Proceedings of the Tenth Symposium of AER

Total Page:16

File Type:pdf, Size:1020Kb

Proceedings of the Tenth Symposium of AER SK01ST075 INIS-SK--01-008 Atomic Energy Research (AER) Proceedings of the tenth Symposium of AER Moscow >Q Russia 18-22 October 2000 Atomic Energy Research (AER) Proceedings of the tenth Symposium of AER Moscow Russia 18-22 October 2000 Kiadja a KFKI Atomenergia Kutatdintezet Budapest ISBN 963-372-621-2 6 ISBN 963-372-622-0 Foreword The present volume contains 80 papers, presented on the tenth Symposium ofAER, held in Moscow, Russia, 18 - 22 September 2000. The papers are presented in their original form, i.e. no corrections or modifications were carried out. The content of this volume is divided into thematic groups: Core Operation, Fuel Mamagement and Design, Spectral and Core Calculation Methods, Spent Fuel, Transmutations, Core Monitoring, Surveillance and Testing, Reactor Dynamics and Safety Analysis - according to the presentation sequence on the Symposium. At the end of the volume an alphabetical author index is given. Budapest, October 2000 Istvdn Vidovszky PLEASE BE AWARE THAT ALL OF THE MISSING PAGES IN THIS DOCUMENT WERE ORIGINALLY BLANK Contents CORE OPERATION; FUEL MANAGEMENT AND DESIGN P. Darjlek: AER working group B activities in 2000 11 Yu.A. Kukushkin, V.L. Molchanov, V.V. Rozhkov: Improvement of VVER and RBMK reactor fuel state and prospects 15 I. Nemes: Investigation of neutronphysical features of VVER-440 assembly containing differently enriched pins and Gd burnable poison " 21 Tz. Haralampieva, A. Antov, S. Stefanova, G. Passage: Overview on the fuel cycle safety and economy characteristics improvement of the VVER-440/V-230 reactors at the Kozloduy NPP 39 A.N. Nov&ov, A.A. Gagarinski, M.P. Lizorkin, V.N. Proselkov, V.V. Saprykin: Experience of development and implementation of advanced fuel cycle in the WER-440 reactors 63 G.L. Lunin, A.N. Novikov, V.L Pavlov, A.M. Pavlovichev, P.E. Filimonov: Development of four-years fuel cycle based on advanced FA with U-Gd fuel and its implementation to the operating WER-1000 units 75 Gy. Hegyi: The Dukovany load follow benchmark solution 97 Yu.K. Bibilashvily, V.N. Proselkov, A.S. Scheglov, V.F. Kuznetsov: Calculation and experimental substantiation of the VVER fuel ability at high burnups 105 A.S. Dukhovenski, L.L. Kobzar, S.V. Marin, D.A. Oleksuk, M.S. Yudkevich: Concept for VVER-1500 111 P.E. Filimonov, S.P. Averiyanova: Development of methods for control the power and power distribution of VVER-1000 reactor in load follow regimes 127 A.S. Scheglov, V.N. Proselkov, V.D. Sidorenko, G. Passage, S. Stefanova, Tz. Haralampieva, Tz. Peychinov: Comparative calculations of the VVER fuel rod thermo-physical characteristics employing the TOPRA-S and the TRANSURANUS computer codes 133 R. Moukhamadeev, A. Suvorov: Verification of SABINE-3.1 code for calculations of radioactive inventory in reactor shield 147 V.A. Adeev, S.V. Burlov, Y.N. Pytkin), V.V. Saprykin: Features and ways of fuel cycles upgrade at units 1&2 ofKOLANPP 159 SPECTRAL AND CORE CALCULATION J.§varny": Information of AER working group A on improvement, extension and validation of parameterized few-group libraries for VVER-440 and WER-1000 167 S.S. Aleshin, P.A. Bolobov, S.N. Bolshagin, A.P. Lazarenko, A.V. Markov, V.V. Morozov, V.D. Sidorenko, A.A. Suslov, V.M. Tsvetkov: Verification of third generation code package for VVER 169 A.V. Avvakumov, V.M. Malofeev: BARS - a heterogeneous code for 3D pin-by-pin LWR steady-state and transient calculation . 229 Zs. Sz6cs6nyi, L, Korpa"s: Calculation uncertainty of distribution-like parameters in NPP of Paks 249 P.T. Petkov, Tz. Haralampieva, T. Simeonov, I. Stojanova, K. Kamenov: Generation of a library of two-group diffusion parameters for SPPS-1.6 By HELIOS 259 P.T. Petkov: Development of a neutron transport code for many-group two-dimensional heterogeneous calculations by the method of characteristics 271 P. MikoteS: Spectral calculations of VVER-440 FA with Gd burnable absorbers 281 A. Tanskanen: DIMER: A discrete mesh generator for three-dimensional tort radiation transport code 311 N.I. Laletin, A.A. Kovalishin: Application of the SHM and SPCM for calculations of some problems for WER and PWR 317 P. Darjlek, C. Strmensky: HELIOS calculations 331 G. Manturov, B. Bohmer: Neutron flux uncertainty and covariances for spectrum adjustment and estimation of WER-1000 pressure vessel fluences 345 L.P. Abagjan, N.I. Alexeyev, V.I. Bryzgalov, E.A. Gomin, A.E. Glushkov, S.S. Gorodkov, M.I. Gurevich, M.A. Kalugin, S.V. Marin, D.A. Shkarovsky, M.S. Yudkevich: Use of MGU code for Monte-Carlo calculations of WER reactors 353 A.V. Avvakumov, V.M. Malofeev, V.S. Sidorov: Pin-by-pin modeling of fuel cycle and reactivity initiated accidents in LWR 365 V.I. Lebedev: Explicit difference schemes with variable time steps for solving stiff systems of equations 387 G. Hordtfsy, Cs. Mariczy: The solution of the LEU and MOX WER-1000 calculation benchmark with the KARATE-Multicell code 391 P.T. Petkov: Calculation of accurate albedo boundary conditions for three-dimensional nodal diffusion codes by the method of characteristics 407 N.I. Laletin, N.V. Sultanov: Calculations of VVER cells and assemblies by WIMS-7B code 419 A.N. Novikov: Development of VVER physical calculation codes 433 I.R. Suslov: A preliminary result of calculation of extrapolated-to-zero-mesh-size solution (EZMSS) of the second AER kinetic benchmark by finite difference code MAG 449 S.M. Zaritsky, P.A. Platonov: Problems of VVER vessels irradiation and dosimetry 445 I.N.Aborina, P.A.Bolobov, Yu.A.Krainov: Calculation and experimental studies of power distribution in the vicinity of normal and modernized control rods of VVER-440 reactor 471 SPENT FUEL, TRANSMUTATIONS V. Chrapciak: AER Working group E activities in 2000 501 T. Varjoranta: WER nuclear waste management; regulatory experience in Finland 503 A. Koudriavtseva: Regulating aspects of NPP decommissioning in Russia 511 M. LaScek," V. Necas, P. Dayflek: Risk assessment basis for WER - 440 spent nuclear fuel 517 J. Svanry': On the application of MCNP4 code in nuclear reactor design calculations 523 V. Chrapciak: The numerical benchmark CB2-S 535 f. Mikola*§: A simplified solution of the benchmark problem of fuel burnup and isotopic composition in VVER-440 spent fuel 561 M. R. Gual: The calculational VVER burnup credit benchmark no. 3 Results with the ENDF/B-VI Rev.5(1999) 575 A. Schaberg, H. Spilker: Behaviour of high burn-up fuel rod cladding during long-term dry storage in CASTOR casks 583 V. Lelek: AER working group F "TRANSMUTATIONS" activities in 2000 597, V. Lelek: Establishing the design basis for a molten salt demonstrational transmulter * 599 V. Lelek: Open problems in reprocessing of a molten salt reactor fuel 607 V. Lelek, T. Marek: Generalized perturbation theory and source of information through chemical measurements 615 P.N. Alekseev, A.A. Dudnikov, V.V. Ignatiev, N.N. Ponomarev-Stepnoy, V.N. Prusakov, S.A. Subbotin: Nuclear power technology system with molten salt reactor for Transuranium nuclides burning in closed fuel cycle 625 A.A. Dudnikov, S.A. Subbotin: Calculational investigations of plutonium and minor actinides burning in VVER-MSR system 645 CORE MONITORING, SURVEILLANCE AND TESTING I. Nemes: AER working group C activities in 2000 665 N.I. Alexeyev, G.Ya. Andrianov, V.I. Baribkin, Yu.A. Iepanechnikov, V.S. Ionov, Yu. I. Kravchenko, Yu.A. Krainov, A.Yu. Nasedkin, V.K. Obukhov, V.V. Sarbukov: Experimental investigations of the VVER physics in RRC Kurchatov Institute 669 V.S. Ionov, V.F. Gorokhov, Yu.A. Krainov, I.V. Saprykin, V.V. Saprykin, Yu.N. Poliakov, I.A. Boev, D.I. Lisicin: Preparing and measuring of the recriticality temperature at the VVER-440 reactor of 4-th unit of NV NPP at the end of 25-th fuel cycle 691 A.S. Kuzil, S.P. Padun, V.l. Bourian: Development of the in-core monitoring system for VVER-440 703 A.M. Tziboula, I.P. Matveenko, A.L. Kotchetkov, G.M. Mikhailov,V.I. Lependin, V.A. Doulin: Experimental investigations of the LWR cores neutron-physical characteristics using IPPE facilities 717 V.F. Shikalov: Practice and tendency of control of local energy release for safety improvement of nuclear power plant with WER units 727 S.S. Gorodkov, S.V. Marin, S.A. Tsimbalov: In-core SPND response calculation with MCU4 and EGS4 codes 735 REACTOR DYNAMICS AND SAFETY ANALYSIS P. Siltanen: AER working group D on WER safety analysis, Minutes of the meeting in Espoo, Finland, 19-21 June 2000 741 S. Kliem, A. Seidel, U. Grundmann: Definition of the 6-th dynamic AER benchmark - MSLB in a NPP with WER-440 749 S. Mittag, S. Kliem, F.P. Weiss, R. Kyrki-Rajamäki, A. Hämäläinen, S. Langenbuch, S. Danilin, J. Hadek, Gy. Hegyi, A. Kuchin, D. Panayotov: Validation of coupled neutron-kinetic / thermal-hydraulic codes for WER 763 V.A. Bolnov, A.V. Budnikov, S.A. Danilin, S.A. Kryukov, M.P. Lizorkin, Yu.G. Nikiporetz, V.l. Pechenkin, D.L. Shishkov: Code package TIGER-1. WER units calculations results 783 V.K. Ivanov, M.P. Lizorkin, MX. Lukashenko, D.L. Shishkov: BIPR8KN and RELAP codes inter- connection for coupled dynamic calculations of a neutron physics and thermo-hydraulics of a WER facility, with three - dimensional core representation 811 J. Svarny", V. Krysl: Rod drop experiment analysis provided in SKODA JS 819 M. Sedlácek, M. Minar5in: Results of rod drop measurements at NPP Mochovce, Unit 1, Cycle 2 853 S.V. Tsyganov, L.K. Shishkov: Once more on the problem of high negative reactivity measurements 869 G. Alekova, T. Apostolov, R. Prodanova: WWER-1000 steady state calculations by HEXAB-3DI-RADMAGRU code system 875 V.
Recommended publications
  • Search for the Process E+E−→Η′(958) with the CMD-3 Detector
    Physics Letters B 740 (2015) 273–277 Contents lists available at ScienceDirect Physics Letters B www.elsevier.com/locate/physletb + − Search for the process e e → η (958) with the CMD-3 detector R.R. Akhmetshin a,b, A.V. Anisenkov a,b, V.M. Aulchenko a,b, V.Sh. Banzarov a, N.S. Bashtovoy a, D.E. Berkaev a,b, A.E. Bondar a,b, A.V. Bragin a, S.I. Eidelman a,b, D.A. Epifanov a,e, L.B. Epshteyn a,c, A.L. Erofeev a, G.V. Fedotovich a,b, S.E. Gayazov a,b, A.A. Grebenuk a,b, D.N. Grigoriev a,b,c, E.N. Gromov a, F.V. Ignatov a,b, S.V. Karpov a, V.F. Kazanin a,b, B.I. Khazin a,b,1, I.A. Koop a,b, O.A. Kovalenko a,b, A.N. Kozyrev a, E.A. Kozyrev a,b, P.P. Krokovny a,b, A.E. Kuzmenko a,b, A.S. Kuzmin a,b, I.B. Logashenko a,b, P.A. Lukin a,b, K.Yu. Mikhailov a, N.Yu. Muchnoi a,b, V.S. Okhapkin a, Yu.N. Pestov a, E.A. Perevedentsev a,b, A.S. Popov a,b, G.P. Razuvaev a,b, Yu.A. Rogovsky a, A.L. Romanov a, A.A. Ruban a, N.M. Ryskulov a, A.E. Ryzhenenkov a,b, V.E. Shebalin a,b, D.N. Shemyakin a,b, B.A. Shwartz a,b, D.B. Shwartz a,b, A.L. Sibidanov a,d, P.Yu. Shatunov a, Yu.M.
    [Show full text]
  • Summary of the Second Workshop on Liquid Argon Time Projection Chamber Research and Development in the United States
    FERMILAB-CONF-15-149-ND Preprint typeset in JINST style - HYPER VERSION Summary of the Second Workshop on Liquid Argon Time Projection Chamber Research and Development in the United States R. Acciarria, M. Adamowskia, D. Artripb, B. Ballera, C. Brombergc, F. Cavannaa;d, B. Carlsa, H. Chene, G. Deptucha, L. Epprecht f , R. Dharmapalang W. Foremanh A. Hahna, M. Johnsona, B. J. P. Jones i, T. Junka, K. Lang j, S. Lockwitza, A. Marchionnia, C. Maugerk, C. Montanaril, S. Mufsonm, M. Nessin, H. Olling Backo, G. Petrillop, S. Pordesa, J. Raafa, B. Rebela, G. Sininsk, M. Soderberga;q, N. Spoonerr, M. Stancaria, T. Strausss, K. Teraot , C. Thorne, T. Topea, M. Toupsi, J. Urheimm, R. Van de Waterk, H. Wangu, R. Wassermanv, M. Webers, D. Whittingtonm, T. Yanga aFermi National Accelerator Laboratory, Batavia, IL 60510, USA bResearch Catalytics, USA cMichigan State University, East Lansing, MI 48824, USA dYale University, New Haven, CT 06520, USA eBrookhaven National Laboratory, Upton, NY 11973, USA f ETH Zürich, 8092 Zürich, Switzerland gArgonne National Laboratory, Argonne, IL, 60439, USA hUniversity of Chicago, Chicago, IL 60637, USA iMassachusetts Institute of Technology, Cambridge, MA 02139, USA jUniversity of Texas at Austin, TX 78712, USA kLos Alamos National Laboratory, Los Alamos, NM 87545, USA lIstituto Nazionale di Fisica Nucleare, Pavia 6-27100, Italy mIndiana University, Bloomington, IN 47405, USA nCERN, 1217 Meyrin, Switzerland oPrinceton University, Princeton, NJ 08544, USA pUniversity of Rochester, Rochester, NY 14627, USA qSyracuse University, NY 13210, USA rUniversity of Sheffield, Sheffield, South Yorkshire S10 2TN, UK sUniversity of Bern, 3012 Bern, Switzerland t Columbia University, New York, NY 10027, USA uUniversity of California Los Angeles, Los Angeles, CA 90095, USA vColorado State University, Fort Collins, CO 80523, USA – 1 – Operated by Fermi Research Alliance, LLC under Contract No.
    [Show full text]
  • Iw F'tf- 1 -I ÛG 0 Zi
    w^. m.-m?^iw f'tf- 1 -I ÛG 0 Zi Tt;: ANOMALOUS KAGNETiC i-'.OMEKT OF THE MUOM : A REVIEW DF THE THEORETICAL CONTRIBUTIONS j. CUV.ET*, S. NARISON**, H. PERROTTET* and E. de RAFAEL14 ABSTRACT : we review the possible contributions to the muon g-factor anomaly, o^ = — t^ -Z) which arc potentially significant for a comparison between theory .^nd experiment at present. This includes purely ÇF.D perturbation theory effects up to eighth-order ; hadronic effects at fourth end sixth-order ; and weak interaction effects. From these sources we'get a total theoretical contribution O-.JTheory) = (1 155 920.6 ± 12.9) x 10"9 , to be cc.'pared with the latest CERK expc-rinental result £l] , a- (Experiment) <= (1 !G5 895 ± 27) x 10"9 . J'JNE 1«6 76/P.333 K Zïr.*.rz de Pnysique Théorique, CNRS Marseille. *" Boursier de la CEE (Coir.r.unautè Economique Européenne) Postal Address : Centre de r'nysique Théorique - uiRS 31, C'.OT.ir, -'cseph Aiguicr P-Wfc- i - INTRODUCTION The latest published value of the anomalous magnetic cornent of the rcuon ir&ccured by the CCRN \-\uor. Storage Ring Collaboration [ll is The accuracy of this rce a s urcr.G nt represents an improvement by an order of magnitude with respect to tne previous result '. Since then, the Ci'\\ tfuon Storage Ring has been in operation for a certain time and o still further improvement in the accuracy is soon expected. At this level of precision there are contributions to <*• ^ , other than those gevernce uy the quantum electrodynamics of nuons ar.d electrons (Gr-D), like hadronic effects and possibly weak interaction effects, 21 which play an important role '.
    [Show full text]
  • Neutron-Deuteron Scattering and Three-Body Interactions
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 163 Neutron-Deuteron Scattering and Three-Body Interactions PHILIPPE MERMOD ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 UPPSALA ISBN 91-554-6514-5 2006 urn:nbn:se:uu:diva-6739 ! " #$ #%%& '( ) * * * + , - . / , " +, #%%&, 0 1 2 -13 4 , 50 1 -6 6 7, 8 , &', 9 $# , , 4230 : 1))$1&) $1), 1 ** * 1 :) "; , - 1 ** . * . < * 1 , -. 1 . "//= 2>808 * - 2 , - ** * * . * , - * * . "//= . , 4 1 . 6. 2>808 . ?, @ . * . 2>808 . ? . . . 1 6 , / * 1 . * ** . * ** . ** < * , - . @ 1 . 1 , - ** * 1 * ** '%A * , - . * 1 * ** , 1 * @ ? ! " # $" % & '('" " )*+',(- " B + " #%%& 4220 &) 1&# $ 4230 : 1))$1&) $1) ( ((( 1&C': 5 (DD ,6,D E F ( ((( 1&C':7 To Kristina List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I J. Klug, J. Blomgren, A. Ataç, B. Bergenwall, A. Hildebrand, C. Johansson, P. Mermod, L. Nilsson, S. Pomp, U. Tippawan, K. Elmgren, N. Olsson, O. Jonsson, A.V. Prokofiev, P.-U. Renberg, P. Nadel-Turonski,
    [Show full text]
  • Magnetic Particles Studied with Neutron Depolarization and Small-Angle Neutron Scattering
    Magnetic particles studied with neutron depolarization and small-angle neutron scattering R. Rosman Stellingen behorende bij het proefschrift "Magnetic particles studied with neutron depolarization and smali-angie neutron scattering" 1. De bewering van \ eider et al, dat strooivelden rond magnetische inhomogenii.eiten de neutronendepolarisatie niet beïnvloeden, is onjuist. - A. Veider, G. Badurek, II. Weinfurter en K. Stierstadt. J.de Phys. C8 49, 1831 (1988). - Hoofdstuk 2 van dit proefschrift. 2. De analyse van kleine-hoek neutronenverstrooiingsmetingen aan media met magne- tische één-domein deeltjes wordt sterk bemoeilijkt doordat magnetische en nucleaire verstrooiing vaak niet te scheiden zijn. Het eventuele gebruik van een gepolariseerde neutronenbundel verandert hier in het algemeen weinig aan. 3. De door Montfrooij opgegeven fouten in de dynamische structuurfactor van helium zijn sterk gecorreleerd en in strijd met de ruwe meetdata. -VV.Th. Montfrooij. Thesis, Kanters, Aiblasserdam (1990). 4. Gezien de sterke invloed van thermische absorbers op de porositeitsindex van de gecompenseerde neutronenlog C.VL verdient het aanbeveling bij porositeilsmetingen meer gebruik te maken van epithermische loginstrumenten. - R.l'. Alger, S. Locke, W.A.Nagel en H. Sherman. SPE :t565 (1971). - D.V. Ellis, C. Flaum, J.E. Calford en H.D. Scott. SPE 16814 (1987). 5. De ombuiging van lopend universitair wetenschappelijk onderzoek naar derde geld- stroom onderzoek getuigt van korte termijn denken en leidt op de lange duur tot een verarming van het onderzoek. 6. Het hanteren van publicatiescores als beoordelingcriterium voor onderzoekers werkt publicatie van wetenschappelijk weinig interessante artikelen in de hand. 7. Di' voortgang van wetenschappelijk onderzoek is sterk afhankelijk van een goede pre- sentatie.
    [Show full text]
  • Cross Section Measurements with Monoenergetic Muon Neutrinos
    Cross section measurements with monoenergetic muon neutrinos The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Spitz, J. “Cross Section Measurements with Monoenergetic Muon Neutrinos.” Phys. Rev. D 89, no. 7 (April 2014). © 2014 American Physical Society As Published http://dx.doi.org/10.1103/PhysRevD.89.073007 Publisher American Physical Society Version Final published version Citable link http://hdl.handle.net/1721.1/89015 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. PHYSICAL REVIEW D 89, 073007 (2014) Cross section measurements with monoenergetic muon neutrinos J. Spitz Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA (Received 24 February 2014; published 8 April 2014) þ þ The monoenergetic 236 MeV muon neutrino from charged kaon decay at rest (K → μ νμ) can be used to produce a novel set of cross section measurements. Applicable for short- and long-baseline accelerator- based neutrino oscillation experiments, among others, such measurements would provide a “standard candle” for the energy reconstruction and interaction kinematics relevant for charged current neutrino events near this energy. This neutrino can also be exercised as a unique known-energy, purely weak interacting probe of the nucleus. A number of experiments are set to come online in the next few years that will be able to collect and characterize thousands of these events. DOI: 10.1103/PhysRevD.89.073007 PACS numbers: 14.60.Pq, 13.15.+g I.
    [Show full text]
  • Neutron Data Experiments for Transmutation Annual Report 2006/2007
    R-08-18 Neutron data experiments for transmutation Annual Report 2006/2007 J Blomgren, P Andersson, R Bevilacqua, L Nilsson, S Pomp, V Simutkin, A Öhrn, M Österlund Department of Neutron Research, Uppsala University October 2007 CM Gruppen AB, Bromma, 2008 ISSN 1402-3091 Tänd ett lager: SKB Rapport R-08-18 P, R eller TR. Neutron data experiments for transmutation Annual Report 2006/2007 J Blomgren, P Andersson, R Bevilacqua, L Nilsson, S Pomp, V Simutkin, A Öhrn, M Österlund Department of Neutron Research, Uppsala University October 2007 This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the authors and do not necessarily coincide with those of the client. A pdf version of this document can be downloaded from www.skb.se. Summary The project NEXT, Neutron data Experiments for Transmutation, is performed within the nuclear reactions group of the Department of Neutron Research, Uppsala University. The activities of the group are directed towards experimental studies of nuclear reaction probabilities of importance for various applications, like transmutation of nuclear waste, biomedical effects and electronics reliability. The experimental work is primarily undertaken at the The Svedberg Laboratory (TSL) in Uppsala, where the group is operating two world-unique instruments, MEDLEY and SCANDAL. Highlights from the past year: • The TSL neutron beam facility and the MEDLEY detector system have been upgraded. • Funding for a major upgrade of the SCANDAL facility has been approved, and practical work has been initiated. • Three new PhD students have been accepted. • The Uppsala group contributed the largest number of accepted publications (12) at the International Conference on Nuclear Data for Science and Technology, Nice, France, April 22–27, 2007.
    [Show full text]
  • Search for Direct Production of A2 (1320) and F2 (1270) Mesons in E+ E-Annihilation
    Search for direct production of a2(1320) + − and f2(1270) mesons in e e annihilation M.N. Achasov, S.E. Baru, K.I. Beloborodov, A.V. Berdyugin, A.G. Bogdanchikov, A.V. Bozhenok, D.A. Bukin, S.V. Burdin, T.V. Dimova, A.A. Drozdetsky, V.P. Druzhinin, M.S. Dubrovin, I.A. Gaponenko, V.B. Golubev, V.N. Ivanchenko, A.A. Korol, M.S. Korostelev, S.V. Koshuba, G.A. Kukartsev, E.V. Pakhtusova, A.A. Polunin, E.E. Pyata, A.A. Salnikov, S.I. Serednyakov, V.A. Sidorov, Z.K. Silagadze, A.N. Skrinsky, V.V. Shary, Yu.M. Shatunov, A.V. Vasiljev∗ Budker Institute of Nuclear Physics, Novosibirsk State University, Lavrentiev Avenue, 11, Novosibirsk, 630090, Russia Abstract + − A search for direct production of C-even resonances a2(1320) and f2(1270) in e e annihilation arXiv:hep-ex/0009048v1 22 Sep 2000 was performed with SND detector at VEPP-2M e+e− collider. The upper limits of electronic widths of these mesons were obtained at 90 % confidence level: + − Γ(a2(1320) → e e ) <0.56 eV, + − Γ(f2(1270) → e e ) <0.11 eV. PACS: 13.40.Gp; 13.65.+i; 13.85.Rm; 14.40.Cs + − Keywords: e e collisions; Tensor meson; Detector ∗Fax: +7(3832)342163; e-mail: [email protected] 1 1. Introduction At present only branching ratios of pseudoscalar mesons η µ+µ− [5] and π0 e+e− [6] are + − → → Traditional subject of study in e e collisions measured with accuracies of 15% and 8% respec- PC −− are vector states with J =1 .
    [Show full text]
  • 10Ex Lar1-ND: Testing Neutrino Anomalies with 1Ex
    P-1053 December 31, 2013 LAr1-ND: Testing Neutrino Anomalies with Multiple LAr TPC Detectors at Fermilab C. Adams1, C. Andreopoulos2, J. Asaadi3, B. Baller4, M. Bishai5, L. Bugel6, L. Camilleri7, F. Cavanna1, H. Chen5, E. Church1, D. Cianci8, G. Collin6, J.M. Conrad6, G. De Geronimo5, A. Ereditato9, J. Evans10, B. Fleming∗1, W.M. Foreman8, G. Garvey11, R. Guenette12, C.M. Ignarra6, C. James4, C.M. Jen13, B.J.P. Jones6, J. Ho8, L.M. Kalousis13, G. Karagiorgi7, W. Ketchum11, I. Kreslo9, V.A. Kudryavtsev14, D. Lissauer5, W.C. Louis11, C. Mariani13, K. Mavrokoridis2, N. McCauley2, G.B. Mills11, Z. Moss6, S. Mufson15, M. Nessi16, O. Palamara*1, Z. Pavlovic11, X. Qian5, L. Qiuguang11, R. Rameika4, D.W. Schmitz*8, M. Shaevitz7, M. Soderberg3, S. S¨oldner-Rembold10, J. Spitz6, A.M. Szelc1, C.E. Taylor11, K. Terao7, M. Thomson17, C. Thorn5, M. Toups6, C. Touramanis2, V. Radeka5, C. Rudolf von Rohr9, N. Spooner14, T. Strauss9, L. Thompson14, R.G. Van De Water11, M. Weber9, D. Whittington15, B. Yu5, G. Zeller4, and J. Zennamo8 1Yale University, New Haven, CT 2University of Liverpool, Liverpool, UK 3Syracuse University, Syracuse, NY 4Fermi National Accelerator Laboratory, Batavia, IL 5Brookhaven National Laboratory, Upton, NY 6Massachusetts Institute of Technology, Boston, MA 7Columbia University, Nevis Labs, Irvington, NY 8University of Chicago, Enrico Fermi Institute, Chicago, IL 9University of Bern, Laboratory for High Energy Physics, Bern, Switzerland 10University of Manchester, Manchester, UK 11Los Alamos National Laboratory, Los Alamos, NM
    [Show full text]
  • Fall 2001 Vol
    CONTENTS A PERIODICAL OF PARTICLE PHYSICS FALL 2001 VOL. 31, NUMBER 3 Guest Editor MICHAEL RIORDAN Editors RENE DONALDSON, BILL KIRK Contributing Editors GORDON FRASER JUDY JACKSON, AKIHIRO MAKI MICHAEL RIORDAN, PEDRO WALOSCHEK Editorial Advisory Board PATRICIA BURCHAT, DAVID BURKE LANCE DIXON, EDWARD HARTOUNI ABRAHAM SEIDEN, GEORGE SMOOT HERMAN WINICK Illustrations TERRY ANDERSON Distribution C RYSTAL TILGHMAN The Beam Line is published quarterly by the Stanford Linear Accelerator Center, Box 4349, Stanford, CA 94309. Telephone: (650) 926-2585. EMAIL: [email protected] FAX: (650) 926-4500 Issues of the Beam Line are accessible electroni- cally on the World Wide Web at http://www.slac. stanford.edu/pubs/beamline. SLAC is operated by Stanford University under contract with the U.S. Department of Energy. The opinions of the authors do not necessarily reflect the policies of the Stanford Linear Accelerator Center. Cover: The Sudbury Neutrino Observatory detects neutrinos from the sun. This interior view from beneath the detector shows the acrylic vessel containing 1000 tons of heavy water, surrounded by photomultiplier tubes. (Courtesy SNO Collaboration) Printed on recycled paper 2 FOREWORD 32 THE ENIGMATIC WORLD David O. Caldwell OF NEUTRINOS Trying to discern the patterns of neutrino masses and mixing. FEATURES Boris Kayser 42 THE K2K NEUTRINO 4 PAULI’S GHOST EXPERIMENT A seventy-year saga of the conception The world’s first long-baseline and discovery of neutrinos. neutrino experiment is beginning Michael Riordan to produce results. Koichiro Nishikawa & Jeffrey Wilkes 15 MINING SUNSHINE The first results from the Sudbury 50 WHATEVER HAPPENED Neutrino Observatory reveal TO HOT DARK MATTER? the “missing” solar neutrinos.
    [Show full text]
  • Experimental Program at the Long-Baseline Neutrino Facility (ELBNF)
    November 18, 2014 Experimental program at the Long-Baseline Neutrino Facility (ELBNF) Letter of Intent to Form an International Collaboration Executive Summary This Letter of Intent (LOI) brings together a global neutrino community to pursue an accelerator-based long-baseline neutrino experiment, as well as neutrino astrophysics and nucleon decay, with an approximately 40-kton (active mass) modular liquid argon TPC (LAr-TPC) detector located deep underground and a high-resolution near detector. Several independent worldwide efforts, developed through many years of detailed studies, have now converged around the opportunity provided by the megawatt neutrino beam facility planned at Fermilab and by the new significant expansion with improved access foreseen at the Sanford Underground Research Facility in South Dakota. The new international team has the necessary expertise, technical knowledge, and critical mass to design and implement this exciting discovery experiment in a relatively short timeframe. The goal is the deployment of the first 10-kton detector on the timescale of 2021. The PIP-II accelerator upgrade at Fermilab will provide 1.2 MW of power by 2024 to drive a new neutrino beam line at Fermilab. With the availability of space for expansion and improved access at the Sanford laboratory, this international collaboration will develop the necessary framework to design, build and operate a world-class deep-underground neutrino observatory. Fermilab will act as the host laboratory. This plan is aligned with the European Strategy Report and the US HEPAP P5 report. Science Case The study of the properties of the neutrino has already provided many surprises, representing the first evidence in particle physics of physics beyond the Standard Model of particles and interactions.
    [Show full text]
  • An Experimental Program in Neutrinos, Nucleon Decay and Astroparticle Physics Enabled by the Fermilab Long-Baseline Neutrino Facility
    December 22, 2014 An Experimental Program in Neutrinos, Nucleon Decay and Astroparticle Physics Enabled by the Fermilab Long-Baseline Neutrino Facility Letter of Intent Submitted to the Fermilab PAC December 22, 2014 Table of Contents 1 Executive Summary and Introduction ................................................................................................... 3 1.1 Executive Summary .............................................................................................................................. 3 1.2 Introduction ............................................................................................................................................. 4 2 Physics Program .............................................................................................................................................. 6 2.1 Long‐Baseline Neutrino Oscillation Physics ............................................................................... 6 2.1.1 Phenomenology ......................................................................................................................... 6 2.1.2 Mass Hierarchy and CP Violation Sensitivities ............................................................. 9 2.1.3 Beam Optimization ................................................................................................................. 14 2.1.4 Systematic Uncertainties ..................................................................................................... 17 2.2 Physics with a Precision Near Detector.....................................................................................
    [Show full text]