Computational Complexity

Total Page:16

File Type:pdf, Size:1020Kb

Computational Complexity Computational Complexity Abhishek De Chennai Mathematical Institute What is complexity? Before that, we need to know what is the difference between: Problem Problem Instances Algorithm PROBLEM: A problem is an unsolved question proposed to us. It contains an abstract description, probably a real-life situation. Examples: . Gie todas huidit, ill it ai toda? . What is the minimum time required to reach from my house to ISI during rush-hour? . Is 2004 a leap year? . What is the average score of Gambhir in IPL-7 given the list of his scores? Types of problems • Returns a Boolean value. Decision (True or False) Problems • • Returns a single output which could be of any Functional type. Problems • More tougher to study than decision problems. Class of all Problems • Searches for a structure 'y' in an object 'x'. Search • Also podues a itess Problems if search is successful. (Sometimes this is a separate problem.) • Given a set of parameters Optimization poides the est Problems possile solutio hopefully without exhausting all cases. PROBLEM INSTANCE: The instance is a particular input to the problem, and the solution is the output corresponding to the given input. For example, consider the problem of primality testing. The instance is a number (say, 15) and the solution is "no". Thus the input string for a problem is referred to as a problem instance, and should not be confused with the problem itself because a particular instance cannot in general shed light on the geeral approach to solve the problem. Note that a problem can be viewed as an infinite collection of instances together with a solution for every instance i.e. the problem is solved if every (instance, solution) pair is known. ALGORITHM: An algorithm is an effective step-by-step method expressed as a finite list of well-defined instructions to solve a problem. Loosely speaking, it is the geeal appoah to sole the pole hih works for any instance of the problem. For example: Euclid’s Algorith to calculate the g.c.d of two numbers is one of the most algorithms. Types of Algorithms • Same set of inputs render Deterministic same sets of outputs. • Probability of success is 1. Algorithms • Uses randomness to guide its behaviour. Same set of inputs may give Randomized • different set of outputs • Probability of success is not trivially 1. Finally, what is complexity? Suppose you have two algorithms A and B to solve a problem. You at to use the ette oe. What is the eaig of a ette algorithm? We sa, A is ette tha B if opleit of A is less tha opleit of B. Definition. (Complexity) : Computational Complexity of an algorithm is the number of steps required to complete the task given the size of the input parameter, quantifying the amount of resources needed to solve them, such as time and storage. Input parameter Input parameter is the parameter which quantifies the complexity. The complexity is only the function of the input parameter. “uppose oue sotig a aa. The ue of steps euied will solely depend on the number of elements in the array. So input parameter is the size of the array. Again, for number-theoretic algorithms, the input parameter is the measure of how big the number is. So it is number of bits occupied by the number. Complexity Models Temporal Spatial • Temporal – Time required to complete the task • Space – Space/ Memory required to complete the task • Other complexity measures are also used, such as the amount of communication, the number of gates in a circuit and the number of processors . Thus one of the roles of complexity theory is to determine the practical limits on what computers can and cannot do. For example it is easy to estimate using complexity that even with the latest technology it is impossible to calculate 280. (Here we will only discuss time complexity) Program running time – Why? When is the running time (waiting time for user) noticeable/important? • web search • database search • real-time systems with time constraints • Gene matching (DNA searches) Performance is NOT Complexity • Since we have now come into the realm of time complexity, there is an a priori notion that the faster a program is, the lesser complexity it has. Well, not always. • Running time depends on a lot of things like memory, disk space, which depend on machine, compiler, etc. This is the pefoae of the algorithm. • Complexity should be independent of CPU time and implementation. • Thus complexity affects performance but not the other way around. The Big-Oh notation • Look at the picture along- side. Similarly we need to compare the theoretic running time of two algorithms. • Let f(x) and g(x) be the running time of two algorithms, where x is the input parameter. • f(x) = O(g(x)) if there exists constant c and k such that f(x) cg(x) for all x k. What does this mean? • It eas asptotiall f is less tha eual to g i.e. as x tends to infinity f(x) is smaller than g(x). • One thing to notice here is e do’t care for sall alues of x. • Like here f(x) is still asymptotically smaller than g(x). BIG O NOTATION: A function of the input parameter which describes the rate of growth of an algorithm or any function. Some Formulae to be kept handy: • O(cn) = O(n) for any constant c • O(mn) = O(m)O(n) • O(m+n) = O(max(m,n))=O(O(m),O(n)) Lets get ou hads dit… How do we actually calculate the time complexity of a given program in terms of O(.)? A program is like a sequence of statements: statement 1 statement 2 … statement k Now the complexity of the sum of complexity of each statement. For that we need to understand first, what are basic operations. Basic Operations Basic operations are a set of traditional computations which is regarded to be constant- time i.e O(1). Typically, they are easy to implement in hardware. Examples: • one-bit addition (oue alead see addes), multiplication, etc. All arithmetic operations • assignments, conditions [x=0 and x == 0] • Read and write primitive variables • Now say you have a loop: int X = 100; for(int i=1;i<=n;i++){ X++; } Let us deconstruct the situation. There are two assignments [X=0 and i=1], n condition checking and 2n incrementations [n times i and n times X]. So, complexity = 2O(1) + nO(1) + 2nO(1) = O(n) • Similarly for a nested loop (2 levels), we have a complexity of O( ). 2 � But does this really work?? Ist O = O ) by definition? We need a bound on both sides.2 So we introduce the symbol θ. If f(x)� = θ(g(x)) then f(x) = O(g(x)) and g(x) = O(f(x)). So it is an envelope on both sides. However, probably, due to historic reasons, O(.) and θ(.) are used interchangeably. We will thus stick to O(.) with the catch that O(n) O( ). 2 ≠ � If O(.) denotes number of steps, how can there be something like O(log n)? Consider the following program: while(n>0){ n = n/2; } Let the running-time be T(n). Then, we have T(n) = T(n/2) + O(1) Take n = 2k. So, T(2k) = T(2k-1) + O(1) T(2k-1) = T(2k-2) + O(1) … k equations T(2) = T(1) + O(1) -------------------------------- T(2k) = O(k). So T(n) = log n (in base 2) Master Theorem All recursions cannot be solved by algebraic manipulation. There is shortcut way: If the time-complexity of the function is of the form Then the Big-Oh of the time-complexity� � is: � � = � + � � • If , then • If �, then log� � > � � = � � • If �, then � = � � = � � . log � This is known� as the Master Theorem� . < � � = � � Complexity Classes • O(1) – Constant Time • O(log n) – Logarithmic • O(n) – Linear Time • O( ) – Polynomial Time for any constant c • --------� � • O( ) – Exponential Time for any constant c � Compare running time growth rates A quick reference table, so that you know whether your algorithm will work. • Worst case Running Time: The behavior of the algorithm with respect to the worst possible case of the input instance. The worst-case running time of an algorithm is an upper bound on the running time for any input. Knowing it gives us a guarantee that the algorithm will never take any longer. • Average case Running Time: The expected behavior when the input is randomly drawn from a given distribution. The average-case running time of an algorithm is an estimate of the running time for an "average" input. Computation of average-case running time entails knowing all possible input sequences, the probability distribution of occurrence of these sequences, and the running times for the individual sequences. Often it is assumed that all inputs of a given size are equally likely. • Amortized Running Time: Here the time required to perform a sequence of (related) operations is averaged over all the operations performed. Amortized analysis can be used to show that the average cost of an operation is small, if one averages over a sequence of operations, even though a simple operation might be expensive. Amortized analysis guarantees the average performance of each operation in the worst case. • Best case Running Time: The term best-case performance is used in computer science to describe an algorithm's behavior under optimal conditions. Role of constants Constants are usually ignored in Big Oh notations. Thus mathematically O(n) = O(100000000n). But what is the role of constants and can we really ignore them? It is important to notice that constants are independent of input parameter i.e.
Recommended publications
  • Computational Complexity and Intractability: an Introduction to the Theory of NP Chapter 9 2 Objectives
    1 Computational Complexity and Intractability: An Introduction to the Theory of NP Chapter 9 2 Objectives . Classify problems as tractable or intractable . Define decision problems . Define the class P . Define nondeterministic algorithms . Define the class NP . Define polynomial transformations . Define the class of NP-Complete 3 Input Size and Time Complexity . Time complexity of algorithms: . Polynomial time (efficient) vs. Exponential time (inefficient) f(n) n = 10 30 50 n 0.00001 sec 0.00003 sec 0.00005 sec n5 0.1 sec 24.3 sec 5.2 mins 2n 0.001 sec 17.9 mins 35.7 yrs 4 “Hard” and “Easy” Problems . “Easy” problems can be solved by polynomial time algorithms . Searching problem, sorting, Dijkstra’s algorithm, matrix multiplication, all pairs shortest path . “Hard” problems cannot be solved by polynomial time algorithms . 0/1 knapsack, traveling salesman . Sometimes the dividing line between “easy” and “hard” problems is a fine one. For example, . Find the shortest path in a graph from X to Y (easy) . Find the longest path (with no cycles) in a graph from X to Y (hard) 5 “Hard” and “Easy” Problems . Motivation: is it possible to efficiently solve “hard” problems? Efficiently solve means polynomial time solutions. Some problems have been proved that no efficient algorithms for them. For example, print all permutation of a number n. However, many problems we cannot prove there exists no efficient algorithms, and at the same time, we cannot find one either. 6 Traveling Salesperson Problem . No algorithm has ever been developed with a Worst-case time complexity better than exponential .
    [Show full text]
  • Algorithms and Computational Complexity: an Overview
    Algorithms and Computational Complexity: an Overview Winter 2011 Larry Ruzzo Thanks to Paul Beame, James Lee, Kevin Wayne for some slides 1 goals Design of Algorithms – a taste design methods common or important types of problems analysis of algorithms - efficiency 2 goals Complexity & intractability – a taste solving problems in principle is not enough algorithms must be efficient some problems have no efficient solution NP-complete problems important & useful class of problems whose solutions (seemingly) cannot be found efficiently 3 complexity example Cryptography (e.g. RSA, SSL in browsers) Secret: p,q prime, say 512 bits each Public: n which equals p x q, 1024 bits In principle there is an algorithm that given n will find p and q:" try all 2512 possible p’s, but an astronomical number In practice no fast algorithm known for this problem (on non-quantum computers) security of RSA depends on this fact (and research in “quantum computing” is strongly driven by the possibility of changing this) 4 algorithms versus machines Moore’s Law and the exponential improvements in hardware... Ex: sparse linear equations over 25 years 10 orders of magnitude improvement! 5 algorithms or hardware? 107 25 years G.E. / CDC 3600 progress solving CDC 6600 G.E. = Gaussian Elimination 106 sparse linear CDC 7600 Cray 1 systems 105 Cray 2 Hardware " 104 alone: 4 orders Seconds Cray 3 (Est.) 103 of magnitude 102 101 Source: Sandia, via M. Schultz! 100 1960 1970 1980 1990 6 2000 algorithms or hardware? 107 25 years G.E. / CDC 3600 CDC 6600 G.E. = Gaussian Elimination progress solving SOR = Successive OverRelaxation 106 CG = Conjugate Gradient sparse linear CDC 7600 Cray 1 systems 105 Cray 2 Hardware " 104 alone: 4 orders Seconds Cray 3 (Est.) 103 of magnitude Sparse G.E.
    [Show full text]
  • A Short History of Computational Complexity
    The Computational Complexity Column by Lance FORTNOW NEC Laboratories America 4 Independence Way, Princeton, NJ 08540, USA [email protected] http://www.neci.nj.nec.com/homepages/fortnow/beatcs Every third year the Conference on Computational Complexity is held in Europe and this summer the University of Aarhus (Denmark) will host the meeting July 7-10. More details at the conference web page http://www.computationalcomplexity.org This month we present a historical view of computational complexity written by Steve Homer and myself. This is a preliminary version of a chapter to be included in an upcoming North-Holland Handbook of the History of Mathematical Logic edited by Dirk van Dalen, John Dawson and Aki Kanamori. A Short History of Computational Complexity Lance Fortnow1 Steve Homer2 NEC Research Institute Computer Science Department 4 Independence Way Boston University Princeton, NJ 08540 111 Cummington Street Boston, MA 02215 1 Introduction It all started with a machine. In 1936, Turing developed his theoretical com- putational model. He based his model on how he perceived mathematicians think. As digital computers were developed in the 40's and 50's, the Turing machine proved itself as the right theoretical model for computation. Quickly though we discovered that the basic Turing machine model fails to account for the amount of time or memory needed by a computer, a critical issue today but even more so in those early days of computing. The key idea to measure time and space as a function of the length of the input came in the early 1960's by Hartmanis and Stearns.
    [Show full text]
  • Interactions of Computational Complexity Theory and Mathematics
    Interactions of Computational Complexity Theory and Mathematics Avi Wigderson October 22, 2017 Abstract [This paper is a (self contained) chapter in a new book on computational complexity theory, called Mathematics and Computation, whose draft is available at https://www.math.ias.edu/avi/book]. We survey some concrete interaction areas between computational complexity theory and different fields of mathematics. We hope to demonstrate here that hardly any area of modern mathematics is untouched by the computational connection (which in some cases is completely natural and in others may seem quite surprising). In my view, the breadth, depth, beauty and novelty of these connections is inspiring, and speaks to a great potential of future interactions (which indeed, are quickly expanding). We aim for variety. We give short, simple descriptions (without proofs or much technical detail) of ideas, motivations, results and connections; this will hopefully entice the reader to dig deeper. Each vignette focuses only on a single topic within a large mathematical filed. We cover the following: • Number Theory: Primality testing • Combinatorial Geometry: Point-line incidences • Operator Theory: The Kadison-Singer problem • Metric Geometry: Distortion of embeddings • Group Theory: Generation and random generation • Statistical Physics: Monte-Carlo Markov chains • Analysis and Probability: Noise stability • Lattice Theory: Short vectors • Invariant Theory: Actions on matrix tuples 1 1 introduction The Theory of Computation (ToC) lays out the mathematical foundations of computer science. I am often asked if ToC is a branch of Mathematics, or of Computer Science. The answer is easy: it is clearly both (and in fact, much more). Ever since Turing's 1936 definition of the Turing machine, we have had a formal mathematical model of computation that enables the rigorous mathematical study of computational tasks, algorithms to solve them, and the resources these require.
    [Show full text]
  • Computational Complexity: a Modern Approach
    i Computational Complexity: A Modern Approach Sanjeev Arora and Boaz Barak Princeton University http://www.cs.princeton.edu/theory/complexity/ [email protected] Not to be reproduced or distributed without the authors’ permission ii Chapter 10 Quantum Computation “Turning to quantum mechanics.... secret, secret, close the doors! we always have had a great deal of difficulty in understanding the world view that quantum mechanics represents ... It has not yet become obvious to me that there’s no real problem. I cannot define the real problem, therefore I suspect there’s no real problem, but I’m not sure there’s no real problem. So that’s why I like to investigate things.” Richard Feynman, 1964 “The only difference between a probabilistic classical world and the equations of the quantum world is that somehow or other it appears as if the probabilities would have to go negative..” Richard Feynman, in “Simulating physics with computers,” 1982 Quantum computing is a new computational model that may be physically realizable and may provide an exponential advantage over “classical” computational models such as prob- abilistic and deterministic Turing machines. In this chapter we survey the basic principles of quantum computation and some of the important algorithms in this model. One important reason to study quantum computers is that they pose a serious challenge to the strong Church-Turing thesis (see Section 1.6.3), which stipulates that every physi- cally reasonable computation device can be simulated by a Turing machine with at most polynomial slowdown. As we will see in Section 10.6, there is a polynomial-time algorithm for quantum computers to factor integers, whereas despite much effort, no such algorithm is known for deterministic or probabilistic Turing machines.
    [Show full text]
  • CS221: Algorithms and Data Structures Lecture #4 Sorting
    Today’s Outline CS221: Algorithms and • Categorizing/Comparing Sorting Algorithms Data Structures – PQSorts as examples Lecture #4 • MergeSort Sorting Things Out • QuickSort • More Comparisons Steve Wolfman • Complexity of Sorting 2014W1 1 2 Comparing our “PQSort” Categorizing Sorting Algorithms Algorithms • Computational complexity • Computational complexity – Average case behaviour: Why do we care? – Selection Sort: Always makes n passes with a – Worst/best case behaviour: Why do we care? How “triangular” shape. Best/worst/average case (n2) often do we re-sort sorted, reverse sorted, or “almost” – Insertion Sort: Always makes n passes, but if we’re sorted (k swaps from sorted where k << n) lists? lucky and search for the maximum from the right, only • Stability: What happens to elements with identical keys? constant work is needed on each pass. Best case (n); worst/average case: (n2) How much extra memory is used? • Memory Usage: – Heap Sort: Always makes n passes needing O(lg n) on each pass. Best/worst/average case: (n lg n). Note: best cases assume distinct elements. 3 With identical elements, Heap Sort can get (n) performance.4 Comparing our “PQSort” Insertion Sort Best Case Algorithms 0 1 2 3 4 5 6 7 8 9 10 11 12 13 • Stability 1 2 3 4 5 6 7 8 9 10 11 12 13 14 – Selection: Easily made stable (when building from the PQ left, prefer the left-most of identical “biggest” keys). 1 2 3 4 5 6 7 8 9 10 11 12 13 14 – Insertion: Easily made stable (when building from the left, find the rightmost slot for a new element).
    [Show full text]
  • Quantum Computational Complexity Theory Is to Un- Derstand the Implications of Quantum Physics to Computational Complexity Theory
    Quantum Computational Complexity John Watrous Institute for Quantum Computing and School of Computer Science University of Waterloo, Waterloo, Ontario, Canada. Article outline I. Definition of the subject and its importance II. Introduction III. The quantum circuit model IV. Polynomial-time quantum computations V. Quantum proofs VI. Quantum interactive proof systems VII. Other selected notions in quantum complexity VIII. Future directions IX. References Glossary Quantum circuit. A quantum circuit is an acyclic network of quantum gates connected by wires: the gates represent quantum operations and the wires represent the qubits on which these operations are performed. The quantum circuit model is the most commonly studied model of quantum computation. Quantum complexity class. A quantum complexity class is a collection of computational problems that are solvable by a cho- sen quantum computational model that obeys certain resource constraints. For example, BQP is the quantum complexity class of all decision problems that can be solved in polynomial time by a arXiv:0804.3401v1 [quant-ph] 21 Apr 2008 quantum computer. Quantum proof. A quantum proof is a quantum state that plays the role of a witness or certificate to a quan- tum computer that runs a verification procedure. The quantum complexity class QMA is defined by this notion: it includes all decision problems whose yes-instances are efficiently verifiable by means of quantum proofs. Quantum interactive proof system. A quantum interactive proof system is an interaction between a verifier and one or more provers, involving the processing and exchange of quantum information, whereby the provers attempt to convince the verifier of the answer to some computational problem.
    [Show full text]
  • Computational Complexity
    Computational Complexity The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Vadhan, Salil P. 2011. Computational complexity. In Encyclopedia of Cryptography and Security, second edition, ed. Henk C.A. van Tilborg and Sushil Jajodia. New York: Springer. Published Version http://refworks.springer.com/mrw/index.php?id=2703 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:33907951 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP Computational Complexity Salil Vadhan School of Engineering & Applied Sciences Harvard University Synonyms Complexity theory Related concepts and keywords Exponential time; O-notation; One-way function; Polynomial time; Security (Computational, Unconditional); Sub-exponential time; Definition Computational complexity theory is the study of the minimal resources needed to solve computational problems. In particular, it aims to distinguish be- tween those problems that possess efficient algorithms (the \easy" problems) and those that are inherently intractable (the \hard" problems). Thus com- putational complexity provides a foundation for most of modern cryptogra- phy, where the aim is to design cryptosystems that are \easy to use" but \hard to break". (See security (computational, unconditional).) Theory Running Time. The most basic resource studied in computational com- plexity is running time | the number of basic \steps" taken by an algorithm. (Other resources, such as space (i.e., memory usage), are also studied, but they will not be discussed them here.) To make this precise, one needs to fix a model of computation (such as the Turing machine), but here it suffices to informally think of it as the number of \bit operations" when the input is given as a string of 0's and 1's.
    [Show full text]
  • Foundations of Quantum Computing and Complexity
    Foundations of quantum computing and complexity Richard Jozsa DAMTP University of CamBridge Why quantum computing? - physics and computation A key question: what is computation.. ..fundamentally? What makes it work? What determines its limitations?... Information storage bits 0,1 -- not abstract Boolean values but two distinguishable states of a physical system Information processing: updating information A physical evolution of the information-carrying physical system Hence (Deutsch 1985): Possibilities and limitations of information storage / processing / communication must all depend on the Laws of Physics and cannot be determined from mathematics alone! Conventional computation (bits / Boolean operations etc.) based on structures from classical physics. But classical physics has been superseded by quantum physics … Current very high interest in Quantum Computing “Quantum supremacy” expectation of imminent availability of a QC device that can perform some (albeit maybe not at all useful..) computational tasK beyond the capability of all currently existing classical computers. More generally: many other applications of quantum computing and quantum information ideas: Novel possibilities for information security (quantum cryptography), communication (teleportation, quantum channels), ultra-high precision sensing, etc; and with larger QC devices: “useful” computational tasKs (quantum algorithms offering significant benefits over possibilities of classical computing) such as: Factoring and discrete logs evaluation; Simulation of quantum systems: design of large molecules (quantum chemistry) for new nano-materials, drugs etc. Some Kinds of optimisation tasKs (semi-definite programming etc), search problems. Currently: we’re on the cusp of a “quantum revolution in technology”. Novel quantum effects for computation and complexity Quantum entanglement; Superposition/interference; Quantum measurement. Quantum processes cannot compute anything that’s not computable classically.
    [Show full text]
  • On the Computational Complexity of Algorithms by J
    ON THE COMPUTATIONAL COMPLEXITY OF ALGORITHMS BY J. HARTMANIS AND R. E. STEARNS I. Introduction. In his celebrated paper [1], A. M. Turing investigated the computability of sequences (functions) by mechanical procedures and showed that the setofsequencescanbe partitioned into computable and noncomputable sequences. One finds, however, that some computable sequences are very easy to compute whereas other computable sequences seem to have an inherent complexity that makes them difficult to compute. In this paper, we investigate a scheme of classifying sequences according to how hard they are to compute. This scheme puts a rich structure on the computable sequences and a variety of theorems are established. Furthermore, this scheme can be generalized to classify numbers, functions, or recognition problems according to their compu- tational complexity. The computational complexity of a sequence is to be measured by how fast a multitape Turing machine can print out the terms of the sequence. This particular abstract model of a computing device is chosen because much of the work in this area is stimulated by the rapidly growing importance of computation through the use of digital computers, and all digital computers in a slightly idealized form belong to the class of multitape Turing machines. More specifically, if Tin) is a computable, monotone increasing function of positive integers into positive integers and if a is a (binary) sequence, then we say that a is in complexity class ST or that a is T-computable if and only if there is a multitape Turing machine 3~ such that 3~ computes the nth term of a. within Tin) operations.
    [Show full text]
  • A Machine-Checked Proof of the Average-Case Complexity of Quicksort in Coq
    A Machine-checked Proof of the Average-case Complexity of Quicksort in Coq Eelis van der Weegen? and James McKinna [email protected], [email protected] Institute for Computing and Information Sciences Radboud University Nijmegen Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands Abstract. As a case-study in machine-checked reasoning about the complexity of algorithms in type theory, we describe a proof of the average-case complexity of Quicksort in Coq. The proof attempts to fol- low a textbook development, at the heart of which lies a technical lemma about the behaviour of the algorithm for which the original proof only gives an intuitive justification. We introduce a general framework for algorithmic complexity in type the- ory, combining some existing and novel techniques: algorithms are given a shallow embedding as monadically expressed functional programs; we introduce a variety of operation-counting monads to capture worst- and average-case complexity of deterministic and nondeterministic programs, including the generalization to count in an arbitrary monoid; and we give a small theory of expectation for such non-deterministic computations, featuring both general map-fusion like results, and specific counting ar- guments for computing bounds. Our formalization of the average-case complexity of Quicksort includes a fully formal treatment of the `tricky' textbook lemma, exploiting the generality of our monadic framework to support a key step in the proof, where the expected comparison count is translated into the expected length of a recorded list of all comparisons. 1 Introduction Proofs of the O(n log n) average-case complexity of Quicksort [1] are included in many textbooks on computational complexity [9, for example].
    [Show full text]
  • On the Computational Complexity of Mathematical Functions
    On the computational complexity of mathematical functions Jean-Pierre Demailly Institut Fourier, Universit´ede Grenoble I & Acad´emie des Sciences, Paris (France) November 26, 2011 KVPY conference at Vijyoshi Camp Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions Computing, a very old concern Babylonian mathematical tablet allowing the computation of √2 (1800 – 1600 BC) Decimal numeral system invented in India ( 500BC ?) : ∼ Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions Madhava’s formula for π Early calculations of π were done by Greek and Indian mathematicians several centuries BC. These early evaluations used polygon approximations and Pythagoras theorem. In this way, using 96 sides, Archimedes got 10 10 3+ 71 <π< 3+ 70 whose average is 3.1418 (c. 230 BC). Chinese mathematicians reached 7 decimal places in 480 AD. The next progress was the discovery of the first infinite series formula by Madhava (circa 1350 – 1450), a prominent mathematician-astronomer from Kerala (formula rediscovered in the XVIIe century by Leibniz and Gregory) : π 1 1 1 1 1 ( 1)n = 1 + + + + − + 4 − 3 5 − 7 9 − 11 · · · 2n + 1 · · · Convergence is unfortunately very slow, but Madhava was able to improve convergence and reached in this way 11 decimal places. Jean-Pierre Demailly (Grenoble I), November 26, 2011 On the computational complexity of mathematical functions Ramanujan’s formula for π Srinivasa Ramanujan (1887 – 1920), a self-taught mathematical prodigee. His work dealt mainly with arithmetics and function theory +∞ 1 2√2 (4n)!(1103 + 26390n) = (1910). π 9801 (n!)43964n Xn=0 Each term is approximately 108 times smaller than the preceding one, so the convergence is very fast.
    [Show full text]