores entre 1,6 a 3,4 se consideran como diversidad absoluta media y los valores iguales o superiores a 3,5 se consideran como diversidad absoluta alta (Magurran, 1989). En comunidades naturales, este índice suele presentar valores entre 1,5 y 3,5 y rara vez sobrepasa 4,5 (Margalef 1972, citado en Magurran, 1989). Cave señalar que esta división utilizada por Magurran, es una descripción de la diversidad absoluta. Índice de Equitabilidad (J).- Expresa el grado de realización de una comunidad, comparando la diversidad real de la misma con la diversidad máxima posible. Su fórmula es J = H / Hmax; donde H es la diversidad calculada según el índice de Shannon, y H es la diversidad máxima posible. El valor de J es máximo cuando es igual a 1 (J=1). Análisis de comparación.- Se aplicó el Coeficiente de Similitud de Sorensen (López, 1985), con la finalidad de establecer comparaciones entre las muestras de las dos Zonas de estudio evaluadas (SA-53 y Control). Este Coeficiente es un método que se aplica, inclusive a muestras altamente similares (como las que se pueden obtener en zonas de alta biodiversidad

Anexo B Datos Biológicos 39 Marzo, 2008 de la Amazonía Ecuatoriana) y presenta valores que van de 0 a 1,0. Estos valores se incrementan de acuerdo al grado de similitud, a través de la siguiente fórmula:

Cs = (2c /a + b) *100

Donde:

Cs = índice de similitud de Sorensen a = número de especies de la muestra 1 b = número de especies de la muestra 2 c = número de especies presentes en ambas muestras

El valor del coeficiente varía entre 0 y 100, expresado en porcentaje, y se incrementa de acuerdo al grado de similitud de las muestras; mientras más similares más alto el valor. Para determinar este porcentaje hay que considerar todas las posibles combinaciones entre las muestras (López, 1985). Especies Sensibles.- De acuerdo a Stotz (1996), algunas especies son considerablemente más vulnerables a perturbaciones humanas que otras. Stotz asignó las siguientes variables cualitativas basadas en observaciones y en notas de campo no publicadas: • Especies altamente sensibles (A).- Son aquellas especies que se encuentran en bosques en buen estado de conservación, que no pueden soportar alteraciones en su ambiente • Especies medianamente sensibles (M).- Son aquellas que a pesar de que pueden encontrarse en áreas de bosque bien conservados, también son registradas en áreas poco alteradas • Especies de baja sensibilidad (B).- Son especies que son tolerantes a los ambientes intervenidos o alterados por las actividades antrópicas. Estado de Conservación de las especies. El Estado de Conservación de las especies de mamíferos del presente estudio se detalla de acuerdo al Libro Rojo de la Unión Interna- cional para la Conservación de la Naturaleza (IUCN, 2006) y la Convención sobre el Co- mercio Internacional de las Especies Amenazadas de Fauna y Flora Silvestres CITES (Inskipp & Gillett, H. J. (Eds.) 2005) y el Libro Rojo de los Mamíferos del Ecuador (Tiri- ra, 2001). El apéndice I incluye especies amenazadas con la extinción, el comercio de es- tas especies se permite bajo circunstancias excepcionales. El apéndice II incluye especies no necesariamente amenazadas con la extinción, pero su comercio es controlado, a fin de evitar el uso incompatible con la supervivencia de la especie.

Nota: Todos los datos se recolectaron durante el trabajo de campo del equipo de biólogos de ENTRIX en Noviembre del 2007.

Anexo B Datos Biológicos 40 Marzo, 2008 TABLA 3-1: PUNTOS DE MUESTREO UNIDAD DE CONTROL Coord. Coord. Código Fecha M/D/A Ubicación Hábitat Tipo de Evaluación Este Norte Punto de muestreo M5 11/10,11,12/07 Control Bmr 302940 9976825 cuantitativo (trampas, redes) Punto de muestreo M6 11/10,11,12/07 Control Bmr 302845 9976636 cuantitativo (trampas, redes) Punto de muestreo M7 11/10,11,12/07 Control C - P 302984 9976852 cuantitativo (trampas, redes) Punto de MO8 11/11/07 Control Bs 303254 9965630 observación 200m Inicio Inicio Transecto de 302976 9977081 A2 11/10,11,12/07 Control Bmr, C, P observación Final Final 1km Aprox. 303252 9976231

TABLA 3-2: PUNTOS DE MUESTREO UNIDAD PRINCIPAL SA-53 Fecha Coord. Coord. Código Ubicación Hábitat Tipo de Evaluación M/D/A Este Norte Punto de muestreo 11/7,8- M1 SA-53 Bmr 294525 9970302 cuantitativo 9/07 (trampas, redes) Punto de muestreo 11/7,8- M2 SA-53 Bmp 295153 9970953 cuantitativo 9/07 (trampas, redes) Punto de muestreo M3 11/7,8,9/07 SA-53 C - P 294653 9970513 cuantitativo (trampas, redes) Punto de MO4 11/8/07 SA-53 Bs 295638 9970557 observación 200m Inicio Inicio Transecto de 295046 9971147 A1 11/7,8,9/07 SA-53 Bmr, C, P, Bmp observación Final Final 1km Aprox. 293903 9970571

DATOS DE CAMPO TABLA 3-3: LISTA DE ESPECIES DE MAMÍFEROS REGISTRADOS EN LA UNIDAD CONTROL Lista de Mamíferos Registrados en la Zona de Estudio Control Bosque maduro Bosque maduro Transecto remanente remanente Cultivo Bosque Especies de de tierra de tierra y Pastizal secundario Abundancia Nicho Observación Sensib firme (Bmr) firme (Bmr) Relativa Trófico M5 M6 M7 MO8 A2 DIDELPHIMORPHIA Didelphidae Didelphis marsupialis 1Li 1Li P Om B Raposa común Marmosops noctivagus 1Li R Om M Raposa chica Philander andersoni 1Li R Om M Raposa de cuatro ojos

Anexo B Datos Biológicos 41 Marzo, 2008 Lista de Mamíferos Registrados en la Zona de Estudio Control Bosque maduro Bosque maduro Transecto remanente remanente Cultivo Bosque Especies de de tierra de tierra y Pastizal secundario Abundancia Nicho Observación Sensib firme (Bmr) firme (Bmr) Relativa Trófico M5 M6 M7 MO8 A2 CHIROPTERA Phyllostomidae Artibeus jamaicensis 1Li P Fr B Murciélago frutero Artibeus lituratus 3Li 2Li C Fr M Murciélago frutero mayor Carollia brevicauda Murciélago frutero 8Li 12Li A Fr B mediano de cola corta Carollia perspicillata Murciélago frutero 2Li 1Li P Fr B de cola corta Chrotopterus auritus 1Li R Cr A Falso vampiro Desmodus rotundus 1Li P S B Vampiro común Sturnira lilium Murciélago de 1Li R Fr, I M hombros amarillos Vampyressa thyone Murciélago de 1Li R Fr M orejas amarillas PRIMATES Aotidae Aotus vociferans 1V, Au 2V, In P Fr, I A Mono nocturno Atelidae Alouatta seniculus 1V, In R Fr A Aullador, coto Cebidae Saguinus graellsi 5V 8V, In 1V, In A Fr M Chichico Saimiri sciureus 4V 20V A Fr M Barizo CINGULATA Dasypodidae Dasypus novemcinctus Armadillo de Hu, In 1 V 1Hu, In 1Hu, In P Fr B nueve bandas PILOSA Bradypodidae Bradypus variegatus 1V R H A Perezoso LAGOMORPHA

Leporidae Sylvilagus brasiliensis 1V 1Hu, In P Fr B Conejo RODENTIA Sciuridae Sciurus igniventris 1V P Fr B Ardilla colorada Dasyproctidae Dasyprocta fuliginosa 1Hu, In 1Hu, In 1Hu, In 1Hu, In P Fr B Guatuza Myoprocta pratti 1V P Fr B Guatín Cuniculidae Cuniculus paca 1Hu 1Hu, In 1Hu, In 1Hu, In P Fr B Guanta

Anexo B Datos Biológicos 42 Marzo, 2008 Lista de Mamíferos Registrados en la Zona de Estudio Control Bosque maduro Bosque maduro Transecto remanente remanente Cultivo Bosque Especies de de tierra de tierra y Pastizal secundario Abundancia Nicho Observación Sensib firme (Bmr) firme (Bmr) Relativa Trófico M5 M6 M7 MO8 A2 Echimyidae Proechimys semispinosus 1V R Fr M Rata espinosa CARNIVORA Procyonidae Nasua nasua 1Hu, In R Om M Cuchucho Tipo de Registro: V: Visual, Hu: Huellas u otros rastros, Li: Capturado y liberado, Au: Auditivo, In: Información Abundancia Relativa: A: Abundante, C: Común, P: Poco común, R: Raro Nicho Trófico: Fr: Frugívoro, H: Herbívoro, I: Insectívoro, Nc: Nectarívoro, S: Sanguinívoro, Om: Omnívoro Sensibilidad: A: Alta, M: Media, B: Baja Informante: Edison Parreño

TABLA 3-4LISTA DE ESPECIES DE MAMÍFEROS REGISTRADOS EN LA UNIDAD SA-53 Lista de Mamíferos Registrados en la Zona de Estudio SA-53 Bosque maduro Bosque Transecto remanente maduro Cultivo Bosque Especies de en tierra de pantano y Pastizal secundario Abundancia Nicho Observación Sensib firme (Bmr) (Bmp) relativa Trófico M1 M2 M3 MO4 A1 DIDELPHIMORPHIA Didelphidae

Didelphis marsupialis 1V 1V, In P Om B Raposa común

Marmosops noctivagus 1V R Om M Raposa chica CHIROPTERA Phyllostomidae Artibeus glaucus 1Li R Fr M Murciélago frutero común Artibeus jamaicensis 2 Li P Fr B Murciélago frutero Carollia brevicauda Murciélago frutero 8Li 18Li A Fr B mediano de cola corta Carollia castanea 3Li P Fr B Murciélago frutero castaño Carollia perspicillata Murciélago frutero 2Li 3Li P Fr B común de cola corta Desmodus rotundus 3Li P S B Vampiro común Choeroniscus minor Murciélago longirostro 1Li P Nc M narigudo Mimon crenulatum Murciélago de hoja 2Li 1Li P I M nasal peluda Sturnira lilium Murciélago de 2Li 1Li P Fr, I M hombros amarillos Sturnira oporaphilum Murciélago frutero 1Li R Fr, I M de oriente

Anexo B Datos Biológicos 43 Marzo, 2008 Lista de Mamíferos Registrados en la Zona de Estudio SA-53 Bosque maduro Bosque Transecto remanente maduro Cultivo Bosque Especies de en tierra de pantano y Pastizal secundario Abundancia Nicho Observación Sensib firme (Bmr) (Bmp) relativa Trófico M1 M2 M3 MO4 A1 PRIMATES Aotidae Aotus vociferans 1V, Au, In 2V, In P Fr, I A Mono nocturno Atelidae Alouatta seniculus 1V, In P Fr A Aullador, coto Cebidae Saguinus graellsi 3V, In 7V, In C Fr, I M Chichico Saimiri sciureus 1V 3V, In 3V, In P Fr, I M Barizo CINGULATA Dasypodidae Dasypus novemcinctus Armadillo de 1Hu 1Hu, In 1Hu, In 1Hu, In P I B nueve bandas LAGOMORPHA Leporidae Sylvilagus brasiliensis 1V 1Hu, In 1Hu, In P Fr B Conejo RODENTIA Cricetidae Euryoryzomys macconnelli 1Li R Fr M Ratón arrozalero Dasyproctidae Dasyprocta fuliginosa 1Hu, In 1Hu, In P Fr B Guatuza Myoprocyta pratti 1Hu 1Hu 1Hu, In P Fr B Guatín Cuniculidae Cuniculus paca 1Hu, In 1Hu, In 1Hu, In 1Hu, In P Fr B Guanta Tipo de Registro: V: Visual, Hu: Huellas u otros rastros, Li: Capturado y liberado, Au: Auditivo, In: Información Abundancia Relativa: A: Abundante, C: Común, P: Poco común, R: Raro Nicho Trófico: Fr: Frugívoro, H: Herbívoro, I: Insectívoro, Nc: Nectarívoro, S: Sanguinívoro, Om: Omnívoro Sensibilidad: A: Alta, M: Media, B: Baja Informante: Luis Yambo

ANÁLISIS DE DATOS TABLA 3-5: ÓRDENES, ESPECIES Y PORCENTAJE DE MAMÍFEROS UNIDAD CONTROL Órdenes No. Especies Porcentaje (%) DIDELPHIMORPHIA 3 12,5 CHIROPTERA 8 33,3 PRIMATES 4 16,7 CINGULATA 1 4,2 PILOSA 1 4,2 LAGOMORPHA 1 4,2 RODENTIA 5 20,8 CARNÍVORA 1 4,2 TOTAL 24 100

Anexo B Datos Biológicos 44 Marzo, 2008

GRÁFICO 3-1: ABUNDANCIA RELATIVA DE LOS PUNTOS DE MUESTREO CUANTITATIVO

30

25

20 M7 M6 15

D M5

# IN 10

5

0 pratti Aotus Saimiri lituratus graellsi Artibeus sciureus Alouatta Sciurus thyone Saguinus Carollia seniculus Bradypus rotundus auritus Philander Carollia vociferans Artibeus variegatus igniventris Myoprocta Didelphis andersoni Desmodus Sylvilagus brevicauda Dasypus noctivagus marsupialis Marmosops brasiliensis jamaicensis perspicillata Vampyressa Proechimys Chrotopterus novemcinctus Sturnira lilium Especies semispinosus

TABLA 3-6: ÍNDICES DE DIVERSIDAD PARA LA MASTOFAUNA UNIDAD CONTROL Número Puntos Número de Índice de Interpretación del de Índice de de Hábitat Individuos Shannon- Índice (Con base Especies Equitabilidad Muestreo (N) Weaver en Magurran 1987) (S) Diversidad absoluta M5 Bmr 11 28 2,1 0,87 media Diversidad absoluta M6 Bmr 14 53 1,9 0,72 media Diversidad absoluta M7 C y P 2 2 0,7 1 baja

GRÁFICO 3-2: GREMIOS TRÓFICOS DE LOS MAMÍFEROS REGISTRADOS EN LA UNIDAD CONTROL

18 16 14 12 Núm e r o de 10 Es pe ci e s 8 6 4 2 0 Frugívoro Omnívoro Hervívoro Carnívoro Sanguinívoro Gremios Tróficos

Anexo B Datos Biológicos 45 Marzo, 2008

TABLA 3-7: ESPECIES DE MAMÍFEROS INDICADORES – UNIDAD CONTROL Especies Nombre común Tipo de hábitat Aotus vociferans Mono nocturno Bmr Alouatta seniculus Aullador, coto Bmr Saguinus graellsi Chichico Bmr Saimiri sciureus Barizo Bmr Bradypus variegatus Perezoso Bmr Chrotopterus auritus Falso vampiro Bmr

TABLA 3-8: SENSIBILIDAD DE LA MASTOFAUNA REGISTRADA UNIDAD CONTROL

Categorías Especies Porcentaje (%)

Alta sensibilidad 4 16,7 Mediana sensibilidad 9 37,5 Baja sensibilidad 11 45,8 Total 24 100

TABLA 3-9: ESTADO DE CONSERVACIÓN DE LOS MAMÍFEROS UNIDAD CONTROL

Especies IUCN CITES

Alouatta seniculus - II Aotus vociferans - II Saguinus graellsi - II Saimiri sciureus - II Bradypus variegatus - II IUCN 2006 VU = Vulnerable NT =Casi amenazado DD = Datos Insuficientes CITES (2005) Apéndice I = Especies en peligro de extinción Apéndice II = Especies no amenazadas, pero que puedan serlo si su comercio no es controlado, o especies generalmente no comercializadas

TABLA 3-10: ÓRDENES, ESPECIES Y PORCENTAJE DE MAMÍFEROS DE UNIDAD SA-53 Órdenes No. Especies Porcentaje (%) DIDELPHIMORPHIA 2 9,5 CHIROPTERA 10 47,6 PRIMATES 4 19 CINGULATA 1 4,8 LAGOMORPHA 1 4,8 RODENTIA 4 14,3 TOTAL 22 100

Anexo B Datos Biológicos 46 Marzo, 2008

GRÁFICO 3-3: ABUNDANCIA RELATIVA DE LOS PUNTOS DE MUESTREO CUANTITATIVO UNIDAD SA-53

30

25 M3 20 M2 M1 D 15 # IN 10

5

0 Saimiri Aotus glaucus Carollia graellsi sciureus Artibeus Alouatta Mimon castanea seniculus Carollia Saguinus Carollia minor rotundus Sturnira vociferans Artibeus Didelphis Sylvilagus Desmodus noctivagus brevicauda crenulatum brasiliensis marsupialis Marmosops jamaicensis perspicillata oporaphilum macconnelli Sturnira lilium Sturnira Choeroniscus Especies Euryoryzomys

TABLA 3-11: ÍNDICE DE DIVERSIDAD DE LA MASTOFAUNA UNIDAD SA-53 Número Puntos Número de Índice de Interpretación del de Índice de de Hábitat Individuos Shannon- Índice (Con base Especies Equitabilidad Muestreo (N) Weaver en Magurran 1987) (S) Bmr 0,88 Diversidad absoluta M1 12 24 2,2 media Bmp 0,75 Diversidad absoluta M2 10 36 1,7 media C - P 0,92 Diversidad absoluta M3 2 3 0,6 baja

Anexo B Datos Biológicos 47 Marzo, 2008 GRÁFICO 3-4: GREMIOS TRÓFICOS DE LOS MAMÍFEROS REGISTRADOS UNIDAD SA-53

16 14 12 10 Número de 8 Especies 6 4 2 0 Frugívoro Omnívoro Insectívoro Nectarívoro Sanguinívoro Gremios Tróficos

TABLA 3-12: ESPECIES DE MAMÍFEROS INDICADORES UNIDAD SA-53 Especies Nombre común Tipo de hábitat Aotus vociferans Mono nocturno Bmr y Bmp Alouatta seniculus Aullador, coto Bmr Saguinus graellsi Chichico Bmr Saimiri sciureus Barizo Bmr y Bmp

TABLA 3-13: SENSIBILIDAD DE LA MASTOFAUNA UNIDAD SA-53

Categorías Especies Porcentaje (%)

Alta sensibilidad 2 9,1 Mediana sensibilidad 9 40,9 Baja sensibilidad 11 50 Total 22 100

TABLA 3-14: ESTADO DE CONSERVACIÓN DE LOS MAMÍFEROS REGISTRADOS EN LA UNIDAD SA-53

Especies IUCN CITES

Alouatta seniculus - II Aotus vociferans - II Saguinus graellsi - II Saimiri sciureus - II IUCN 2006 VU = Vulnerable NT =Casi amenazado DD = Datos Insuficientes CITES (2005) Apéndice I = Especies en peligro de extinción Apéndice II = Especies no amenazadas, pero que puedan serlo si su comercio no es controlado, o especies generalmente no comercializadas

Anexo B Datos Biológicos 48 Marzo, 2008

TABLA 3-15: ÓRDENES, ESPECIES Y PORCENTAJE DE MAMÍFEROS DE LAS UNIDADES SA-53 Y CONTROL Unidad SA-53 Unidad Control Órdenes No. Especies Porcentaje (%) No. Especies Porcentaje (%) DIDELPHIMORPHIA 2 9,5 3 12,5 CHIROPTERA 10 47,6 8 33,3 PRIMATES 4 19 4 16,7 CINGULATA 1 4,8 2 8,3 PILOSA - - 1 4,2 LAGOMORPHA 1 4,8 1 4,2 RODENTIA 4 14,3 5 20,8 CARNÍVORA - - 1 4,2 TOTAL 22 100 24 100

GRÁFICO 3-5: ABUNDANCIA RELATIVA DE LOS PUNTOS DE MUESTREO CUANTITATIVO

0,8

0,7

0,6

0,5

a M1 0,4 M2 0,3 M3 M5 0,2 M6

0,1 M7 Abundancia RelativAbundancia

0

-0,1 Sturnira lilium Sturnira Myoprocta pratti Saimiri sciureus Aotus vociferans Aotus Artibeus glaucus Artibeus lituratus Artibeus Saguinus graellsi Carollia castanea Carollia Mimon cr enulatum Alouatta seniculus Alouatta Sciurus igniventris Sciurus Vampyressa thyone Vampyressa Carollia brevicauda Desmodus rotundus Bradypus variegatus Choeroniscus minor Chrotopterus auritus Philander andersoni Carollia perspicillata Sturnira oporaphilum Artibeus jamaicensis Didelphis marsupialis Sylvilagus brasiliensis Marmosops noctivagus Dasypus novemcinctus Proechimys semispinosus Euryoryzomys macconnelli

Especi es

Anexo B Datos Biológicos 49 Marzo, 2008 TABLA 3-16: ÍNDICE DE DIVERSIDAD PARA LOS PUNTOS DE MUESTREO CUANTITATIVO DE MASTOFAUNA Índice de Número Shannon- Interpretación Puntos Número de de Weaver (en Índice de del Índice (Con de Hábitat Individuos Especies base en Equitabilidad base en Muestreo (N) (S) Logaritmo Magurran 1987) Natural) Diversidad M1 Bmr 12 24 2,2 0,88 absoluta media Diversidad M2 Bmp 10 36 1,3 0,75 absoluta media SA-53 Unidad Diversidad M3 C - P 2 3 0,6 0,92 absoluta baja Diversidad M5 Bmr 11 28 2,1 0,87 absoluta media Diversidad M6 Bmp 14 53 1,9 0,72 absoluta media Unidad Unidad Control Diversidad M7 C - P 2 2 0,7 1 absoluta baja

GRÁFICO 3-6: ÍNDICE DE SHANNON

2,5 2,2 2,1 2 1,9 1,7

1,5 ' H 1 0,7 0,6 0,5

0 M1 M5 M6 M2 M3 M7

SA-53 Control SA-53 SA-53 Control

Bmr Bmp C - P Tipos de Vegetación

Bmr = Bosque maduro remanente en tierra firme Bmp= Bosque natural remanente aluvial C – P= Cultivos y pastizales

Anexo B Datos Biológicos 50 Marzo, 2008 TABLA 3-17: PORCENTAJE DE SIMILITUD ENTRE LOS PUNTOS DE MUESTREO CUANTITATIVO DE MASTOFAUNA Bosque Maduro Remanente Cultivos y Paztizales Bosque Secundario en Tierra Firme SA-53 Control SA-53 Control SA-53 Control M1 M5 M3 M7 MO4 MO8 60,9% 50% 66,7%

TABLA 3-18: GREMIOS TRÓFICOS DE LOS MAMÍFEROS REGISTRADOS EN LAS ZONAS DE ESTUDIO Unidad SA-53 Unidad Control Gremios Tróficos Número Número Porcentaje Porcentaje especies especies Frugívoro 16 72,7 17 70,8 Omnívoro 2 9,1 4 16,7 Hervívoro - - 1 4,2 Carnívoro - - 1 4,2 Nectarívoro 1 4,5 - - Insectívoro 2 9,1 - - Sanguinívoro 1 4,5 1 4,2 Total 22 100 24 100

TABLA 3-19: ESPECIES DE MAMÍFEROS INDICADORES REGISTRADAS EN LAS UNIDADES SA-53 Y CONTROL Especies Nombre común Tipo de hábitat Bmr y Bmp (M1, Aotus vociferans Mono nocturno M2,M5,M6) Alouatta seniculus Aullador, coto Bmr (M1, M5) Saguinus graellsi Chichico Bmr (M1, M5, M6) Bmr y Bmp (M1, M2, M5, Saimiri sciureus Barizo M6) Bradypus variegatus Perezoso Bmr (M6) Chrotopterus auritus Falso vampiro Bmr (M5)

TABLA 3-20: SENSIBILIDAD DE LA MASTOFAUNA SA-53 Control Categorías Especies Porcentaje (%) Especies Porcentaje (%) Alta sensibilidad 2 9,1 4 16,7 Mediana sensibilidad 9 40,9 9 37,5 Baja sensibilidad 11 50 11 45,8 Total 22 100 24 100

Anexo B Datos Biológicos 51 Marzo, 2008

FOTOGRAFÍAS

Foto 1. Sturnira lilium. Muestra M1. Noviembre Foto 2. Carollia brevicauda. Muestra M1, M2. 2007. Noviembre 2007

Foto 4. Chrotopterus auritus. Muestra M5. Indicador Foto 3. Mimon crenulatum. Muestra M1, M2. de bosques en buen estado de conservación. Noviembre 2007 Noviembre 2007

Foto 5. Carollia castanea. Muestra M2. Foto 6. Artibeus lituratus. Muestra M5, M6. Noviembre 2007 Noviembre 2007

Anexo B Datos Biológicos 52 Marzo, 2008

Foto 7. Mus musculus. Especie introducida y Foto 8. Euryoryzomys macconnelli. Muestra M1. fue registrada en la Unidad SA-53. Noviembre Noviembre 2007 2007

Anexo B Datos Biológicos 53 Marzo, 2008

4 DATOS DE HERPETOLOGÍA

METODOLOGÍA FASE DE CAMPO El trabajo de campo se realizó desde el 07 al 12 de noviembre del 2007. Las dos zonas de estudio incluyeron a bosques maduros remanentes, bosques secundarios y cultivos con pastizales. Durante la fase de campo se estudiaron tres transectos para la Zona de Estudio: T1E = en bosque maduro remanente (Bmr), T2E = en bosque secundario (Bs) y T3E = en cultivos (C) con pastizales (P). Y tres transectos para la Zona de Control: T1C = en bosque maduro remanente (Bmr), T2C = en bosque secundario (Bs) y T3C = en cultivos (C) con pastizales (P). Complementariamente al estudio de los hábitats de bosque maduro remanente, bosque secundario y cultivos con pastizales, se evaluó el hábitat de bosque maduro de pantano, el cual estuvo presente únicamente en la Zona de Estudio. La metodología empleada para el estudio de la herpetofauna, corresponde a técnicas de muestreo detalladas por Heyer et al. (1994), y estandarizadas en el Manual para Coordinar Esfuerzos para el Monitoreo de Anfibios en América Latina (Lips, K, Rehacer, J, Young, E. 1999-2001). Las técnicas de muestreo de herpetofauna fueron: Transectos de Registro de Encuentros Visuales (REV) - La metodología aplicada incluyó capturas diurnas y nocturnas de anfibios y reptiles en un transecto lineal de 100 m de longitud por una banda de muestreo de 2m a cada lado (ver figura 1). Este tipo de transecto se ubicó en cada formación vegetal de las dos zonas de estudio. Esta técnica es comúnmente utilizada para medir la composición de especies, abundancia relativa, asociación de hábitats y nivel de actividad. La técnica consistió en caminar lentamente a lo largo del transecto y cuidadosamente se buscó anfibios y reptiles descansando sobre el suelo, hojas, ramas u otros sustratos de los sitios de muestreo. Transecto de Franja Auditiva (TFA) - Simultáneamente en el área de muestreo del Transecto de Registro de Encuentros Visuales, se aplicó el Transecto de Franja Auditiva (Zimmerman, 1994), el cual se basa en la detección de las vocalizaciones (cantos) de anuros machos, obviando su observación y captura (se identificó el número de machos vocalizando). El número de machos vocalizando se estimó mediante el siguiente rango subjetivo de abundancia sugerido por Bishop et al (1994): 1 para un individuo macho 2 para un coro de 2-5 machos 3 para un coro de 6-10 machos 4 para coros de >10 machos

Anexo B Datos Biológicos 54 Marzo, 2008 La técnica consistió en caminar lentamente y haciendo paradas en sitios donde se escucharon cantos de ranas machos a lo largo del transecto de registro de encuentros visuales, y se cuantificó el número de vocalizaciones. La identificación de los cantos de los anfibios se fundamentó en la experiencia del investigador y la utilización de las cintas magnetofónicas de los anfibios del Yasuní (Sturgis Mckeever and Frank E. French, 2001) Es importante puntualizar que las especies registradas mediante sus cantos son especies de amplia distribución en la región amazónica, y sus cantos son conocidos. No se registró ninguna especie que tenga un canto dudoso. De acuerdo al criterio dado por Pearman (1995), las técnicas de muestreo mediante transectos, son efectivas en la caracterización de ranas terrestres y arborícolas dentro de bosques y a lo largo de riachuelos en zonas neotropicales. Se escogió estas técnicas no sólo porque son estandarizadas en el estudio de anfibios y reptiles, sino también porque son flexibles y pueden adaptarse a la topografía y apoyo logístico de cualquier área. Estas metodologías permitieron evaluar a las zonas de estudio desde un punto de vista del “enfoque ecosistémico”, es decir evaluaron de una forma puntual cada tipo de hábitats de los ecosistemas influenciados por actividades petroleras y por actividades agrícolas Para la caracterización de anfibios y reptiles del transecto en el ambiente de pantano de moretal, se siguieron los mismos protocolos de muestreo que se utilizaron para los transectos de las dos zonas de estudio.

FIGURA 4-1: DISEÑO EXPERIMENTAL DEL TRANSECTO UTILIZADO PARA EL MUESTREO EN LAS ZONAS DE ESTUDIO

22 mtrsm t r s . 1 0 0 m 0 2 mtrsm t r s .

8 0 m

3 6 0 m 0 0

4 0 m 0

2 0 m 0

0 m 0

Anexo B Datos Biológicos 55 Marzo, 2008 Registro de Información Cada transecto de las dos zonas de estudio, fue muestreado por un investigador y un asistente local por seis ocasiones (tres diurnas y tres nocturnas), en el mismo ciclo de muestreo. Los recorridos diurnos en los transectos se efectuaron entre las 13h30 a 16h30, y por la noche de 18h30 a 22h00; empleando 60 minutos por transecto en cada recorrido. El orden de muestreo de cada transecto se seleccionó al azar, disminuyendo así los cambios en los microhábitats (cambios en la riqueza de especies) que suelen producirse por las variaciones climáticas de un día a otro. Todos los especimenes de anfibios y reptiles capturados in situ en los transectos fueron identificados en el campo, mediante la experiencia del investigador y mediante el usó de claves taxonómicas, (Torres-Carvajal, 2007, 2001, 2000, Vitt y De La Torre 1996, Pérez- Santos, 1991,), y posteriormente fueron liberados en áreas aledañas a los sitios de estudio. Los especimenes no fueron liberados en los mismos sitios (transectos) para evitar una sobre estimación de la abundancia de las especies en los sitios de muestreo FASE DE GABINETE Con el fin de obtener una aproximación cuantitativa de la riqueza de anfibios y reptiles tanto de la Zona de Estudio, así como de la Zona de Control, para el análisis de la información se aplicaron los siguientes índices de análisis bioestadística: ÍNDICES DE DIVERSIDAD La mayor ventaja de estos índices consiste en la transformación de numerosas dimensiones de un ambiente (originadas por tener numerosas especies con numerosos individuos) en un solo factor numérico, y así convertirlo en un elemento comparable con otros índices provenientes de otros sitios. El índice utilizado en el presente estudio corresponde al del Shannon-Weaver (H´) el cual es ampliamente utilizado (Franco-López 1995) e indica el grado de incertidumbre en predecir a cuál especie pertenecería un individuo al azar en la muestra (Ludwing & Reynolds 1988; Begon et al. 1996). El índice de Shannon-Weaver se calcula a partir de la siguiente ecuación:

H’ = - Σ pi ln pi (Magurran, 1989).

Donde: H`= Índice de Shannon-Weaver. pi = indica la proporción de individuos de la especie iésima en relación al total de individuos de la muestra ln = logaritmo natural.

Los rangos de valoración del Índice de Shannon-Weaver, son: valores inferiores a 1,5 se consideran como diversidad absoluta baja, los valores entre 1,6 a 3,4 se consideran como diversidad absoluta media y los valores iguales o superiores a 3,5 se consideran como diversidad absoluta alta (Magurran 1989). Es importante indicar que la escala de Magurran es

Anexo B Datos Biológicos 56 Marzo, 2008 de biodiversidad absoluta. La similaridad o similitud se define como una cualidad comparativa en el contenido de especies de flora y fauna presentes en dos ecosistemas o hábitats comparables (Sarmiento, 2000). De esta manera, con el objetivo de conocer la similitud de las dos zonas de estudio, se calculó el índice de similitud de Jaccard. El índice de Jaccard básicamente representa el valor porcentual de las ocurrencias simultáneas de especies entre dos sitios (Magurran, 1989). El índice Jaccard se calcula a partir de la ecuación:

Cj = j/(a+b-j) (Magurran, 1989). Donde: Cj = Índice de Jaccard J = es el número de especies halladas en ambas localidades a = el número de especies de la localidad A b = el número de especies de la localidad B

Nota: Todos los datos se recolectaron durante el trabajo de campo del equipo de biólogos de ENTRIX en Noviembre del 2007.

TABLA 4-1. UBICACIÓN DE LOS TRANSECTOS DE MUESTREO DE HERPETOFAUNA EN LAS ZONAS DE ESTUDIO. Duración Longitud Fecha Coordenadas Condiciones de la zona Tipo de Transectos del de los Tran- m/d/a UTM de muestreo Muestreo Muestreo sectos Unidad SA-53 Bosque maduro remanente, influencia- 10/07- Cuantita- T1E 3 días 294827 9970640 do por el pozo Sacha 53 y actividades 09/07 tivo agrícolas. 100m x 2m a 10/07- Bosque secundario, influenciado por el Cuantita- T2E 3 días 295891 9970927 cada lado 09/07 pozo Sacha 53 y actividades agrícolas. tivo 10/07- Cultivo y pastizales, influenciado por el Cuantita- T3E 3 días 294666 09/07 pozo Sacha 53 y actividades agrícolas. tivo Unidad Control 10/10- Bosque maduro remanente, influencia- Cuantita- T1C 3 días 303150 9977281 12/07 do por actividades agrícolas. tivo 10/10- Bosque secundario, influenciado por Cuantita- 100m x 2m a T2C 3 días 303274 9975630 12/07 actividades agrícolas. tivo cada lado 10/10- Cultivo y pastizales, influenciado por Cuantita- T3C 3 días 303290 9977080 12/07 actividades agrícolas. tivo

Anexo B Datos Biológicos 57 Marzo, 2008 DATOS DE CAMPO TABLA 4-2: LISTA DE SPECIES REGISTRADAS EN LA UNIDAD CONTROL UICN Nombre No. Especie T1CT2CT3CReg CITES Hábitat Estrato Dieta Sen. En Español Ind-Abun. Coloma BUFONIDAE Chaunus marinus Sapo verrugoso 1 1 3 a-c 5-E - G ho In.Ge B Rhinella dapsilis Sapo de cuernos 2 a-c 2-R DD Pi ho In.Es M Sapo de Rhinella margaritifer 1 a 1-R DD Pi ho In.Es M dorso granoso DENDROBATIDAE Ameerega parvula Rana venenosa 1 c-b 1-R CITES (II) Pi ho In.Es M Ameerega hahneli Rana venenosa 1 2 a 3-R CITES (II) Pi ho In.Es M HYLIDAE Hypsiboas granosus Rana arborícola 1 4 a-c 5-E - G ar In.Ge B Hypsiboas calcaratus Rana arborícola 1 2 a 3-R - G ar In.Ge B Hypsiboas lanciformis Rana arborícola 1 3 5 a-C 9-E - G ar In.Ge B Dendropsophus parviceps Rana arborícola 1 1 a 2-R - G ar In.Ge B Scinax garbei Rana de pasto 1 2 1 b-c 4-E - G hr In.Ge B Scinax ruber Rana de pasto 1 3 b-c 4-E - G hr In.Ge B Scinax cruentomma Rana de pasto 1 1 2 b 4-E - G ar In.Ge. B Osteocephalus planiceps Rana arborícola 1 b-c 1-R - Pi ab-ar In.Ge B Osteocephalus taurinus Rana arborícola 2 c 2-R - Pi ab-ar In.Ge B BRACHYCEPHALIDAE Eleutherodactylus conspicillatus Cutin 7 1 a 8-E - G ar In.Ge B Eleutherodactylus ockendeni Cutin 3 4 a 7-E - G ar In.Ge B Eleutherodactylus croceoinguinis Cutin 1 a 1-R - G ar In.Ge B Sapo grano Oreobates quixensis 1 3 b-c 4-R - G ho In.Ge B obscuro LETODACTYLIDAE Leptodactylus pentadactylus Gualag 1 a 1-R - G ho In.Ge B Sapo de Leptodactylus lineatus 1 a 1-R - G ho In.Ge B ingle roja PLETHODONTIDAE Bolitoglossa peruviana Salamandra 1 1 a 2-R - G ar In.Ge B GEKKONIDAE Pseudogonatodes guianensis Salamanquesa 2 b 2-R - G ho In.Ge B Gonatodes concinnatus Salamanquesa 1 a 1-R - G ar In.Ge B POLICHROTYDAE Anolis ortonii Lagartija 1 1 b 2-R - G ar In.Ge B HOPLOCERCIDAE Enyalioides laticeps Sacharuna 1 b 1-R - Pi ho-ar In.Ge B TEIIDAE Ameiva ameiva Lagartija punteada 1 2 1 b 4-E - G om In.Ge B Kenthropix pelviceps Lagartija verde 1 1 1 b 3-R - G om In.Ge B

Anexo B Datos Biológicos 58 Marzo, 2008 UICN Nombre No. Especie T1CT2CT3CReg CITES Hábitat Estrato Dieta Sen. En Español Ind-Abun. Coloma COLUBRIDAE Imantodes cenchoa Culebra ojos de gato 1 a 1-R - G ar Om B Culebra de Pseudoboa coronata 1 a 1-R - G ho Om B cabeza blanca TESTUDINIDAE UICN (VU) Chelonoidis denticulata Motelo 1 a 1-R G ho Om M CITES (II) Tipo de Registro: a = Capturado y liberado; b = Observado; c = Cantos. Abundancia: D= Dominante; A = Abundante; E = Escasa, R: Raro Preferencia de Hábitat: Pi: Pionera; Cl: Clímax; Co = Colonizadoras; G = Generalistas Estrato: ho: hojarasca; ar: arbusto; ab = árbol, hr = herbácea Dieta: In.-Es = Invertebrados especialistas. In-Ge = Invertebrados generalistas, Om = Omnívora Sensibilidad: A =Alta; M = Media; B = Baja T1 = Transecto en bosque maduro remanente, T2 = Transecto en bosque secundario, T3 = Transecto en cultivos y pastizales UICN-(Unión Mundial para la Conservación): EN = En peligro VU = Vulnerable, LR = Bajo Riesgo CITES (Convención Internacional para el Trafico de Especies): Apéndice II = Especies que pueden ser comercializadas, siem- pre y cuando la autoridad administrativa del país de origen certifique que la exportación no perjudica la supervivencia de las especies. Coloma (2006): DD: Datos insuficientes

TABLA 4-3: LISTA DE ESPECIES REGISTRADAS EN LA UNIDAD SA-53 UICN- Nombre en No. Ind- CITES- Hábita Estrat Sen Especie T1E T2E T3E Reg Dieta Español Abun. Colom t o . a BUFONIDAE Chaunus marinus Sapo verrugoso 1 2 a-c 3-R - G ho In.Ge B Sapo de Rhinella dapsilis 1 a 1-R DD Pi ho In.Es M cuernos Sapo de dorso Rhinella margaritifer 1 a 1-R DD Pi ho In.Es M granoso AROMABATIDAE CITES Allobates femoralis Rana venenosa 1 a-c 1-R Pi ho In.Es M (II) DENDROBATIDAE CITES Ameerega parvula Rana venenosa 1 a-b 2-R Pi ho In.Es M (II) CITES Ameerega hahneli Rana venenosa 3 a 3-R Pi ho In.Es M (II) HYLIDAE Hypsiboas granosus Rana arborícola 1 2 a 3-R - G ar In.Ge B Hypsiboas calcaratus Rana arborícola 1 1 a 2-R - G ar In.Ge B Hypsiboas boans Rana arborícola 2 c 2-R - G ar In.Ge B Hypsiboas lanciformis Rana arborícola 3 1 a-c 4-E - G ar In.Ge B Scinax garbei Rana de pasto 1 c 1-R - G hr In.Ge B Osteocephalus planiceps Rana arborícola 3 b-c 3-R - Pi ab-ar In.Ge B BRACHYCEPHALIDAE Eleutherodactylus Cutin 1 1 a 2-R - G ar In.Ge B conspicillatus Eleutherodactylus ockendeni Cutin 2 3 a 5-E - G ar In.Ge B Sapo grano Oreobates quixensis 1 2 c 3-R - G ho In.Ge B obscuro

Anexo B Datos Biológicos 59 Marzo, 2008 UICN- Nombre en No. Ind- CITES- Hábita Estrat Sen Especie T1E T2E T3E Reg Dieta Español Abun. Colom t o . a LEPTODACTYLIDAE Leptodactylus pentadactylus Gualag 1 a 1-R - G ho In.Ge B PLETHODONTIDAE Bolitoglossa peruviana Salamandra 1 1 a 2-R - G ar In.Ge B GEKKONIDAE Pseudogonatodes guianensis Salamanquesa 1 a-b 1-R - G ho In.Ge B Gonatodes concinnatus Salamanquesa 1 a 1-R - G ar In.Ge B Gonatodes humeralis Salamanquesa 1 b 1-R - G ar In.Ge B POLICHROTYDAE Anolis ortonii Lagartija 1 1 b 2-R - G ar In.Ge B HOPLOCERCIDAE Enyalioides laticeps Sacharuna 1 a 1-R - Pi ho-ar In.Ge B TEIIDAE Lagartija Ameiva ameiva 1 1 b 2-R - G om In.Ge B punteada Lagartija Kenthropix pelviceps 1 1 b 1-R - G om In.Ge B verde COLUBRIDAE Culebra ojos Imantodes cenchoa 1 1 a 2-R - G ar Om B De gato Culebra Oxyrhopus petola digitalis 1 a 1-R - G ho Om B bandeada Tipo de Registro: a = Capturado y liberado; b = Observado; c = Cantos. Abundancia: D= Dominante; A = Abundante; E = Escasa, R: Raro Preferencia de Hábitat: Pi: Pionera; Cl: Clímax; Co = Colonizadoras; G = Generalistas Estrato: ho: hojarasca; ar: arbusto; ab = árbol, hr = herbácea Dieta: In.-Es = Invertebrados especialistas. In-Ge = Invertebrados generalistas, Om = Omnívora Sensibilidad: A =Alta; M = Media; B = Baja T1 = Transecto en bosque madurol remanente, T2 = Transecto en bosque secundario, T3 = Transecto en cultivos y pastizales UICN-(Unión Mundial para la Conservación): EN = En peligro VU = Vulnerable, LR = Bajo Riesgo CITES (Convención Internacional para el Trafico de Especies): Apéndice II = Especies que pueden ser comercializadas, siem- pre y cuando la autoridad administrativa del país de origen certifique que la exportación no perjudica la supervivencia de las especies. Coloma (2006): DD: Datos insuficientes

Anexo B Datos Biológicos 60 Marzo, 2008 EVALUACIÓN DE DATOS

TABLA 4-4: VALORES DEL ÍNDICE DE DIVERSIDAD DE SHANNON POR TRANSECTOS DE LA ZONA DE CONTROL Valor del Índice Número de Espe- Número de Índice de Shannon (con base a Logaritmo Transecto de Diversidad cies (S) Individuos (I) Natural) (H’) (Magurran 1987 T1C 29 39 3,2 Diversidad Media T2C 16 31 2,4 Diversidad Media T3C 6 16 1,4 Diversidad Baja

TABLA 4-5: VALORES DEL ÍNDICE DE DIVERSIDAD DE SHANNON POR TRANSECTOS UNIDAD SA-53 Número de Espe- Número de Índice de Shannon Transecto Valor del Índice cies (S) Individuos (I) (con base a Logaritmo Natural) (H’) T1E 21 29 2,7 Diversidad Media T2E 11 15 2,3 Diversidad Media T3E 5 6 1,3 Diversidad Baja

GRÁFICO 4-2: COMPARACIÓN DE LOS VALORES DEL ÍNDICE DE DIVERSIDAD DE SHANNON-WEAVER EN LA UNIDADES SA-53 Y CONTROL

3,5 3,2 3 2,7 2,4 2,5 2,3

2 1,4 1,3 1,5

1 de Shannon-Wiener de 0,5 Valores delValores Ïndice deDiversidad 0 ) ) ) ) ) ) r s p r s p n - n b - b (b c b ( c ( ( ( ( E C E 2 E C 2 C 1 T 3 1 T 3 T T T T

Unidad SA-53 Unidad Control

Anexo B Datos Biológicos 61 Marzo, 2008 GRÁFICO 4-3: COMPARACIÓN DE LOS VALORES DE LA ABUNDANCIA RELATIVA DE LA UNIDADES DE ESTUDIO

Abundance Plot

150

T1E

T2E

100

T3E Abundance

T1C

50

T2C

T3C

0 1 10 100

Rank

TABLA 4-6: SIMILITUD ENTRE AMBIENTES EN BASE A ESPECIES COMUNES DE ANFIBIOS Y REPTILES (COEFICIENTE DE SIMILITUD DE JACCARD EN PORCENTAJE) DE LAS UNIDADES SA-53 Y CONTROL.

T1E T2E T3E T1C T2C T3C

T1E 100

T2E 96 100

T3E 78,57 65,38 100

T1C 42,85 26,66 45,16 100

T2C 82,75 66,66 65,66 95,83 100

T3C 68,75 56,66 82,14 76,92 70,83 100

TABLA 4-7: PREFERENCIAS ALIMENTICIAS DE ANFIBIOS Y REPTILES EN LAS UNIDADES SA-53 Y CONTROL Total de Nicho Trófico Insectívoros Generalistas Insectívoros Especialistas Omnívoros Especies Zona de Estudio 19 5 2 26 Zona de Control 23 4 3 30

Anexo B Datos Biológicos 62 Marzo, 2008

TABLA 4-8: SENSIBILIDAD DE LOS ANFIBIOS Y REPTILES REGISTRADOS EN LAS UNIDADES SA-53 Y CONTROL

Categoría Nº Especies Porcentaje (%)

Unidad SA-53 Alta sensibilidad - - Mediana sensibilidad 5 19,23 Baja sensibilidad 21 80,76 Unidad Control Alta sensibilidad - Mediana sensibilidad 5 16,7 Baja sensibilidad 25 83,3

TABLA 4-9. ESTATUS DE CONSERVACIÓN DE LAS ESPECIES REGISTRADAS

Endémica para Categoría de con- Especies Área Registrada Ecuador servación

Rhinella dapsilis No DD Zona de Estudio

Rhinella margaritifer No DD Zona de Control

TABLA 4-10. ESTATUS DE CONSERVACIÓN DE ACUERDO A LA UICN EN LAS ZONAS DE ESTUDIO Orden y Familia Especie Categoría Área Registrada Testudinidae Chelonoidis denticulata VU Zona de Control (VU) Vulnerable, (EN) En peligro, (LR) Bajo riesgo Fuente: UICN (2006)

TABLA 4-11. ESTATUS DE CONSERVACIÓN DE ACUERDO AL CITES EN LAS ZONAS DE ESTUDIO Orden y Familia Especie Apéndice Área Registrada Testudinidae Geochelone denticulata II Zona de Control Allobates femoralis II Zona de Estudio- Zona de Estudio- Zona Ameerega parvulus II Dendrobatidae de Control Zona de Estudio- Zona Ameerega hanneli II de Control II= Especies que pueden ser comercializadas siempre y cuando la autoridad administrativa del país certifique y se asegure de que no se perjudique su supervivencia Fuente: CITES (2006)

Anexo B Datos Biológicos 63 Marzo, 2008

FOTOGRAFÍAS

Foto 1. Hypsiboas lanciformis (Hylidae), especie Foto 2. Hypsiboas granosus (Hylidae), especie de de rana arborícola que tienen preferencia por rana arborícola que tienen preferencia por sitios sitios alterados. Ocupa el estrato de arbustivo, alterados, pero se la puede encontrar en bosque es de baja sensibilidad. 12 de Noviembre del maduro remanente. Ocupa el estrato de arbustivo y 2007 herbáceo, es de baja sensibilidad. 12 de Noviembre del 2007

Foto 3. Hypsiboas calcaratus (Hylidae), especie Foto 4. Rhinella margaritifer (Bufonidae), especie de de rana arborícola que tienen preferencia por rana terrestre, que tienen preferencia por sitios de sitios alterados, pero se la puede encontrar en bosque maduro remanente. Ocupa el estrato de bosque maduro remanente. Ocupa el estrato de hojarasca, es de baja sensibilidad. 10 de Noviembre arbustivo y herbáceo, es de baja sensibilidad. 9 del 2007 de Noviembre del 2007

Foto 5. Gonatodes concinnatus (Gekkonidae), Foto 6. Chelonoidis denticulata (Testudinidae), especie de lagartija que tienen preferencia por especie de tortuga que tienen preferencia por sitios sitios de bosque maduro remanente, bosque de bosque maduro remanente y bosque secundario. secundario y áreas urbanas. Ocupa Ocupa el estrato de hojarasca, es de mediana generalmente el estrato arbustivo, es de baja sensibilidad. 11 de Noviembre del 2007 sensibilidad. 11 de Noviembre del 2007

Anexo B Datos Biológicos 64 Marzo, 2008

Foto 7. Anolis ortonii (Polichrotydae), especie Foto 8. Oxyrhopus petola digitalis (Colubridae), de lagartija que tiene preferencia por sitios de especie de serpentes que tiene preferencia por sitios bosque maduro remanente y bosque de bosque maduro remanente y bosque secundario. secundario. Ocupa el estrato arbustivo, pero Ocupa el estrato de hojarasca, es una especie no también puede ocupar el estrato herbáceo, es venenosa y su sensibilidad es baja. 12 de Noviembre de baja sensibilidad. 11 de Noviembre del 2007 del 2007

Foto 9. Pseudoboa coronata (Colubridae), Foto 10. Eleutherodactylus ockendeni especie de serpentes que tiene preferencia por (Brachycephalidae), especie de rana que tienen sitios de bosque maduro remanente. Ocupa el preferencia por sitios de bosque maduro remanente estrato de hojarasca, es una especie no y bosque secundario. Ocupa el estrato de arbustivo y venenosa y su sensibilidad es baja 12 de herbáceo, es de baja sensibilidad. 10 de Noviembre Noviembre del 2007 del 2007

Foto 11. Chaunus marinus (Bufonidae), especie Foto 12. Eleutherodactylus conspicillatus de sapo de características generalitas. Ocupa el (Brachycephalidae), especie de rana que tienen estrato de de hojarasca, es de baja sensibilidad. preferencia por sitios de bosque maduro remanente 12 de Noviembre del 2007 y bosque secundario. Ocupa el estrato de arbustivo y herbáceo, es de baja sensibilidad. 11 de Noviembre del 2007

Anexo B Datos Biológicos 65 Marzo, 2008 5 DATOS ENTOMOLÓGICOS

METODOLOGÍA FASE DE CAMPO Para la ejecución de la fase de campo se contó con la colaboración del Sr. Franklin Taco, con quien en las dos unidades de estudio (SA-53 y Control) y en cada uno de sus paisajes se realizaron recorridos de observación y concomitantemente se efectuaron los muestreos de los insectos. Los transectos de colección de insectos, en las dos unidades de estudio, se los trazó en los mismos transectos utilizados para el estudio de flora. En las áreas boscosas (Bmr, Bs y Bmp), los insectos fueron colectados mediante la técnica de nebulización (Erwin 1980) que consiste en establecer un transecto de 100 m de longitud donde se colocó bajo la vegetación arbórea 10 sábanas de 9 m2 de superficie, para posteriormente fumigar (por lapso de 1 minuto) los estratos arbóreos localizados sobre cada una de las sábanas; el insecticida usado en el muestreo fue Permetrina al 3% de concentración (insecticida de inmediata degradación); posterior a dos horas de espera se recogió los insectos caídos sobre las sábanas, los cuales fueron conservados en alcohol al 70%. En las áreas de abiertas (P y C) se trazó un transecto de 100 m de longitud donde se realizaron 50 puntos de colección, para lo cual se aplicó la técnica de golpeteo que consiste en sacudir las gramíneas y ramas de arbustos sobre una sábana de 1 m2, sobre la cual caen los insectos, mismos que son recogidos y conservados en alcohol.

FASE DE GABINETE Para la ejecución de esta fase se contó con la participación de dos biólogas asistentes: Sandra Enríquez y Paulina Rosero. En éste estudio se analizaron las comunidades de los Insectos Coleoptera: Carabidae (depredadores) y Cerambycidae (fitófagos), para identificarlos se usó claves taxonómicas diseñadas por Lawrance and Britton (1994); Reichardt (1977) y Erwin (1990). La evaluación de la diversidad se la realizó de dos maneras: (a) atañe a la acepción más sencilla de la diversidad, esta es, el número de taxa registrados (cantidad especies de la familia Carábidae más Cerambycidae) por paisaje (unidad vegetal) y (b) corresponde al valor expresado por el Índice de Shannon (H´)= Σ Pi (Log N Pi) (Magurran 1989), este valor fue procesado para cada familia separadamente. La interpretación de este índice conforme la escala de Magurran, es la siguiente: los valores inferiores a 1,5 se consideran como diversidad absoluta baja, los valores entre 1,6 a 3 es considerada como diversidad absoluta media y los valores iguales o mayores a 3,1 son considerados como una diversidad absoluta alta. Se comparó la diversidad de las dos zonas en análisis para lo cual se consideró el planteamiento de Hurlbert (1971) quien afirma que para poder realizar comparaciones de

Anexo B Datos Biológicos 66 Marzo, 2008 diversidad entre dos puntos de muestreo se debe trabajar con valores estandarizados, ante lo cual recomienda la técnica de Rarefracción (Magurran 1989) pues ésta proporciona valores estandarizados de diversidad (calcula el número de especies esperado para cada punto de muestro partiendo de un valor común, el cual corresponde al valor del punto de muestreo con la menor cantidad de individuos1); los resultados obtenidos se los expresa a modo de curvas de estimación de especies, para lo cual se puede usar el software Estimates (Colwell 2006) el cual provee de intervalos de confianza al 95% de significación estadística, lo que permite determinar si existen o no diferencias significativas entre dos curvas de diversidad. Bajo esta metodología, se comparó la estructura de la comunidad de escarabajos (Carabidae y Cerambycidae) de los Bosques maduros remanentes (Bmr) y Bosques secundarios (Bs) de ambas unidades de estudio, para lo cual se usó el test estadístico de análisis de varianza: ANOSIM (estadístico R) que es una vía para determinar si existen o no diferencias significativas entre dos o más grupos de muestras2.

Nota: Todos los datos se recolectaron durante el trabajo de campo del equipo de biólogos de ENTRIX en Noviembre del 2007. TABLA 5-1: PUNTOS DE MUESTREO DE FLORA UNIDAD DE CONTROL Coordenadas Unidad Fecha Hábitat X Y

Control 10/11/2007 302891 9976956 Bosque maduro remanente de tierra firme

Control 11/11/2007 303011 9975216 Bosque secundario

Control 12/11/2007 303044 9975259 Bosque secundario

Control 10/11/2007 303171 9976634 Cultivos

Control 10/11/2007 303004 9976737 Pastizales

TABLA 5-2 PUNTOS DE MUESTREO UNIDAD PRINCIPAL SA-53 Coordenadas Unidad Fecha Hábitat X Y

SA-53 07/11/2007 294613 9970318 Bosque maduro remanente de tierra firme

SA-53 09/11/2007 295651 9970573 Bosque secundario

SA-53 09/11/2007 295601 9970573 Bosque secundario

SA-53 09/11/2007 294340 9970334 Cultivos

SA-53 09/11/2007 294704 9970287 Pastizales

SA-53 09/11/2007 294936 9970585 Bosque maduro de pantano

1 que para el presente estudio, entre los bosques maduros corresponde a Bmr Zona estudio y para el caso de los Bosques secundarios corresponde a Bs Zona estudio-; 2 Analysis of similarities: ANOSIM, provides a way to test statistically whether there is a significant difference between two or more groups of sampling units. Function anosim operates directly on a dissimilarity matrix. A suitable dissimilarity matrix is produced by functions dist or vegdist. The method is philosophically allied with NMDS ordination (isoMDS), in that it uses only the rank order of dissimilarity values. If two groups of sampling units are really different in their species composition, then compositional dissimilarities between the groups ought to be greater than those within the groups. The anosim statistic R is based on the difference of mean ranks between groups (r_B) and within groups (r_W): R = (r_B - r_W)/(N (N-1) / 4) The divisor is chosen so that R will be in the interval -1 ... +1, value 0 indicating completely random grouping. The statistical significance of observed R is assessed by permuting the grouping vector to obtain the empirical distribution of R under null-model (Clarke 1993)

Anexo B Datos Biológicos 67 Marzo, 2008

DATOS DE CAMPO TABAL 5-3: LISTA DE ESPECIES DE CARABIDAE REGISTRADAS EN LAS DOS UNIDADES DE ESTUDIO Zona Principal Zona Control Bosque Géneros Bosque maduro Bosque Bosque maduro Bosque maduro Sensibilidad remanente secundario de pantano secundario remanente Onota sp. 1 6 Hyboptera sp. 1 1 Lebia sp. 1 Agra sp. 8 4 6 2 X Batesiana sp. 4 1 1 Hyboptera sp. 1 1 1 Agra sp. 4 2 3 1 X Platynus sp. 1 Batesiana sp. 1 Helluomorphoides sp. 3 Agra sp. 2 X Lebia sp. 7 2 Tachis sp. 1 Lebia sp. 1 Lebia sp. 3 Agra sp. 1 3 1 Inna sp. 1 1 Onota sp. 1 1 Pachyteles sp. 1 X Calleida sp. 4 1 X Inna sp. 5 Lebia sp. 6 1 Colliuris sp. 1 Aspasiola sp. 1 Agra sp. 1 1 1 Pentagonica sp. 1 Calleida sp. 2 No determinado 17 Lebia sp. 3 Agra sp. 1 1 X Ogygium sp. 3 X Pentagonica sp. 2 Thoasia sp. 2 No determinado 1 Lebia sp. 1 Coptodera sp. 1 X Epikastea sp. 1 X Cylindronotum sp. 1 1 Agra sp. 1 X Inna sp. 1 2 Agra sp. 1 X

Anexo B Datos Biológicos 68 Marzo, 2008 Zona Principal Zona Control Bosque Géneros Bosque maduro Bosque Bosque maduro Bosque maduro Sensibilidad remanente secundario de pantano secundario remanente Epikastea sp. 1 Lebia sp. 1 Lebia sp. 1 Agra sp. 1 X Askalaphium sp. 1 1 Cylindronotum sp. 1 Pseudotoglossa sp. 2 Inna sp. 2 Agra sp. 3 X Totales 27 43 55 16 18

TABLA 5-4: LISTA DE ESPECIES DE CERAMBYCIDAE REGISTRADAS EN LAS DOS UNIDADES DE ESTUDIO Zona Principal Zona Control Géneros Bosque maduro Bosque Bosque maduro Bosque maduro Bosque remanente secundario de pantano remanente secundario Amphicnaeia sp. 0 1 0 0 0 Sin Determinar 0 1 0 2 0 Rosalba sp. 0 3 0 0 1 Carterica sp. 0 1 0 2 1 Nyssodrysina sp. 0 1 0 0 2 Leiopus sp. 0 1 0 0 1 Estola sp. 0 1 0 0 0 Epectasis sp. 0 1 0 0 0 Adetus sp. 0 2 0 0 0 Estola sp. 0 1 0 0 0 Bebelis sp. 10 1 0 0 0 Amphicnaeia sp. 1 1 0 1 0 Sin Determinar 0 1 0 0 0 Hippopsis sp. 1 1 0 0 0 Lepturges sp. 0 1 0 0 0 Estola sp. 1 0 0 0 0 Urgleptes sp. 1 0 0 0 0 Lydipta sp. 1 0 0 0 0 Colobothea sp. 2 0 0 0 0 Nyssodrysternum sp. 2 0 0 0 0 Bebelis sp. 1 0 0 0 0 Nyssodrysternum sp. 1 0 0 0 0 Adetus sp. 7 0 0 0 0 Adetus sp. 2 0 0 0 0 Drycothaea sp. 1 0 0 0 0 Lepturges sp. 1 0 0 0 0 Nealcidion sp. 1 0 0 0 0 Bebelis sp. 1 0 0 0 0 Nyssodrysina sp. 1 0 0 0 0 Lydipta sp. 1 0 0 0 0 Leptostylus sp. 1 0 0 0 0

Anexo B Datos Biológicos 69 Marzo, 2008 Zona Principal Zona Control Géneros Bosque maduro Bosque Bosque maduro Bosque maduro Bosque remanente secundario de pantano remanente secundario Sin Determinar 1 0 0 0 0 Eucharitolus sp. 0 0 1 0 0 Leptostylus sp. 0 0 4 0 0 Sin Determinar 0 0 1 0 0 Anisopodus sp. 0 0 1 0 0 Amphicnaeia sp. 0 0 1 0 0 Anisopodus sp. 0 0 1 0 0 Nyssodrysternum sp. 0 0 1 0 0 Lepturges sp. 0 0 1 0 0 Rosalba sp. 0 0 0 1 0 Anisopodus sp. 0 0 0 1 0 Drycothaea sp. 0 0 0 1 0 Nyssodectes sp. 0 0 0 2 0 Amphicnaeia sp. 0 0 0 1 0 Sin Determinar 0 0 0 1 0 Lepturges sp. 0 0 0 1 1 Hypsioma sp. 0 0 0 0 1 Lepturges sp. 0 0 0 0 1 Hesychotypa sp. 0 0 0 0 1 Nyssodrysina sp. 0 0 0 0 1 Colobothea sp. 0 0 0 0 2 Lepturges sp. 0 0 0 0 1 Amphicnaeia sp. 0 0 0 0 1 Lophopoeum sp. 0 0 0 0 1 Nyssodrysina sp. 0 0 0 0 1 Lepturges sp. 0 0 0 0 1 Ozineus sp. 0 0 0 0 1 Palame sp. 0 0 0 0 1 Calliia sp. 0 0 0 0 1 Totales 38 18 11 13 20

ANÁLISIS DE DATOS

TABLA 5-5. NÚMERO DE ESPECIES DE COLEOPTERA REGISTRADOS UNIDAD CONTROL

Bosque maduro remanente Bosque secundario Cultivos y pastizales Taxa (Bmr) (Bs) (C-P) Carabidae 10 13 4 Cerambycidae 10 18 2

Anexo B Datos Biológicos 70 Marzo, 2008

TABLA 5-6. NÚMERO DE INDIVIDUOS DE COLEOPTERA REGISTRADOS UNIDAD CONTROL Bosque maduro remanente Bosque secundario Cultivos y pastizales Taxa (Bmr) (Bs) (C-P) Carabidae 16 18 8 Cerambycidae 13 30 4 Total 29 38 12

Al procesar mediante el Índice de Shannon los datos de Coleoptera obtenidos en la unidad control, se registró los siguientes valores: • Bmr: Diversidad media (2,01 para Carabidae y 2,13 para Cerambycidae). • Bs: Diversidad media (2,39 para Carabidae y 2,85 para Cerambycidae). • C-P: Diversidad baja (1,20 para Carabidae y 0,34 para Cerambycidae).

GRÁFICO 5-1: PORCENTAJES DE ESPECIES SENSIBLES REGISTRADAS UNIDAD CONTROL

Especies Sensibles

35% 30% 25% 20% 15%

Porcentajes 10% 5% 0% Bmr Bs C-P Hábitats

TABLA 5-7. NÚMERO DE ESPECIES DE COLEOPTERA UNIDAD SA-53

Bosque maduro Bosque Bosque maduro Cultivos y Taxa remanente secundario de pantano pastizales Bmr Bs Bmp C-P Carabidae 11 19 20 3 Cerambycidae 20 15 8 2 Total 31 34 28 5

Anexo B Datos Biológicos 71 Marzo, 2008 TABLA 5-8. NÚMERO DE INDIVIDUOS DE COLEOPTERA UNIDAD SA-53

Bosque maduro Bosque Bosque maduro Cultivos y Taxa remanente secundario de pantano pastizales Bmr Bs Bmp C-P Carabidae 27 43 55 14 Cerambycidae 38 18 11 5 Total 65 61 66 19

Al procesar los datos de Coleoptera obtenidos en los diferentes paisajes de Unidad SA-53, mediante el Índice de Shannon se obtiene los siguientes valores: • Bmr: Diversidad Media (2,29 para Carabidae y 2,56 para Cerambycidae). • Bs: Diversidad Media (2,64 para Carabidae y 2,63 para Cerambycidae). • Bmp: Diversidad Media (2,64 para Carabidae y 1,89 para Cerambycidae). • C-P: Diversidad Baja (1,04 para Carabidae y 1,05 para Cerambycidae).

GRAFICO 5-2: PORCENTAJES DE ESPECIES SENSIBLES REGISTRADAS EN LOS HÁBITATS DE ZONA ESTUDIO.

Especies Sensibles

45% 40% 35% 30% 25% 20%

Porcentaje 15% 10% 5% 0% Bmr Bs Bmp C-P Hábitats

TABLA 5-9. COMPARACIÓN, ENTRE LAS DOS ZONAS ANALIZADAS, DE LOS VALORES DE RIQUEZA DE ESPECIES Y NÚMERO DE INDIVIDUOS DE COLEOPTERA (CARABIDAE MÁS CERAMBYCIDAE) CORRESPONDIENTES A BOSQUE MADURO REMANENTE. Hábitat Zona estudio Zona control 31 sp. 20 sp. Bmr 65 indvds. 29 indvds.

Anexo B Datos Biológicos 72 Marzo, 2008

GRÁFICO 5-3: CURVAS DE DIVERSIDAD RAREFRACTADAS DE CARABIDAE BMR UNIDAD SA-53 Y CONTROL

16

12

Bmr-Unidad control

8 Bmr-Unidad SA-53 ero de especi es Núm

4

0

048121620

Número de individuos Las líneas punteadas representan el intervalo de confianza (95%) de la curva Bmr de SA-53. Obsérvese que la curva de Bmr de la zona control está dentro de los límites de confianza superior e inferior de la curva Bmr de la zona SA-53, lo que implica que no hay diferencias significativas en la Diversidad entre los Bmr de las dos zonas en análisis.

GRÁFICO 5-4: CURVAS DE DIVERSIDAD RAREFRACTADAS DE CERAMBYCIDAE BMR UNIDAD SA-53 Y CONTROL.

16

12

Bmr-Unidad control

8

Bmr-Unidad SA-53 úmero deespecies N

4

0

0481216

Número de individuos Las líneas punteadas representan el 95% del intervalo de confianza de la curva Bmr de SA-53. Obsérvese que la curva de Bmr de la Unidad Control está dentro de los límites de confianza superior e inferior de la curva Bmr de SA-53, lo que implica que no hay diferencias significativas en la Diversidad entre los Bmr de las dos zonas en análisis.

Anexo B Datos Biológicos 73 Marzo, 2008 GRÁFICO 5-5. COMPARACIÓN PORCENTUAL DE ESPECIES SENSIBLES REGISTRADAS EN BOSQUE MADURO REMANENTE (BMR), BOSQUE SECUNDARIO (BS) Y CULTIVOS-PASTIZALES (C-P) CORRESPONDIENTES A LAS UNIDADES SA-53 Y CONTROL

Especies Sensibles

35% 30% 30% 27% 25% 21% 20% 17% 15%

Porcentaje 10% 5% 0% 0% 0% Bmr Bs C-P Bmr Bs C-P Z.estudio Z.estudio Z.estudio Z.control Z.control Z.control Hábitats

TABLA 5-10: COMPARACIÓN, ENTRE LAS DOS ZONAS ANALIZADAS, DE LOS VALORES DE RIQUEZA DE ESPECIES Y NÚMERO DE INDIVIDUOS DE COLEOPTERA (CARABIDAE MÁS CERAMBYCIDAE) CORRESPONDIENTES A BOSQUE SECUNDARIO. Hábitat Zona estudio Zona control 34 especies 31 especies Bs 61 indivds. 38 indivds.

GRÁFICO 5-5: CURVAS DE DIVERSIDAD RAREFRACTADAS DE CARABIDAE CORRESPONDIENTES A BS DE AMBAS UNIDA- DES DE ESTUDIO

16

12 Bs-Unidad control

Bs-Unidad SA-53 8 ero de especi es Núm

4

0

048121620

Número de individuos Las líneas punteadas representan el 95% del intervalo de confianza de la curva Bs-SA-53. Obsérvese que la curva de Bs-Zona control está dentro de los límites de confianza superior e inferior de la curva Bs-Zona estudio (SA-53), lo que implica que no hay diferencias significativas en la diversidad entre los Bs de las dos zonas en análisis.

Anexo B Datos Biológicos 74 Marzo, 2008

GRÁFICO 5-6: CURVAS DE DIVERSIDAD RAREFRACTADAS DE CERAMBYCIDAE CORRESPONDIENTES A BS DE AMBAS UNIDADES DE ESTUDIO

25

20

Bs-Unidad control

15 ecies

sp Bs-Unidad SA-53

ero e de 10 m ú N

5

0

048121620

Número de individuos Las líneas punteadas representan el 95% del intervalo de confianza de la curva Bs-Zona estudio (SA-53). Obsérvese que la curva de Bs-Zona control está dentro de los límites de confianza superior e inferior de la curva Bs-Zona estudio, lo que implica que no hay diferencias significativas en la diversidad entre los Bs de las dos zonas en análisis.

Anexo B Datos Biológicos 75 Marzo, 2008

FOTOGRAFÍAS

Foto 1. Instalación de sábanas de recolección Foto 2. Fumigación de los estratos arbóreos. de Insectos. Noviembre 2007. Noviembre 2007.

Foto 3. Coleoptera, Carabidae, escarabajo Foto 4. Coleoptera, Carabidae, escarabajo Inna sp.1. Cylindronotum sp.1. Noviembre 2007. Noviembre 2007.

Foto 5. Coleoptera, Carabidae, escarabajo Foto 6. Coleoptera, Carabidae, escarabajo Thoasia Apsasiola sp.1. Noviembre 2007. sp.1. Noviembre 2007.

Anexo B Datos Biológicos 76 Marzo, 2008 Annex C

Satellite Image Evaluation Processes

September 2008 Study Area Selection Process

In order to identify areas with similar general characteristics within the same ecological landscape, we used Geographical Information Systems (GIS). The objective of this analysis was to provide the expert biologists with appropriate sites for their comparative study. Specifically, an area with anthropogenic development and petroleum production and another area with a similar pattern of anthropogenic development but without petroleum production. The area surrounding the SA-53 wellsite, within the Sacha field, was selected as the study area because it has both petroleum production and agricultural development activities. It was harder to identify an area comparable to the SA-53 area to use as the control area.

Once the study area was selected (SA-53), a 16 km2 quadrant was selected around the SA-53 wellsite. The study area represents an area with the presence of both agricultural development and petroleum production. Several layers of geographical information in GIS were used to select the SA-53 study area. The layers that were used to define the 16 km2 quadrant include density and distribution of roads, rivers, and petroleum infrastructure.

After this first step, statistical calculations were conducted in order to evaluate the soil cover inside the 16 km2 quadrant and divide the area into different soil cover types. Ellis GeoSpatial, a consulting firm that specializes in GIS, prepared the soil cover classification maps using Landsat TM 7 images from October, 2002. These images have a maximum resolution of 30m. The statistical soil cover calculations include 15 different soil cover types including forests, open vegetation areas, developed areas (roads, communities, industrial/petroleum areas) and water bodies (rivers and ponds).

The potential control areas were identified as quadrants with similar soil cover and roads as the 16 km2 quadrant identified as the study area (SA-53), but in areas with no petroleum infrastructure (e.g., wells, pipelines, etc.). Two quadrants were identified as potential control areas. Both of these areas are located between the Sacha and Shushufindi fields.

In order to conduct a complete evaluation during the field study, the quadrants identified during the first part of the process were reduced in size. The 16 km2 quadrants (i.e., 4 km long and 4 km wide) were reduced to areas of 4 km2 (i.e., 2 x 2 km) using a process similar to the one used to determine soil cover. For this second phase, Quickbird satellite images from August 2007, which have a resolution of up to 2m, were used. First, it was concluded that no major changes in soil cover were identified between these images and the 2002 images. Next, these Quickbird images were used to prepare field maps.

The field team inspected the study area and both control areas in order to determine their similarity. The study area (SA-53) was visited first, and a field inventory of the soil cover was prepared. Both control areas were inspected next. One of them was located in an area more densely populated than the SA-53 study area, and was discarded. The second potential control area had more swamps than the SA-53 study area, and it was also discarded. Other potential control areas were identified using the images, so that they could also be evaluated in the field. Additionally, topographic maps were prepared based on Digital Elevation Models (DEM) obtained at that time in order to determine the similarity in relief.

During the selection process, layers of geomorphic data as well as infrared images were used to identify swamp areas similar to SA-53. Based on this additional information, several more potential control areas were identified. Therefore, a control area very similar to the study area (SA-53) was identified. This area was then used for this comparative study.

September 2008 Landcover Classification Process

The landcover classification maps of the former Petroecuador-Texaco Concession were derived from multispectral Landsat satellite images acquired in 1973, 1979, 1987, and 2002. Spectral classification of different features on the earth’s surface is possible because multispectral satellites such as Landsat collect reflected light of different wavelengths (“bands”). Features on the earth’s surface, (for example, vegetation, water, exposed soils, pavement, etc.) absorb and reflect these wavelength bands to varying degrees. The spectral differences between features enable classification by computers using sophisticated image- processing software.

The landcover classification map developed by the computer is visually inspected and improved by a remote sensing analyst based on spatial patterns interpreted from the imagery and ground training sites. Accuracy of landcover maps varies depending on many factors; including, type of sensor, the spatial resolution of the image, inherent spectral differences of the features being mapped, type and number of classes, and the quality of ground training sites.

The landcover maps developed for the former Petroecuador-Texaco Concession based on the 1973, 1979, 1987, and 2002 images have four classes: 1) forest (primary and/or original growth/undisturbed), 2) developed (nonforest, agriculture, grassland, roads, clearings, and secondary growth), 3) water,and 4) clouds.

One source of classification error is dense vegetation regrowth or closed-canopy agricultural groves (“developed”) being assigned to the “forest” class based on spectral similarity. Other sources of error are the degree of mixing within pixels and the type of regrowth. The older 1973 and 1979 Landsat MSS sensors collected 4 different wavelength bands in 57-meter pixels while the 1987 and 2002 Landsat TM sensors collected 6 different bands in 28.5-meter pixels. This sensor difference is less significant for mapping forest but more significant for detecting small developed areas on the 1970’s imagery compared with the 1987 and 2002 imagery. Accuracy of the classification maps is highest across forested terrain, between clearings and forest, within settlements and along roads, and with water bodies.

The Landsat images for the four time periods were each tested using different spectral classification algorithms provided by ENVI image-processing software to determine what process was optimum. The 1973, 1979 and 1987 images were classified using the unsupervised ISODATA technique. This unsupervised classification technique calculates class means evenly distributed in the data space. Then it iteratively clusters the remaining pixels using minimum-distance techniques. Each iteration recalculates means and reclassifies pixels with respect to the new means. Iterative class splitting, merging, and deleting are done based on input threshold parameters. All pixels are classified to the nearest class.1 Classes were evaluated and combined by the remote sensing analyst into four groups – forest, developed, water, and clouds.

The 2002 Landsat images were classified in great detail with training sites using the supervised Maximum Likelihood technique. Maximum likelihood classification assumes that the statistics for each class in each band are normally distributed and calculates the probability that a given pixel belongs to a specific class. Each pixel is assigned to the class that has the highest probability (i.e., the maximum likelihood).2 To enable direct comparison with the 1973, 1979, and 1987 landcover maps, the 2002 classes were evaluated and combined by the remote sensing analyst into four groups – forest, developed, water, and clouds.

1 ITT Environmental Visualization (ENVI 4.3) software; Tou, J. T. and R. C. Gonzalez, 1974. Pattern Recognition Principles, Addison-Wesley Publishing Company, Reading, Massachusetts.

2 ITT Environmental Visualization (ENVI 4.3) software; J.A.Richards, 1999, Remote Sensing Digital Image Analysis, Springer-Verlag, Berlin, p. 240.

September 2008

The computer classification of the Landsat images created “raster-image maps” with four different categories of pixels representing the four classes – forest, developed, water, and clouds. These raster- image maps were generalized using a 3x3 majority filter to eliminate isolated pixels and short strings of single pixels, and provide a minimum-mapping unit of ~50m for Landsat TM and ~100m for Landsat MSS. The generalized raster-image maps were converted to GIS vector polygon maps (shapefiles) using ENVI software. Each polygon in the GIS landcover maps represents one of the four classes with the geographic extent of that polygon provided as both square meters and hectares. These maps were used to identify and evaluate the quadrants used during the field investigation.

September 2008

Annex D

References

ADDITIONAL BIBLIOGRAPHY

Title Author Information

Aboriginal Agriculture and land usage in the Amazon Journal of Archaelogical Science 17 (1990), D. R. Piperno Basin, Ecuador 665-667 Environment Department Papers, Accounting for Natural Resources in Ecuador: Contrasting Kellenberg, J. Environmental Economic Series (Paper Methodologies, Conflicting Results No.41). The World Bank, 1996. Agricultural Development in the Upper Amazon of Hiraoka, M., and S. Geographical Review 70, No. 4 (1980), 423- Ecuador Yamamoto 445 Laurence, W.F., A.A. Oliveira, S.G. Laurence, R. Altered Tree Communities in Undistubed Amazonian Condit, C.W. Dick, A. Biotropica 37, No. 2 (2005), 160-162 Forests: A consequence of Global Change? Andrade, H.E.M. Nascimento, T.E. Lovejoy, and J.E.L.S. Ribeiro Banco Interamericano de Desarrollo, No. Alternativas para la Protección del Hábitat y la Southgate, D. ENV-107, Marzo de 1997, Washington, Generación de Ingresos en las Zonas Rurales D.C. Environment and Development Economics, Alternatives to the regulatory approach to biodiverse Southgate, D. 2001 - Cambridge University Press, pp. 106 habitat conservation 110 Aramburu, C.E., and E. Consorcio de Investigación Económica y Amazonía: Procesos Demográficos y Ambientales Bedoya Garland (eds.) Social. Lima, Perú. Marzo de 2003 Amazonian Peasants, Rain Forest Use, and Income Takaski, Y., B.L. Barham, Society and natural Resources, 14:4, 291- Generation: The Role of Wealth and Geographical and O.T. Coomes 308 Factors In: Working Papers on South American An Analysis of Amazonian Hunting Yields as a Function Vickers, W.T. Indians. Number 2, Spring 1980: Studies in of Settlement Age Hunting and Fishing in the Neotropics An Ecological Basis for Integrated Environmental Human and Ecological Risk Assessment Reagan, D.P. Management 12:819-833 (2006) Secretariat of the An Exploration of Tools and Methodologies for Valuation Technical Series No. 28. Montreal, Canada, Convention on Biological of Biodiversity and Biodiversity Resources and Functions pp. 71. Diversity Analysis of Hunting Options by the use of General Food J. Colding Ecological Modelling 110 (1998), 5-17 Taboos Secretatait of the Assessment, Conservation and Sustainable Use of Forest Montreal, SCBD (2001), 130p. (CBD Convention on Biological Biodiversity Technical Series no. 3) Diversity

Biodiversidad y Recursos Genéticos: Una guía para su Estrella, J., R. Manosalvas, Ecociencia, INIAP, MAE, y Abya-Yala uso y acceso en el Ecuador J. Mariaca y M. Ribadeneira (2005)

EarthTrends Country http://earthtrends.wri.org. Accessed Biodiversity and Protected Areas - Ecuador Profiles October, 2007. Kotka IV: Expert Consultation on Global Forest Resources Assessments, Kotka, Biodiversity Indicators in national forest inventories Newton, A. and Kapos, V. Finland, 1-5 July, 2002. Background Paper 6.4

Lawton, J.H., D.E. Bignell, B. Bolton, G.F. Bloemers, P. Biodiversity inventories, indicator taxa and effects of Eggleton, P.M. Hammond, Nature, Vol. 391 (1998), 72-76 habitat modification in tropical forest M. Hodda, R.D. Holts, D.S. Srivastava, and A.D. Watts

Biotic homogenisation: a few winners replacing many McKinney, M.L. and J.L. Trends in Ecology and Evolution 14 (1999), losers in the next mass extinction Lockwood 450-453 Cambios poblacionales y uso del suelo en la cuenca Perz S.G., C.E. Aramburu, Consorcio de Investigacion Economica y amazónica: una comparación entre Brasil, Bolivia, and J. Bremmer Social (2003), Lima, Peru, ed. Colombia, Ecuador, Perú y Venezuela Southgate, D., M. Coles- Can Tropical Forests be Saves by Harvesting Non-Timber Ritchie, and P. Salazar- CSERGE Working Paper GEC 96-02 Products? Canelos

1 ADDITIONAL BIBLIOGRAPHY

Title Author Information

Southgate, D., M.Coles- Case Study No. 3, EPAT/MUCIA Research Can we save tropical forests by harvesting non-timber Ritchie, and P. Salazar- & Training. Madison, Wisconsin. November products? Canelos 1995. Clearing Width and Movements of Understory Rainforest Laurence, S.G.W., and M.S. Biotropica 37, No. 1 (2005), 147-152 Birds Gomez Colonist Farm Income, Off-Farm Work, Cattle, and Human Organization, Vol. 60, No.1 (2001), Murphy, L.L. Differentiation in Ecuador's Northern Amazon 67-79 Complementary Perspectives as a means of Brown, L.A., R. Sierra, D. Environment and Planning A, 24 (1992), understanding regional change: frontier settlement in the Southgate, and L. Labao 939-961 Ecuador Amazon Conserving the terecay (Podocnemis unifilis, Testudines: Caputo, F.P., D. Canestrelli, Pelomedusidae) through a community-based sustainable Biological Conservation 126 (2005), 84-92 and L. Boitani harvest of its eggs Debates, Discusiones y Alternativas Planteadas en torno a la Amazonía - Serie Información para Líderes del Bustamante, T. Fundación Natura, Quito - Ecuador, 1990 Ecuador

Cresswell, W., M. Hughes, R. Mellanby, S. Bright, P. Densities and habitat prefrences of Andean could-forest Catry, J. Chaves, A. Gabela, Bird Conservation International 9 (1999), birds in pristine and degraded habitats in north-eastern H. Martineau, R. Macleod, 129-145 Ecuador F. McPhie, N. Anderson, S. Holt, S. Baradas, C. Chapel, and T. Sanchez

En: “Las zonas de amortiguamiento: un instrumento para el manejo de la Desarrollos legales e institucionales sobre areas biodiversidad. El caso de Ecuador, Perú y protegidas y zonas de amortiguamiento en Bolivia, Moscoso, A.V. Bolivia.” CEBEM-Bolivia, FLASCO, Sede Ecuador y Peru Ecuador, Universidad de Córdoba, ZEU- Justus-Liebig-Universitaet Giessen- Alemania Y Comunidad Europea, 2003. Groves, C., L. Valutis, D. Designing a Geography of Hope: A Practicioner's Vosick, B. Neely, K. Volume I, Second Edition, April 2000. The Handbook to Ecoregional Conservation Planning Wheaton, J. Touval, and B. Nature Conservancy. Runnels Designing Field Studies for Biodiversity Conservation Feinsinger, P. The Nature Conservancy, 2001

Determining impacts of habitat modification on diversity of Journal of Applied Ecology 41 (2004), 744- Hill, J.K., K.C. Hamer tropical forest fauna: the importance of spatial scale 754

Development of Ethnobiologically Diverse Tropical Brazee, R.J., and D. Land Economics 68, No. 4. (1992), 454- Forests Southgate 461 FAO, Roma, Italia. Depart. De Montes; Diagnóstico de los Recursos Hidrobiológicos del Barthem, R.B., H. Guerra, Tratado de Cooperación Amazónica, Amazonas; SPT-TCA no. 22 and M. Valderrama Brasilia, Brasil. Secretaría Pro-Tempore, 1995. Diet and condition of three fish species (Characidae) of Environmental Biology of Fishes 73 Bjosen, B.H. the Andean foothills in relation to deforestation. (2005):1, 61 Sekercioglu, C.H., P.R. Disappearance of Insectivorous Birds from Tropical Ehrlich, G.C. Daily, D. PNAS, vol. 99 (2002), 263-267 Forest Fragments Aygen, D. Goehring, and R.F. Sandi E.P. Centro de Impresion, Quito, Ecuador. Ecología y Biodiversidad del Ecuador Vargas, M. 2002 Ecological Diversity and Its Measurement Magurran, A. Princeton Univ. Press, 1988

Ecologically Noble Amerinidans? Cattle Ranching and Rudel, T.K., D. Bates, and Latin American Research Review, Vol. 37, Cash Cropping among Shuar and Colonists in Ecuador R. Machinguiashi No. 1 (2002), pp. 144-159

Ecology and conservation of birds in coffee plantations: a Bird Conservation International 16 (2006), 1 O. Komar critical review 23 Economic and Environmental impacts of conventional Boltz, F., T.P. Holmes, and Forest Policy and Economics 5 (2003), 69- and reduced-impact logging in Tropical South America: a D.R. Carter 81 comparative review

2 ADDITIONAL BIBLIOGRAPHY

Title Author Information

Ecopolitics and Environmental Nongovernmental Geographical Review 84, No. 1 (1994), 42- Price, M. Orginizations in Latin America 58

Borman, R., C. Vriesendorf, The Field Museum / Fundación para la Ecuador: Territorio Cofán Dureno. Rapid Biological W. Alverson, D. Moskovitz, Sobrevivencia del Pueblo Cofán / Museo Inventories 19 D. Stotz, y A. del Campo. Ecuatoriano de Ciencias Naturales (2007) Effects of deforestation on fish community structure in Freshwater Biology 47, No. 11 (2002), 2246 Bojesn, B.H., and R. Barriga Ecuadorian Amazon Streams 2260 Effects of Human Activities on wild pygmy marmosets in De la Torre, S., C.T. Biological Conservation 94 (2000), 153-163 Ecuadorian Amazonia Snowdon, and M. Bejarano

Effects of Selective Logging on Bat communities in the Peters, S.L., J.R. Malcolm, Conservation Biology, Volume 20, No. 5 Southeastern Amazon and B.L. Zimmerman (2006), 1410-1421

LEEC Paper 89-03. International Institute Efficient Management of Biologically Diverse Tropical Southgate, D. for Environment and Development, London, Forests United Kingdom. 1988. El Deterioro Ambiental Rural – Algunas Alternativas de Fundación Natura – EDUNAT III- AID, Fundación Natura Solución Quito, Ecuador. Octubre de 1990

El Mapa Bioclimático y Ecológico del Ecuador Cañadas Cruz, L. MAG-PRONAREG, Quito-Ecuador, 1983 El precio del petróleo. Conflictos socio-ambientales y Fontaine, G. FLACSO Ecuador, IFEA, y Abya-Yala, 2007 gobernabilidad en la región Amazónica Albuja, L., M. Ibarra, J. Estudio Preliminar de los Vertebrados Ecuatorianos Escuela Politécnica Nacional (editores), Urgiles, and R. Barriga Quito, Ecuador. 1980. Evaluación de Impactos e Indicadores Ambientales. Programa de Capacitación y Asistencia Técnica en Cevallos, J., and P. Ospina Fundación Natura, Quito, Ecuador. Apoyo a la Gestión Ambiental de los Consejos Provinciales. Programa de Evaluación del Impacto Ambiental: Casos de Estudio de Asesoramiento Ambiental Artes Gráficas Latinas, La Paz, Bolivia. Ecuador, Perú y Bolivia para la Región Andina Evaluación Ecológica Rápida: Un manual para usarios de Sobrevila, C, y P. Bath The Nature Conservancy, 1992 América Latina y el caribe

Naughton-Treves, L., N. Expanding Protected Areas and incorporating human Alvarez-Berrios, K. Brandon, Substainability: Science, Practice & Policy / resource use: a study of 15 forest parks in Ecuador and A. Bruner, M. Buck Holland, http://ejournal.nbii.org, Fall 2006, Vol. 2, Peru C. Ponce, M. Saenz, L. Issue 2 Suarez, and A. Treves

Exploring changes in Ecuadorian land use for food de Koning, G.H.J. , A. Journal of Environmental Management 57 production and their effects on natural resources Veldkamp, and L.O. Fresco (1999), 221-237

Fish Community Patterns of Lagoons and Associated Galacatos, K., D.J. Stewart, Copeia 4 (1996), 875-894 Tributaries in the Ecuadorian Amazon and M. Ibarra Forest Products and traditional peoples: Economic, Natural Resources Forum, 26 (2002), 293- Bennett, B.C. biological, and cultural considerations 301

Forest-Dwelling Native Amazonians and the Conservation Redford, K.H., and A. Conservation Biology 7, No. 2 (1993), 248- of Biodiversity: Interests in Common or Collision? Maclean Stearman 255 Human Nature, Vol. 5, No. 4 (1994), 307- From Opportunism to Nascent Conservation Vickers, W.T. 337 Game depletion hypothesis of Amazonian adaption: Data Vickers, W.T. Science 29, No. 4847 (1998), 1521-1522 from a native community deThoisy, B., T. Hrbek, I. Genetic Structure, population dynamics, and conservation Farias, W. Rangel Biological Conservation 133 (2006), 474- of Black Caiman (Melanosuchus niger) Vasconcelos, and A. 482 Lavergne Gatson, K.J., T.M. Proceedings from the Royal Society of Habitat conversion and Global avian biodiversity loss Blackburn, and K.K. London B., 270 (2003), 1293-1300 Goldewijk Harvesting and conservation: are both the possible for the Anderson P.J., and F.E. Forest Ecology and Management 170 palm, Iriartea deltoidea? Putz (2002), 271-283

3 ADDITIONAL BIBLIOGRAPHY

Title Author Information

Thorbjarnarson, J., C. In Klemens M (Ed.) Turtle conservation Human use of turtle: a worldwide perspective Laguex, D. Bolze, M. (2000), pp. 33-84. Smithsonian Institution. Klemens, and A. Meylan Washington, DC. Independent Fact-Finding as a Catalyst for Cross-Cultural Cultural Survival Quarterly, Volume 19, Dialogue - Assessing Impacts of Oil and Gas McCreary, S.T. Issue 3 (1995), 50-55 Development in Ecuador's Oriente Region Indigenous Reserves and Nature Conservation in Conservation Biology 8, No. 2 (1994), 586- Peres, C.A. Amazonian Forests 588 Individual-Based Spatially-Explicit Model of an Herbivore Kostova, T., T. Carlsen, and Lawrence Livermore National Laboratory. and Its Resource: The Effect of Habitat Reduction and J. Kercher Livermore, California. 2002 Fragmentation Influence of diversity and road access on palm extraction Byg, A., J. Voristo, and H. Biodiversity and Conservation 16 (2007), at landscape scale in SE Ecuador Balslev 631-642 Dirección Nacional de Areas Naturales y Vida Silvestre - Informe Interino a la Secretaría del Convenio de Instituto Ecuatoriano INEFAN, Febrero de 1998 Diversidad Biológica sobre la Aplicación del Artículo 6 Forestal y de Areas Naturales y vida Silvestre (INEFAN) Initial effects of petroleum operation on Amazonian Birds: Canaday, C., and J. Biodiversity and Conservation 10, Number Terrestrial Insectivores retreat Rivadeneyra 4 (2001), 567-595

Alvard, M., J.B. Alcorn, R.E. Bodmer, R. Hames, K. Hill, Current Anthropology 36, No. 5 (1995), 789- Intraspecific Prey Choice by Amazonian Hunters J. Hudson, R. Lee Lyman, 818 R.K. Puri, E.A. Smith, and A. Maclean Stearman

Problemas del Desarrollo. Revista La Biodiversidad, el Desarrollo Sostenible y la Crisis Latinoamericana de Economía, julio- Ecológica. Consideraciones en torno a la transformación Guzman Alvarez, J.R. septiembre 2000, Vol. 31, No. 122, p. 59- de la naturaleza en Ecuador 85. Messina J.P., S.J. Walsh, Land tenure and deforestation patterns in the Ecuadorian C.F. Mena, and P.L. Applied Geography 26 (2006), 113-128 Amazon: Conflicts in land conservation in frontier settings Delamater Landscape ecological assessment: A tool for integrating Mortberg, U.M., B. Balfors, Journal of Environmental Management 82 biodiversity issues in strategic environmental assessment and W.C. Knol (2007), 457-470 and planning Nepstad, D.C., A. Verissimo, A. Alencar, C. Nobres, E. Lima, P. Large-scale Impoverishment of Amazonian forests by Lebebvre, P. Schesinger, C. Nature 398 (1999), 505-508 logging and fire Potter, P. Moutinho, E. Mendoza, M. Cochrane, and V. Brooks Blanes, J., R. Navarro, U. Las zonas de amortiguamiento: un instrumento para el Drehwald, T. Bustamante, RISPEGRAF, Quito, Ecuador. Junio de manejo de la biodiversidad. El caso de Ecuador, Perú y A. Moscoso, F. Muñoz, and 2003. Bolivia A. Torres Los Plaguicidas en el Ecuador: Más allá de una simple Sevilla Larrea, R., and P. Fundación Natura, Quito, Ecuador. Enero advertencia Perez de Sevilla de 1985. Loss of insectivorous birds along a gradient of human Canaday, C. Biological Conservation 77 (1997), 63-77 impact in Amazonia Making Space: Community Organization, Agrarian Latin American Perspectives 128, No. 1 Change, and the Politics of Scale in the Ecuadorian Perreault, T. (2003), 96-121 Amazon Mapa General de Clasificación por Capacidad - Fertilidad, IGM / Fundación Peña Durini / Instituto Vallejo, L.M. Suelos del Ecuador Panamericano de Geografía y Historia

Torres, J.S., J. Oviedo Carrillo, J. Albán Gómez, N. Medio Ambiente y Salud en el Ecuador Fundación Natura, marzo de 1992 Reascos Vallejo, R. Barreto Vaquero, y A. Gordillo Tobar

Memorias del Seminario: “Desarrollo Sustentable: Un Fundación Natura Fundación Natura, Quito, 1995 Futuro para la Amazonía”

4 ADDITIONAL BIBLIOGRAPHY

Title Author Information

Modeling Species' geographic distributions for preliminary Anderson, R.P., and E. Biological Conservation 116 (2004), 167- conservation assessments: an implementation with the Martinez-Meyer 179 spiny pocket mice (heteromys) of Ecuador

¿Modelo o Mito? Tecnología de punta y normas Kimerling, J. Abya Yala - FLACSO, 1996 internacionales en los campos petroleros de la Occidental

Modernizando la naturaleza: desarrollo sostenible y Quito: SIMBIOE, 2003. 100p. (ISBN: 9978- conservación de la naturaleza en la Amazonia Vallejo, A. 43-092-X)49 ecuatoriana.

Murciélagos del Ecuador Albuja, L. 2da Edición, Cicetronic Cia. Ltda. Offset. Quito, Ecuador. 1999 International Journal of Sustainable Natural Resources in Indigenous People's Land in Siren, A.H. Development & World Ecology, Vol. 13 Amazonia: A Tragedy of the Commons (2006), 363-374 Nature on Focus: Rapid Ecological Assessment Sayre, R., et al. The Nature Conservacny, 2000

Occupancy-abundance relationships and sampling scales He, F.L., and K.J. Gatson Ecography 23 (2000), 503-511

Oil Palm, Soybeans & critical habitat loss - A Review WWF Forest Conversion Initiative, 2003. Casson, A. Prepared for the WWF Forest Conversion Iniatiative Suiza Organizations and intensifications: Campesino World Development 24, Issue 7 (1996), federations, rural livelihoods and cultural technology in the Bebbington, A. 1161-1177 Andes and Amazonia Patterns of feeding behavior in adult male riodinid Hall, J.P.W., and K.R. Biological Journal of the Linnean Society butterflies and their relationship to morphology and Willmott 69, issue 1 (2000), 1-23 ecology Revista Politécnica Vol. 16 (3): 7-88, Quito, Peces de Agua Dulce Barriga, R. Ecuador. 1991 Secretaría General de la OEA, Plan Maestro para el Ecodesarrollo de la Región Departamento de Desarrollo Regional y Amazónica Ecuatoriana - Diagnóstico Integral de la ECORAE Medio Ambiente, DDRMA. Quito-Ecuador, Región Amazónica Ecuatoriana marzo de 1997.

Planificación y Políticas Ambientales. Proyecto de 1era edición, Fundación Natura. Quito, Capacitación y Asistencia Técnica de Apoyo a la Gestión Kenber, M. Ecuador. Mayo de 1999. Ambiental de los Consejos Provinciales del Ecuador

Plants and People of the Amazonian Rainforest Bennett, B.C. BioScience, Vol. 42, No. 8 (1992), 599-607

Principales Problemas Ambientales, de Salud Pública y Fundación Natura – AID – EDUNAT III, Fundación Natura Saneamiento del Ecuador 1991 Promoting Resource Degradation in Latin America: Southgate, D., and M. Economic Development and Cultural Tropical Deforestation, Soil Erosion, and Coastal Whitaker Change, Vol. 40, No. 4 (1992), 787-807. Ecosystem Disturbance in Ecuador Rapid Tropical Forest Inventory: a Comparison of Higgins, M.A., and K. Conservation Biology 18, No. 3 (2004), 799- Techniques Based on Inventory Data from Western Ruokolainen 811 Amazonia Reforma Agraria y Desarrollo Rural en Ecuador. Gangotena, S.V., and F.M. Conferencia Internacional - Porto Alegre, Ponencia del Gobierno Ecuatoriano - Conferencia Cardenas Brasil, Marzo de 2006 Internacional Reinventing the Well: Approaches to Minimizing the Rosenfeld, A., D. Gordon, Conservation International Policy Papers. Environmental and Social Impact of Oil Development in and M. Guerin-McManus Volume 2/1997. Washington, D.C. the Tropics Report on Tropical Forests and Biological Diversity - (FY 2007 - FY 2012) USAID/ECUADOR, Kernan, B.S., and M. Stern Country Strategy Statement 2006 Phillips, O.L., S. Rose, A. Resilience of Soutwestern Amazon Forests to Conservation Biology 20, No. 6 (2006), Monteagudo Mendoza, and Anthropogenic Edge Effects 1698-1710 P. Nuñez Vargas Revisiting the Myth of the Ecologically Noble Savage in MacLean, A. Culture and Agriculture 49 (1994), 2-6 Amazonia: Implications for Indigenous Land Sampling Butterflies in tropical rainforest: an evaluation of Walpole, M.J., and I.R. Biological Conservation, 87 (1999), 85-91 a transect walk method Sheldon

5 ADDITIONAL BIBLIOGRAPHY

Title Author Information

Scale-Dependent Effects of Habitat Disturbance on Conservation Biology 14 (5), 1435-1440. Hamer K.C., and J.K. Hill Species Richness in Tropical Forests (2000) Situación General de la Conservación de la Biodiversidad OCTA, Secretaría Pro- OCTA, Secretaría Pro-Tempore de en la Región Amazónica Tempore de Ecuador Ecuador, SPT-TCA-ECU-20, 1993 Situación general de la conservación de la biodiversidad en la región amazónica: Evaluación de las áreas Castano Uribe, C. Quito (EC). TCA.19930000.111p. protegidas y estrategias

Situación y necesidades de las Empresas Miembro de Miguel Moyano - ARPEL ARPEL, Febrero de 2007 ARPEL en relación con la gestión de la biodiversidad

In: Key Environments: Amazonia. Ghillean Soils of the Amazon Rainforest Jordan, C.F. T. Prance and Thomas E. Lovejoy, eds. Pergamon Press, Oxford. 1986. Structure and Diversity of stream invertebrate Jacobson, D., R. Schultz, Freshwater Biology 38, No. 2 (1997), 247- assemblages: the influence of temperature with altitude and A. Encalada 261 and latitude Sustainable Use of the Tropical Rain Forest: Evidence Andradre, G.I., and H. Rubio Conservation Biology 8, No. 2 (1994), 545- from the Avifauna in a Shifting Cultivation Habitat Mosaic Torgler 554 in the Columbian Amazon

The Causes of Land Degradation along "Spontaneously" Southgate, D. Land Economics 66, No. 1. (1990), 93-101 Expanding Agricultural Froniters in the Third World

The Common Property Regime of the Huaorani Indians of Lu, F.E. Human Ecology 29, No. 4 (2001), 425-447 Ecuador: Implications and Challenges to Conservation

The effect of organic pollution on the macroinvertebrate Jacobsen, D. Arch. Hydrobiol. 143 (1998), 179-195 fauna of Ecuadorian highland Streams

Cardoso di Silvia, J.M., A.B. Conservation Biology 19, No. 3 (2005), 689- The Fate of the Amazonian Areas of Endemism Rylands, and G.A.B. Da 694 Fonseca The Faunal Components of Lowland South American Vickers, W.T. Interciencia, Vol. 9, No. 6 (1984), 366-376 Hunting Kills The Forest Conversion Process: A Discussion of the Agriculture and Human Values 13, No. 1 Sustainability of Predominant Land Uses Associated with Pichon, F.J. (1996), 32-51 Frontier Expansion in the Amazon The impact of global climate change on tropical forest Miles, L., A. Grainger, and Global Ecology and Biogeography 13 biodiversity in Amazonia O. Phillips (2004), 553-565 The macroinvertebrate fauna of Ecuadorian highland Jacobson, D., and A. Arch. Hydrobiol. 142 (1998), 53-70 streams in the wet and dry season Encalada Gatekeeper Series No. LEEC GK 92-04. The Rationality of Land Degradation in Latin America: International Institute for Environment and Southgate, D. Some Lessons from the Ecuadorian Andes Development, London, United Kingdom. 1992.

The Relation between Income and Hunting in Tropical Siren, A.H., J.C. Cardenas, Ecology and Society 11(1), 44. 2006 Forests: an Economic Experiment in the Field and J.D. Machoa

The Response of Avain Feeding Guilds to Tropical Forest Gray, M.A., S.L. Baldauf, Conservation Biology 21 (1), 133-141. Disturbance P.J. Mayhew, and J.K. Hill (2007)

The Response of some rain forest insect groups to Holloway, J.D., A.H. Kirk- Philosophical Transaction, Royal Society of logging and conversion to plantation Spriggs, and C.V. Khen London, B 335 (1992), 425-436

The Spatial extent of contaminants and the landscape Carlsen, T.M., J.D. Coty, Environmental Toxicology and Chemistry scale: an analysis of the wildlife, Conservation Biology, and J.R. Kercher 23, No. 3 (2004), 798-811 and Population Modeling Literature

Gardner, T.A., M.A. Ribeiro- The Value of Primary, Secondary, and Plantation Forests Junior, J. Barlow, T.C. Conservation Biology 21 (3), 775-787. for a Neotropical Herpetofauna Sauer Avila-Pires, M.S. (2007) Hoogmoed, and C.A. Perez

6 ADDITIONAL BIBLIOGRAPHY

Title Author Information

In: Landscape Ecology and Wildlife Habitat Evaluation: Critical Information for Efroymson, R., T. Carlsen, Toward an Ecological Framework for Assessing Risk to Ecological Risk Assessment, Land-Use H. Jager, T. Kostova, E. Vertebrate Populations from Brine and Petroleum Spills at Management Activities, and Biodiversity Carr, W. Hargrove, J. Exploration and Production Sites Enhancement Practices, ASTM STP 1458. Kercher, and T. Ashwood Kapustka, L., et.al., eds. ASTM International, Pennsylvania. 2004. Tropical Deforestation: Small farmers and land clearing in Rudel, T, y B. Horowitz Columbia University Press, 1993 the Ecuadorian Amazon Begossi, A., R.A.M. Silvano, Uses of Fish and Game by Inhabitants of an Extractive Environment, Development and B.D. do Amaral, and O.T. Reserve (Upper Jurua, Acre, Brazil) Sustainability 1 (1999), 73-93 Oyakawa

Using landscape ecology to focus ecological risk Kapustka, L.A., H. Galbraith, Toxicology and Industrial Health 17 (2001), assessment and guide risk management decision-making M. Luxon, and J. Yocum 236-246

Uso y Conservación de la Fauna Silvestre en la OCTA, Secretaría Pro- OCTA, Secretaría Pro-Tempore de Perú, Amazonía Tempore de Perú SPT-TCA-PER-35, 1995

7