Download [3] ETSI GS NFV-SWA 001 V1.1.1 (2014-12), “Network Functions Virtualisation (NFV); Virtual Network Functions Architecture”, 2014

Total Page:16

File Type:pdf, Size:1020Kb

Download [3] ETSI GS NFV-SWA 001 V1.1.1 (2014-12), “Network Functions Virtualisation (NFV); Virtual Network Functions Architecture”, 2014 Ref. Ares(2019)3653288 - 06/06/2019 Contract No. 777596 INtelligent solutions 2ward the Development of Railway Energy and Asset Management Systems in Europe D2.1 IN2DREAMS Services, Use Cases and Requirements DUE DATE OF DELIVERABLE: 30/06/2018 ACTUAL SUBMISSION DATE: 06/06/2019 Leader/Responsible of this Deliverable: Valeria Bagliano – RINA CONSULTING SPA Reviewed: Y Document status Revision Date Description 1 20/06/2018 First issue 2 31/05/2019 Second issue 3 06/06/2019 Final Version after TMT approval and Quality Check Project funded from the European Union’s Horizon 2020 research and innovation programme Dissemination Level PU Public X CO Confidential, restricted under conditions set out in Model Grant Agreement CI Classified, information as referred to in Commission Decision 2001/844/EC Start date of project: 01/09/2017 Duration: 24 Months IN2D-T2.1-D-UBR-012-02 Contract No. 777596 List of Contributions by Partner Section Description Partner Pages 1 Introduction RINA-C 11 2 Use Cases RINA-C 12-16 The Integrated Communication Platform Sec. 3.1-Sec. 3.6 UNIVBRIS 17-28 3 Sec. 3.7 IASA 28-33 Sec.3.8 IASA/UNIVBRIS 33-37 Sec 3.9 IASA/UNIVBRIS 37-54 Sec. 3.10 PURELIFI 54-56 4 Validation of the Use Cases ISKRATEL 57-67 Techno-Economic Evaluation Sec.5.1 – Sec. 5.3 IASA/UNIVBRIS 67-86 Table 11: Processing Equipment Costs ISKRATEL 69,70 benchmark on Amazon Web Services 73 5 5.1.1.4 Energy Forecasting 5.2.1.4 Pre-heating/pre-cooling RINA-C automation for energy saving Sec. 5.4 RINA-C 86-89 Sec. 5.5 UNIVBRIS/IASA 90-91 IN2D-T2.1-D-UBR-012-02 Page 2 Contract No. 777596 Executive Summary The main objective of WP2 in IN2DREAMS is to provide a communication platform that will be able to interconnect a growing number of devices (metering devices, sensors and smartphones) located either on-board of trains or at the trackside with the Open Data Management (ODM) platform. The objective of this deliverable, in the scope of Task 2.1 of WP2, is to describe the overall architecture of the integrated communication platform. The definition of the system architecture includes technical specifications and service requirements. The deliverable describes optical wireless communication systems and the deployment of the Open Data Management (ODM) platform in 5G. Control and management of the communication platform based on Software Defined Networking (SDN) is also described. This deliverable also describes LiFi technology application for wireless broadband and IoT connectivity within the rolling stock and provides an overview of the use cases examined in IN2DREAMS and developed in agreement with the Shift2Rail project IN2STEMPO. Among the different railway use cases studied and the 3 use cases presented in this deliverable, the use case on commercial line operation (Use Case 1), has been used to demonstrate the IN2DREAMS integrated communication platform. Train measurement setups and data portfolio are provided to validate data analytics infrastructure and design for support of selected use cases. Finally, a technical-economic evaluation is presented, including the estimation of the number of devices installed and the related costs. IN2D-T2.1-D-UBR-012-02 Page 3 Contract No. 777596 Abbreviations and Acronyms Abbreviation Description BBU Base Band Units CAPEX Capital Expenditures (CAPEX) CBM Condition-Based Maintenance CBTC Communications Based Train Control CDPI Control to Data-Plane Interface C-RAN Cloud-RAN DC Data Centres DMP Data Management Platform EMU Electric Multiple Unit EU European Union FH Front Haul FSO Free Space Optics GA Grant Agreement GPP General-Purpose Processors H2020 Horizon 2020 framework programme HH Half-Hour ICT Information and Communication Technology ILP Integer Linear Programming IoT Internet of Things LPF Low Pass Filter LTE Long-Term Evolution MIMO Multiple-Input Multiple-Output MQTT Message Queuing Telemetry Transport MZM Mach-Zehnder Modulator IN2D-T2.1-D-UBR-012-02 Page 4 Contract No. 777596 Abbreviation Description M2M Machine-to-Machine NFV Network Function Virtualization NFVI Network Function Virtualization Infrastructures OCC Operations and Control Centre ODL OpenDayLight ODM Open Data Management OMS Outage Management System OPEX Operating Expense PNF Physical Network Functions PTP Precision Time Protocol QoS Quality of Service REST Representational State Transfer RH Radio Heads SDD Spectral Direct Decoding SDN Software Defined Networking TEA Techno Economic Assessment ToU Time-of-Use VNF Virtual Network Functions VOQ Virtual Output Queues JU Shift2Rail Joint Undertaking WDM Wavelength Division Multiplex IN2D-T2.1-D-UBR-012-02 Page 5 Contract No. 777596 TABLE OF CONTENTS 1 INTRODUCTION ............................................................................................................................ 11 2 USE CASES .................................................................................................................................... 12 2.1 OVERVIEW AND DEFINITION OF THE USE CASES ..................................................................................... 13 2.1.1 USE CASE 1 – COMMERCIAL LINE OPERATION ............................................................................................ 13 2.1.2 USE CASE 2 – STATIONING AND MAINTENANCE OPERATION .......................................................................... 13 2.1.3 USE CASE 3 – ELECTRICAL INFRASTRUCTURE MONITORING ........................................................................... 14 2.2 TECHNICAL CONSTRAINTS AND FUNCTIONAL REQUIREMENTS .................................................................... 15 3 THE INTEGRATED COMMUNICATION PLATFORM ........................................................................... 16 3.1 ODM PLATFORMS IN SUPPORT OF FUTURE RAILWAY SYSTEMS ................................................................... 16 3.2 SCENARIO DESCRIPTION AND KEY TECHNOLOGY COMPONENTS ................................................................. 17 3.3 CONTROL AND MANAGEMENT OF THE INTEGRATED ICT SOLUTION ............................................................. 19 3.4 MODELING AND OPTIMIZATION ......................................................................................................... 21 3.5 MOBILITY CONSIDERATIONS .............................................................................................................. 22 3.6 PERFORMANCE EVALUATION - SIMULATION ENVIRONMENT AND PARAMETERS ............................................. 24 3.7 OPTICAL WIRELESS COMMUNICATIONS SYSTEMS ................................................................................... 26 3.7.1 TECHNICAL SPECIFICATIONS ..................................................................................................................... 26 3.7.2 ADVANTAGES ........................................................................................................................................ 28 3.7.3 CHALLENGES AND ENHANCEMENT TECHNIQUES ........................................................................................... 29 3.7.4 SAFETY ................................................................................................................................................. 30 3.7.5 EXPERIMENTAL DATA ............................................................................................................................. 30 3.8 DEPLOYING THE ODM PLATFORM IN 5G .............................................................................................. 31 3.8.1 INTRODUCTION ...................................................................................................................................... 31 3.8.2 USE CASE DEFINITION ............................................................................................................................. 33 3.8.3 BENCHMARKING FRAMEWORK AND RESULTS .............................................................................................. 34 3.9 COMMUNICATION PLATFORM: CONTROL AND MANAGEMENT BASED ON SOFTWARE DEFINED NETWORKING ....... 35 3.9.1 SDN PRINCIPLES .................................................................................................................................... 36 3.9.2 MININET .............................................................................................................................................. 43 3.9.3 CONTROL PLANE LATENCY IN SDN ............................................................................................................ 46 3.10 LIFI TECHNOLOGY APPLICATION ........................................................................................................ 50 3.10.1 SCENARIO OVERVIEW ............................................................................................................................ 50 3.10.2 TECHNOLOGY SPECIFICATIONS ................................................................................................................ 51 4 VALIDATION OF THE USE CASES..................................................................................................... 52 4.1 REVIEW OF DATA PORTFOLIO AND DATA PROCESSING SETUP ..................................................................... 52 4.2 TWO MAIN DATA ANALYTICS USE CASES: ON-BOARD & PLATFORM DATA ANALYTICS ....................................... 54 4.3 TESTING EDGE VS. PLATFORM DATA ANALYTICS SETUP ............................................................................. 56 4.3.1 FUNCTIONAL VERIFICATION AND TESTING FOR TWO MAIN ANALYTICS USE CASE SETUPS .....................................
Recommended publications
  • Kiepe Electric Gmbh Training Academy New Generation
    – THE – CUSTOMER JULY 2017 GROUP KNORR-BREMSE OF MAGAZINE RAIL SYSTEMS VEHICLE EDITION informer 45 NEWS Kiepe Electric GmbH Electrical traction systems added to portfolio CUSTOMERS + PARTNERS Training Academy Learning from the market leader PRODUCTS + SERVICES New generation VV-T 2.0 oil-free compressor 2 informer | edition 45 | july 2017 | contents editorial 16 New Siemens VELARO TR high-speed trains for Turkey 03 Dr. Peter Radina Member of the Executive Board, 18 Selectron train control systems for the Knorr-Bremse Systeme für Russian GOST market Schienenfahrzeuge GmbH 20 Knorr-Bremse’s involvement in the ”Shift2Rail” European technology initiative news 04 The latest information products + services 22 Running technology monitoring: Enhanced spotlight derailment detection for slab track applications 24 UIC approval for KKLII compact control valve 08 New Knorr-Bremse Development Center 26 Selectron wireless train control technology customers + partners 28 The next generation of oil-free compressors 30 Modern paint shop at IFE manufacturing site 10 Knorr-Bremse RailServices Training Academy in Brno 12 IFE Entrance Systems: Examples of installations for 32 System supplier and full friction range supplier: DB Regio AG, Moscow Metro and Citadis streetcars Optimal friction pairing with Knorr-Bremse 14 iCOM Monitor: The app platform for the rail industry 34 Enhanced door drives from Technologies Lanka E-MZ-0001-EN This publication may be subject to alteration without prior notice. A printed copy of this document may not be the latest revision. Please contact your local Knorr-Bremse representative or check our website www.knorr-bremse.com for the latest update. The figurative mark “K” and the trademarks KNORR and KNORR-BREMSE are registered in the name of Knorr-Bremse AG.
    [Show full text]
  • Annual Report 2019
    Annual report 2019 Commission for Electricity and Gas Regulation Annual report 2019 Table of contents 1. Foreword .................................................................5 3.1.4. Implementation of European regulations and cross-border issues .............30 3.1.4.1. Access to cross-border infrastructure ..........................30 2. Key legislative developments ................................................9 3.1.4.2. Correlation of the development plan for the transmission system with the development plan for the European network...............34 2.1. Key European legislative developments ..................................10 3.1.4.3. Implementation of European regulations CACM, FCA, EB, SO, ER and RfG.............................34 2.2. Key national legislative developments....................................11 3.2. Competition .......................................................40 2.2.1. Capacity payment mechanism .......................................11 3.2.1. Monitoring of wholesale and retail prices ................................40 2.2.2. Offshore wind energy . 12 3.2.1.1. Studies conducted by the CREG ..............................40 2.2.2.1. Introduction of a competitive tendering procedure ................12 3.2.1.2. Monitoring energy market prices for households and small 2.2.2.2. Payment system for farms connected to the MOG.................13 professional users .........................................42 2.2.3. Social tariffs for gas and electricity .....................................14 3.2.2. Monitoring
    [Show full text]
  • RAILWAY NETWORKS CABLE SOLUTIONS and SERVICES a PRACTICAL GUIDE Nexans Railway 2016 Ok5 30/06/2016 12:17 Page2 Nexans Railway 2016 Ok5 30/06/2016 12:17 Page3
    nexans railway 2016_ok5 30/06/2016 12:17 Page1 RAILWAY NETWORKS CABLE SOLUTIONS AND SERVICES A PRACTICAL GUIDE nexans railway 2016_ok5 30/06/2016 12:17 Page2 nexans railway 2016_ok5 30/06/2016 12:17 Page3 Railway Networks cable solutions and services A practical guide 4 Presentation of Railway Networks cables 9 Fire reaction 13 Euroclasses construction directive for cables 14 Main line power cables & components 16 Main line signalling & communication cables & components 18 Train & subway station power cables & components 20 Station communication & safety cables & components 22 Urban mass transit power cables & components 24 Urban mass transit signalling & communication cables & components 26 Railway networks innovating technologies 28 Product families selection tables nexans railway 2016_ok5 30/06/2016 12:17 Page4 Railway Networks cables standards In a world which already Cables elements, LAN cables & standards that integrate counts around twenty Railway networks probably radiating cables. the type of engines, megalopolies of more contain the broadest range the frequency of the power than 10 million inhabitants of cabling solutions, Every cable family is linked feeding network and the and whose urbanization covering a lot of different to bundles of technical climatic conditions. is still expanding, urban, requirements based upon functions : And the mechanical regional and long local or international • Catenary lines and their requirements linked with distance public transport standards, simultaneously contact wires to power the vibrations induced by networks are steadily fulfilling safety functionalities, the train traction. the pantographs, has developing. like for instance fire • High voltage and medium steadily increased These transportation behaviour. voltage power feeder. proportionally with the solutions are privileged • High, medium and low Catenary cables historical development of because they represent voltage distribution the high speed traffic.
    [Show full text]
  • Of the Environmental Impact Assessment
    PKP Polskie Linie Kolejowe S.A. Modernisation of the E-30 railway line on the Kraków- Tarnów-Medyka/state border section Stage Three Environmental Impact Assessment Report – a summary Wrocław, August 2007 Project no. TEN-T 2004-PL-92601-S Issue no. Date August 2007 Prepared by: Lech Poprawski and team Proofread by: Jacek Jędrys Approved by: Erling Bødker General information about the report: • The report on the environmental impact from the investment is part of the preparation stage to modernisation of the E-30 railway line on the Kraków-Tarnów-Medyka/state border section (project no. TEN-T 2004-PL-92601-S”). The orderer is PKP POLSKIE LINIE KOLEJOWE S.A. ul. Targowa 74: 03-734 Warszawa. The Feasibility Study for this investment has been prepared by the consortium of companies COWI A/S, Denmark (consortium leader), BPK Katowice Sp. z o.o., Movares Polska Sp. z o.o. Elekol Wrocław ETC Transport Consultants GmbH Berlin. • The report has been prepared on the basis of the second chapter of the Nature Conservation Law – Procedures in the environmental impact assessment from the planned investments • Such report is indispensable to obtain environmental approval. The synthesis of the report will also be an attachment to the application for financial support for the investment • The report has been prepared for the whole of the investment. Apart from the collective report, it has been divided into two parts (separate part for the podkarpackie and małopolskie province). Scope of the report: The report consists of four parts: - the text, - graphic attachments (maps), - photographic documentation of some objects - standard data forms of the Natura 2000 areas.
    [Show full text]
  • London to Ipswich
    GREAT EASTERN MAIN LINE LONDON TO IPSWICH © Copyright RailSimulator.com 2012, all rights reserved Release Version 1.0 Train Simulator – GEML London Ipswich 1 ROUTE INFORMATIONINFORMATION................................................................................................................................................................................................................... ........................... 444 1.1 History ....................................................................................................................4 1.1.1 Liverpool Street Station ................................................................................................. 5 1.1.2 Electrification................................................................................................................ 5 1.1.3 Line Features ................................................................................................................ 5 1.2 Rolling Stock .............................................................................................................6 1.3 Franchise History .......................................................................................................6 2 CLASS 360 ‘DESIRO’ ELECTRIC MULTIPLE UNUNITITITIT................................................................................... ..................... 777 2.1 Class 360 .................................................................................................................7 2.2 Design & Specification ................................................................................................7
    [Show full text]
  • University of Southampton Research Repository Eprints Soton
    University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk UNIVERSITY OF SOUTHAMPTON FACULTY OF ENGINEERING AND THE ENVIRONMENT Transportation Research Group Investigating the environmental sustainability of rail travel in comparison with other modes by James A. Pritchard Thesis for the degree of Doctor of Engineering June 2015 UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF ENGINEERING AND THE ENVIRONMENT Transportation Research Group Doctor of Engineering INVESTIGATING THE ENVIRONMENTAL SUSTAINABILITY OF RAIL TRAVEL IN COMPARISON WITH OTHER MODES by James A. Pritchard iv Sustainability is a broad concept which embodies social, economic and environmental concerns, including the possible consequences of greenhouse gas (GHG) emissions and climate change, and related means of mitigation and adaptation. The reduction of energy consumption and emissions are key objectives which need to be achieved if some of these concerns are to be addressed.
    [Show full text]
  • Getting on the Right Track
    spotlight LEVERAGED FINANCE GETTING ON THE RIGHT TRACK JOANNA HAWKES OF ANGEL TRAINS EXPLAINS SOME OF THE ISSUES FACING THE ROLLING STOCK LESSOR IN THE FUNDING AND LEASING OF TRAINS TO THE OPERATING COMPANIES. he purpose of this article is to outline the issues facing the rolling stock lessor, both from the perspective of financing the purchase of rolling stock, as well as leasing it to the trains operating companies (Tocs). It focuses mainly on the Tactivities and experiences of Angel Trains (Angel). BACKGROUND. The three rolling stock leasing companies (Roscos) Angel, Porterbrook Leasing and HSBC Rail (formerly Eversholt tandem with extended and renegotiated franchises. As the market Leasing) were originally formed in 1994 out of the privatisation of has developed, lease contracts have become more bespoke and very British Rail. Their business is owning, maintaining and leasing rolling heavily negotiated. stock. At the time of public offer, fears of re-nationalisation under For a number of reasons – partly strategic, partly historic – Angel an incoming Labour government were high. Offers to buy from the Trains finances about 80% of its portfolio in the banking market, finance sector were limited and consequently two of the three were rather than via its parent. Figure 2 illustrates the current simplified the subject of management buy outs. Over subsequent years, industry structure. however, Roscos have migrated towards their natural home for UK leasing companies, and each has become a subsidiary of a big TYPES OF LEASES. There are a number of variations in the types of financial institution: Royal Bank of Scotland (Angel), Abbey National lease structures, but generally capital rentals are fixed.
    [Show full text]
  • System Energy Optimisation Strategies for DC Railway Traction Power Networks By
    System Energy Optimisation Strategies for DC Railway Traction Power Networks by Zhongbei Tian A thesis submitted to the University of Birmingham for the degree of DOCTOR OF PHILOSOPHY Department of Electronic, Electrical and Systems Engineering College of Engineering and Physical Sciences University of Birmingham, UK June 2017 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract Abstract As a result of rapid global urbanisation, energy and environmental sustainability are becoming increasingly significant. According to the Rail Transport and Environment Report published by International Union of Railways in 2015, energy used in the transportation sector accounts for approximately 32% of final energy consumption in the EU. Railway, representing over 8.5% of the total traffic in volume, shares less than 2% of the transport energy consumption. Railway plays an important role in reducing energy usage and CO2 emissions, compared with other transport modes such as road transport. However, despite the inherent efficiency, the energy used by the rail industry is still high, making the study of railway energy efficiency of global importance. Previous studies have investigated train driving strategies for traction energy saving.
    [Show full text]
  • The Treachery of Strategic Decisions
    The treachery of strategic decisions. An Actor-Network Theory perspective on the strategic decisions that produce new trains in the UK. Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy by Michael John King. May 2021 Abstract The production of new passenger trains can be characterised as a strategic decision, followed by a manufacturing stage. Typically, competing proposals are developed and refined, often over several years, until one emerges as the winner. The winning proposition will be manufactured and delivered into service some years later to carry passengers for 30 years or more. However, there is a problem: evidence shows UK passenger trains getting heavier over time. Heavy trains increase fuel consumption and emissions, increase track damage and maintenance costs, and these impacts could last for the train’s life and beyond. To address global challenges, like climate change, strategic decisions that produce outcomes like this need to be understood and improved. To understand this phenomenon, I apply Actor-Network Theory (ANT) to Strategic Decision-Making. Using ANT, sometimes described as the sociology of translation, I theorise that different propositions of trains are articulated until one, typically, is selected as the winner to be translated and become a realised train. In this translation process I focus upon the development and articulation of propositions up to the point where a winner is selected. I propose that this occurs within a valuable ‘place’ that I describe as a ‘decision-laboratory’ – a site of active development where various actors can interact, experiment, model, measure, and speculate about the desired new trains.
    [Show full text]
  • The Marginal Cost of Track Renewals in the Swedish Railway Network: Using Data to Compare Methods
    This is a repository copy of The marginal cost of track renewals in the Swedish railway network: Using data to compare methods. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/172750/ Version: Accepted Version Article: Odolinski, K orcid.org/0000-0001-7852-403X, Nilsson, J-E, Yarmukhamedov, S et al. (1 more author) (2020) The marginal cost of track renewals in the Swedish railway network: Using data to compare methods. Economics of Transportation, 22. 100170. ISSN 2212- 0122 https://doi.org/10.1016/j.ecotra.2020.100170 © 2020, Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/. Reuse This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can’t change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ The marginal cost of track renewals in the Swedish railway network: Using data to compare methods Kristofer Odolinski*,a Jan-Eric Nilssona Sherzod Yarmukhamedova Mattias Haraldssona * Corresponding author ([email protected]) a The Swedish National Road and Transport Research Institute (VTI), Malvinas väg 6, Box 55685, SE- 102 15, Stockholm, Sweden Abstract We analyze the differences between corner solution and survival models in estimating the marginal cost of track renewals.
    [Show full text]
  • Study on Pantograph Arcing and Investigation of Its Influencing Parameters: Case Study-Addis Ababa Light Rail Transit
    ADDIS ABABA UNIVERSITY ADDIS ABABA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING Study on Pantograph Arcing and Investigation of its Influencing Parameters: Case Study-Addis Ababa Light Rail Transit By Dawit Seboka Advisor Abi Abate (Msc) A Thesis Presented to Addis Ababa University, Addis Ababa Institute of Technology In Partial Fulfillment of the Requirements for the Degree of Masters of Science in Electrical Engineering (Railway) April, 2016 Addis Ababa, Ethiopia ADDIS ABABA UNIVERSITY ADDIS ABABA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING Study on Pantograph Arcing and Investigation of its Influencing Parameters: Case Study-Addis Ababa Light Rail Transit By Dawit Seboka April, 2016 APPROVAL BY BOARD OF EXAMINERS _________________________________ _________________________________ Chairman, Department of Signature Graduate Committee ________________________________ ________________________________ Advisor Signature ________________________________ ________________________________ Internal Examiner Signature ________________________________ _______________________________ External Examiner Signature Study on Pantograph Arcing and Investigation of its Influencing Parameters DECLARATION I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Dawit Seboka ____________ Name Signature Addis Ababa, Ethiopia April, 2016 Place Date of submission This thesis has been submitted with my approval as a university advisor. Ato Abi Abate ____________ Advisor’s Name Signature AAiT, MSc Thesis Page i Study on Pantograph Arcing and Investigation of its Influencing Parameters ACKNOWLEDGEMENTS I would like to express my gratitude and deep appreciation to my advisor, Ato Abi Abate, for his valuable comment, suggestions and advice during preparing this thesis.
    [Show full text]
  • An Influence of a Complex Modernization of the DC Traction Power Supply on the Parameters of an Electric Power System
    MATEC Web of Conferences 180, 02001 (2018) https://doi.org/10.1051/matecconf/201818002001 MET’2017 An influence of a complex modernization of the DC traction power supply on the parameters of an electric power system Jerzy Wojciechowski1,*, Krzysztof Lorek2, and Waldemar Nowakowski1 1Kazimierz Pulaski University of Technology and Humanities in Radom, ul. Malczewskiego 29, 26-600, Radom, Poland 2Sonel S.A., ul. Wokulskiego 11, 58-100, Świdnica, Poland Abstract. Urban and suburban public transport constitute basics of functioning of modern, urbanized metropolises. It is a comfortable, economic and ecological means of transportation. Thus, a stable and fast growth of this solution. One of its components is the power supply system. It should allow functioning of the whole transportation system, maintaining the following criteria: energy efficiency and modernity. These criteria have contributed to creation and modernization of power supply systems. Where it comes to DC systems, such an investment includes: replacing 6-pulse rectifiers with 12-pulse rectifiers and raising rated supply voltage. In this article, the authors have presented research results, based on measurements of electrical energy parameters before and after a modernization of a suburban transportation traction system. These parameters have been divided into two groups. The first consists of parameters mentioned in the EN50160 norm. Another group consists of parameters not mentioned in the norm. What has been presented are waveforms and graphs showing these parameters. In the final part of the article a discussion on reasonability of introducing new, modernized traction power supply system for suburban transportation has been performed. 1 Introduction and electrical energy given back to the units are basic technical problems of DC traction power supply systems The issue of energy efficiency in the traction power [6-14, 18-22].
    [Show full text]