Holger Zorn Peter Czermak Editors Biotechnology of Food and Feed Additives 143 Advances in Biochemical Engineering/Biotechnology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Journal Final 2009.P65
ISSN 0973-8916 Current Trends in Biotechnology and Pharmacy (An International Scientific Journal) Volume 3 Issue 1 January 2009 www.abap.co.in Indexed in Chemical Abstracts and Indian Science Abstracts Association of Biotechnology and Pharmacy (Regn. No. 28 OF 2007) The Association of Biotechnology and Pharmacy (ABAP) was established for promoting the science of Biotechnology and Pharmacy. The objective of the Association is to advance and disseminate the knowledge and information in the areas of Biotechnology and Pharmacy by organising annual scientific meetings, seminars and symposia. Members The persons involved in research, teaching and work can become members of Association by paying membership fees to Association. The members of the Association are allowed to write the title MABAP (Member of the Association of Biotechnology and Pharmacy) with their names. Fellows Every year, the Association will award Fellowships to the limited number of members of the Association with a distinguished academic and scientific career to be as Fellows of the Association during annual convention. The fellows can write the title FABAP (Fellow of the Association of Biotechnology and Pharmacy) with their names. Membership details —————————————————————————————————————— India SAARC Others —————————————————————————————————————— Individuals – 1 year Rs.600 Rs1000 $100 LifeMember Rs.4000 Rs.6000 $500 (Membership and Journal) Institutions – 1 year Rs.1500 Rs.2000 $200 Life member Rs.10000 Rs.12000 $1200 (Journal only) —————————————————————————————————————— Individuals can pay in two instalments, however the membership certificate will be issued on pay- ment of full amount. All the members and Fellows will receive a copy of the journal free Association of Biotechnology and Pharmacy (Regn. No. 28 OF 2007) #5-69-64; 6/19, Brodipet Guntur – 522 002, Andhra Pradesh, India Current Trends in Biotechnology and Pharmacy ISSN 0973-8916 Volume 3 (1) CONTENTS January - 2009 Reviews Biomarkers Clinical Relevance in Cancer: Emphasis on Breast Cancer and Prostate Cancer 1 - 7 Md. -
Molecular Phylogenetic and Scanning Electron Microscopical Analyses
Acta Biologica Hungarica 59 (3), pp. 365–383 (2008) DOI: 10.1556/ABiol.59.2008.3.10 MOLECULAR PHYLOGENETIC AND SCANNING ELECTRON MICROSCOPICAL ANALYSES PLACES THE CHOANEPHORACEAE AND THE GILBERTELLACEAE IN A MONOPHYLETIC GROUP WITHIN THE MUCORALES (ZYGOMYCETES, FUNGI) KERSTIN VOIGT1* and L. OLSSON2 1 Institut für Mikrobiologie, Pilz-Referenz-Zentrum, Friedrich-Schiller-Universität Jena, Neugasse 24, D-07743 Jena, Germany 2 Institut für Spezielle Zoologie und Evolutionsbiologie, Friedrich-Schiller-Universität Jena, Erbertstr. 1, D-07743 Jena, Germany (Received: May 4, 2007; accepted: June 11, 2007) A multi-gene genealogy based on maximum parsimony and distance analyses of the exonic genes for actin (act) and translation elongation factor 1 alpha (tef ), the nuclear genes for the small (18S) and large (28S) subunit ribosomal RNA (comprising 807, 1092, 1863, 389 characters, respectively) of all 50 gen- era of the Mucorales (Zygomycetes) suggests that the Choanephoraceae is a monophyletic group. The monotypic Gilbertellaceae appears in close phylogenetic relatedness to the Choanephoraceae. The mono- phyly of the Choanephoraceae has moderate to strong support (bootstrap proportions 67% and 96% in distance and maximum parsimony analyses, respectively), whereas the monophyly of the Choanephoraceae-Gilbertellaceae clade is supported by high bootstrap values (100% and 98%). This suggests that the two families can be joined into one family, which leads to the elimination of the Gilbertellaceae as a separate family. In order to test this hypothesis single-locus neighbor-joining analy- ses were performed on nuclear genes of the 18S, 5.8S, 28S and internal transcribed spacer (ITS) 1 ribo- somal RNA and the translation elongation factor 1 alpha (tef ) and beta tubulin (βtub) nucleotide sequences. -
Etude Des Médiateurs Moléculaires Des Interactions Microbiennes De La Levure Yarrowia Lipolytica Avec Les Micro-Organismes De Son Environnement Biotique Reine Malek
Etude des médiateurs moléculaires des interactions microbiennes de la levure Yarrowia lipolytica avec les micro-organismes de son environnement biotique Reine Malek To cite this version: Reine Malek. Etude des médiateurs moléculaires des interactions microbiennes de la levure Yarrowia lipolytica avec les micro-organismes de son environnement biotique. Sciences agricoles. AgroParisTech, 2012. Français. NNT : 2012AGPT0061. tel-03128473 HAL Id: tel-03128473 https://pastel.archives-ouvertes.fr/tel-03128473 Submitted on 2 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Doctorat ParisTech T H È S E pour obtenir le grade de docteur délivré par L’Institut des Sciences et Industries du Vivant et de l’Environnement (AgroParisTech) Spécialité : Microbiologie présentée et soutenue publiquement par Reine MALEK le 13 septembre 2012 Etude des médiateurs moléculaires des interactions microbiennes de la levure Yarrowia lipolytica avec les micro-organismes de son environnement biotique Directeur de thèse : Jean -Marie BECKERICH Co-encadrement de la thèse : Pascale FREY-KLETT Jury M. Colin TINSLEY, Professeur, AgroParisTech-INRA, Paris Président Mme Sylvie DEQUIN, Directeur de Recherche, INRA, Montpellier Rapporteur M. Alain SARNIGUET , Directeur de Recherche, INRA, Le Rheu Rapporteur M. -
Lycopene Overproduction in Saccharomyces Cerevisiae Through
Chen et al. Microb Cell Fact (2016) 15:113 DOI 10.1186/s12934-016-0509-4 Microbial Cell Factories RESEARCH Open Access Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering Yan Chen1,2, Wenhai Xiao1,2* , Ying Wang1,2, Hong Liu1,2, Xia Li1,2 and Yingjin Yuan1,2 Abstract Background: Microbial production of lycopene, a commercially and medically important compound, has received increasing concern in recent years. Saccharomyces cerevisiae is regarded as a safer host for lycopene production than Escherichia coli. However, to date, the lycopene yield (mg/g DCW) in S. cerevisiae was lower than that in E. coli and did not facilitate downstream extraction process, which might be attributed to the incompatibility between host cell and heterologous pathway. Therefore, to achieve lycopene overproduction in S. cerevisiae, both host cell and heterologous pathway should be delicately engineered. Results: In this study, lycopene biosynthesis pathway was constructed by integration of CrtE, CrtB and CrtI in S. cerevisiae CEN.PK2. When YPL062W, a distant genetic locus, was deleted, little acetate was accumulated and approxi- mately 100 % increase in cytosolic acetyl-CoA pool was achieved relative to that in parental strain. Through screening CrtE, CrtB and CrtI from diverse species, an optimal carotenogenic enzyme combination was obtained, and CrtI from Blakeslea trispora (BtCrtI) was found to have excellent performance on lycopene production as well as lycopene pro- portion in carotenoid. Then, the expression level of BtCrtI was fine-tuned and the effect of cell mating types was also evaluated. Finally, potential distant genetic targets (YJL064W, ROX1, and DOS2) were deleted and a stress-responsive transcription factor INO2 was also up-regulated. -
Understanding and Measuring the Shelf-Life of Food Related Titles from Woodhead's Food Science, Technology and Nutrition List
Understanding and measuring the shelf-life of food Related titles from Woodhead's food science, technology and nutrition list: The stability and shelf-life of food (ISBN 1 85573 500 8) The stability and shelf-life of a food product are critical to its success in the market place, yet companies experience considerable difficulties in defining and understanding the factors that influence stability over a desired storage period. This book is the most comprehensive guide to understanding and controlling the factors that determine the shelf-life of food products. Taints and off-flavours in foods (ISBN 1 85573 449 4) Taints and off-flavours are a major problem for the food industry. Part I of this important collection reviews the major causes of taints and off-flavours, from oxidative rancidity and microbiologically-derived off-flavours, to packaging materials as a source of taints. The second part of the book discusses the range of techniques for detecting taints and off-flavours, from sensory analysis to instrumental techniques, including the development of new rapid on-line sensors. Colour in food ± Improving quality (ISBN 1 85573 590 3) The colour of a food is central to consumer perceptions of quality. This important new collection reviews key issues in controlling colour quality in food, from the chemistry of colour in food to measurement issues, improving natural colour and the use of colourings to improve colour quality. Details of these books and a complete list of Woodhead's food science, technology and nutrition titles can be obtained by: · visiting our web site at www.woodhead-publishing.com · contacting Customer Services (email: [email protected]; fax: +44 (0) 1223 893694; tel.: +44 (0) 1223 891358 ext. -
Carotenoid Distribution in Nature
Chapter 1 Carotenoid Distribution in Nature Jennifer Alcaíno, Marcelo Baeza, and Víctor Cifuentes Abstract Carotenoids are naturally occurring red, orange and yellow pigments that are synthesized by plants and some microorganisms and fulfill many important physiological functions. This chapter describes the distribution of carotenoid in microorganisms, including bacteria, archaea, microalgae, filamentous fungi and yeasts. We will also focus on their functional aspects and applications, such as their nutritional value, their benefits for human and animal health and their potential protection against free radicals. The central metabolic pathway leading to the synthesis of carotenoids is described as the three following principal steps: (i) the synthesis of isopentenyl pyrophosphate and the formation of dimethylallyl pyrophosphate, (ii) the synthesis of geranylgeranyl pyrophosphate and (iii) the synthesis of carotenoids per se, highlighting the differences that have been found in several carotenogenic organisms and providing an evolutionary perspective. Finally, as an example, the synthesis of the xanthophyll astaxanthin is discussed. Keywords Carotenogenesis • Microbial carotenoids • Astaxanthin 1.1 Introduction Carotenoids are red, orange and yellow natural pigments that are synthesized by plants and some microorganisms fulfilling important physiological functions. For example, in photosynthetic organisms, carotenoids are essential for photosynthesis and photoprotection, whereas in non-photosynthetic organisms; they participate in alleviating photooxidative damage. Considering their properties, carotenoids have various industrial applications as dyes, and due to their various beneficial effects for health, they have been exploited by the food and nutraceutical industries and recently, by the pharmacological industry, with an estimated annual production greater than 100 million tons (Fraser and Bramley 2004). For these reasons, there J. -
Carotene Production by Blakeslea Trispora Cultivated in Spanish-Style Green Olive Processing Wastewaters
foods Article Natural b-Carotene Production by Blakeslea trispora Cultivated in Spanish-Style Green Olive Processing Wastewaters Eugenia Papadaki and Fani Th Mantzouridou * Laboratory of Food Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; [email protected] * Correspondence: [email protected] Abstract: In the current research, the potential of Spanish-style green olive processing wastewaters (lye and washing waters) exploitation toward natural b-carotene production by Blakeslea trispora was tested for the first time. Mating culture generated by the joint cultivation of the heterothallic fungal strains ATCC 14271 and 14272 in the non-sterile lye and washing waters was able to grow, achieving the phytotoxic hydroxytyrosol degradation by 57.3% and 66.8%, respectively. However, the low sugar and nitrogen content of the streams did not favor carotenogenesis. Alternatively, in the nutrient-enriched effluents, a notable quantity of b-carotene was produced, accounted for 61.2 mg/L (lye) and 64.1 mg/L (washing waters) (82–88% of total carotenoid content). Above all, enriched streams had a noteworthy stimulating effect on the b-carotene synthesis, because both the maximum b-carotene yield per volume of enriched effluents and specific b-carotene production rate were higher when compared with the respective values obtained from trials with synthetic reference medium without added effluents. Hydroxytyrosol and tyrosol showed high stability during the non-sterile process for b-carotene production by B. trispora grown in the enriched effluents. This finding strengthens the potential toward the generation of multiple high-value products, which could Citation: Papadaki, E.; lower the natural b-carotene production costs. -
CAROTENOIDS in the FUNGI MUCORALES 5 This Mold the Saturated Polyenes Were Produced Much More Rapidly Than Ij-Carotene
2 8 2 5 I~ Illp·8 2 5 1.0 :~ 11111 . 11111 . 1.0 I~ 1= 11111 . ~ II~-~ 2.2 I~ IIli?~ 2.2 Ui I" ~ I~ I; I~ w J:Z ~ 1,1,g ~ m,t"g 2.0 LiI. '" ... " 1.1 ...... "" 1.1 ...u,~u -- - --- 11111 1.25 1111,1.4 111111.6 111111.25 !lII,1.4 111111.6 MICROCOPY RESOLUTION TEST CHART MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-J963-A NATIONAL BUREAU OF STANDARDS,1963-A ~AROTENOIDS in the FUNGI e :..~ CJ")coMUCORALES .~, ~ .',:.; , " Special Reference to Choanephoraceae U.S. DEPARTMENT OF AGRICULTURE AGRICULTURAL RESEARCH SERVICE CONTENTS Pllg" INTRODUCTION _________________________________________ _ CAROTENE IN ]\I[UCORALES_____________________ • ___ ••• ____ 2 FUNCTION OF CAROTENE IN SEXUALI'l'Y OF l\l{ucorur,J.JS_______ 7 CAUOTENE IN THE FAMILY CHOANEPHOHACEAE______________ 9 OeeulTcnce and History of the Chonncphora(,Nl(' __ _ _ _ _ _ _I0 Life Cycle_---- ________________________ ., _ _ _ _ _ _ _ _ _ _ _ _ 14 Cnrotene in Chonnephorneelle_________________________ 17 LITEHATURE CITED______________________________________ 23 Cllrotene in l\{ucornil',s______________________ .________ 2:~ Oc('ulTcnce llnd ]~ift· l 'yell'S of C'hoanephomeell(' ___ _ _ _ _ _ _ ao This review wus madc ns pIU'L of the irl\resLiglltions bl'ing eonducted at the Northern Hegionnl ]{csellJ'eh Laboratory on indust.rial uliliZtl tion of CCI'CIlI gmins. The ARS Oultmc Collection, mnintlline(\ there, is one of thc world's IUl'gest and most ('omplctc ('ollections of industrially important, uILCtcl'in" molds, Ildinornyectes, n,nd yCilStS. The Collection serves as n, sourcc of ItlIt,hcntic miCl'o-oJ'gnlli~ms for the fermentative production of orgillli<.~ neids, vitnmins, Illltibiotics, enzymes, feeds, bcvemgcs, Ilm\ foods. -
Estudos Moleculares Dos Genes XYL1 E XYL2 De Candida Tropicalis Visando a Produção De Xilitol
______________________________________________________________________________________________________________ UNIVERSIDADE DE BRASÍLIA INSTITUTO DE BIOLOGIA DEPARTAMENTO DE BIOLOGIA CELULAR CURSO DE PÓS-GRADUAÇÃO EM BIOLOGIA MOLECULAR Estudos moleculares dos genes XYL1 e XYL2 de Candida tropicalis visando a produção de xilitol Luanne Helena Augusto Lima Orientador: Prof. Dr. Fernando Araripe Gonçalves Torres Co-orientadora: Maria das Graças de Almeida Felipe BRASÍLIA - DF - BRASIL Março, 2006 _______________________________________________________________________________________ ______________________________________________________________________________________________________________ UNIVERSIDADE DE BRASÍLIA INSTITUTO DE BIOLOGIA DEPARTAMENTO DE BIOLOGIA CELULAR CURSO DE PÓS-GRADUAÇÃO EM BIOLOGIA MOLECULAR Estudos moleculares dos genes XYL1 e XYL2 de Candida tropicalis visando a produção de xilitol Tese desenvolvida no laboratório de Biologia Molecular e apresentada à Universidade de Brasília – UnB, como requisito parcial para obtenção do título de doutor em Ciências Biológicas – Biologia Molecular. Luanne Helena Augusto Lima Orientador: Prof. Dr. Fernando Araripe Gonçalves Torres Co-orientadora: Maria das Graças de Almeida Felipe BRASÍLIA - DF - BRASIL Março, 2006 _______________________________________________________________________________________ ______________________________________________________________________________________________________________ As nossas teorias talvez reflitam mais as nossas próprias limitações na -
D-Fructose Assimilation and Fermentation by Yeasts
microorganisms Article D-Fructose Assimilation and Fermentation by Yeasts Belonging to Saccharomycetes: Rediscovery of Universal Phenotypes and Elucidation of Fructophilic Behaviors in Ambrosiozyma platypodis and Cyberlindnera americana Rikiya Endoh *, Maiko Horiyama and Moriya Ohkuma Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center (RIKEN BRC-JCM), 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan; [email protected] (M.H.); [email protected] (M.O.) * Correspondence: [email protected] Abstract: The purpose of this study was to investigate the ability of ascomycetous yeasts to as- similate/ferment D-fructose. This ability of the vast majority of yeasts has long been neglected since the standardization of the methodology around 1950, wherein fructose was excluded from the standard set of physiological properties for characterizing yeast species, despite the ubiquitous presence of fructose in the natural environment. In this study, we examined 388 strains of yeast, mainly belonging to the Saccharomycetes (Saccharomycotina, Ascomycota), to determine whether they can assimilate/ferment D-fructose. Conventional methods, using liquid medium containing Citation: Endoh, R.; Horiyama, M.; yeast nitrogen base +0.5% (w/v) of D-fructose solution for assimilation and yeast extract-peptone Ohkuma, M. D-Fructose Assimilation +2% (w/v) fructose solution with an inverted Durham tube for fermentation, were used. All strains and Fermentation by Yeasts examined (n = 388, 100%) assimilated D-fructose, whereas 302 (77.8%) of them fermented D-fructose. Belonging to Saccharomycetes: D D Rediscovery of Universal Phenotypes In addition, almost all strains capable of fermenting -glucose could also ferment -fructose. These and Elucidation of Fructophilic results strongly suggest that the ability to assimilate/ferment D-fructose is a universal phenotype Behaviors in Ambrosiozyma platypodis among yeasts in the Saccharomycetes. -
Β-CAROTENE from BLAKESLEA TRISPORA
β-CAROTENE from BLAKESLEA TRISPORA Prepared at the 61st JECFA (2003), published in FNP 52 Add 11 (2003), superseding specifications prepared at the 57th JECFA (2001), published in FNP 52 Add 9 (2001). A group ADI with β -carotene (synthetic) of 0 - 5 mg/kg bw was established at the 57th JECFA (2001). SYNONYMS CI Food Orange 5; INS No. 160a(iii) DEFINITION Obtained by a fermentation process using the two sexual mating types (+) and (-) of the fungus Blakeslea trispora. The colour is isolated from the biomass by solvent extraction and crystallised. The colouring principle consists predominantly of trans β-carotene together with variable amounts of cis isomers of β-carotene. Minor amounts of other carotenoids of which γ-carotene accounts for the major part may also be present. The only organic solvents used in the extraction and purification are ethanol, isopropanol, ethyl acetate and isobutyl acetate. The main articles of commerce are suspensions in food grade vegetable/plant oil and water dispersible powders. This is for ease of the use and to improve stability as carotenes easily oxidise. Class Carotenoid Chemical names β-carotene, β,β-carotene C.A.S. number 7235-40-7 Chemical formula C40H56 Structural formula H C CH 3 3 CH3 H3 C CH 3 H3 C CH 3 CH3 CH3 CH3 Formula weight 536.88 Assay Not less than 96.0% of total colouring matter (expressed as β-carotene) DESCRIPTION Red to brownish-red crystals or crystalline powder FUNCTIONAL USES Colour CHARACTERISTICS IDENTIFICATION Solubility (Vol. 4) Insoluble in water; practically insoluble in ethanol, slightly soluble in vegetable oil. -
In Vivo Antioxidant Activity of Lycopene from Blakeslea Trispora in Rats
2013 2nd International Conference on Environment, Energy and Biotechnology IPCBEE vol.51 (2013) © (2013) IACSIT Press, Singapore DOI: 10.7763/IPCBEE. 2013. V51. 13 In Vivo Antioxidant Activity of Lycopene from Blakeslea Trispora in Rats Weilian Hu1, Dehui Dai2, Wei Li3 1 School of Biology and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; 2 Zhejiang Academy of Medical Sciences, Zhejiang Center of Laboratory Animals,Hangzhou 310013, China; Abstract. Lycopene, as a suspension in soybean oil, was tested for antioxidant activity by administration at 0, 267, 534, 1068 mg·kg-1 body weight daily of groups of 12 male and 12 female rats for a period of 30 days. The lycopene examined in this study was derived from a fungal biomass (Blakeslea trispora). The results from this study showed that lycopene have the ability to reduce the level of malonaldehyde and increase the superoxide dismutase, catalase and glutathione peroxidase level when they were gavaged to rats up to 1068 mg·kg-1 body weight daily, therefore we concluded that lycopene from Blakeslea trispora could enhance the antioxidation system in vivo and inhibit the generation of free radicals. Keywords: Lycopene, antioxidation activity, rat, Blakeslea trispora 1. Introduction Reactive oxygen species (ROS) are products of electron transport chains, enzymes, and redox cycling. Oxidative stress is a result of imbalance between the antioxidant defense system and the formation of ROS [1]. Oxidative stress may occur when ROS overwhelm the cellular antioxidant defense defenses, thus causing cell damage, death and exacerbate several age-related chronic diseases including cancer, Parkinson’s disease and heart disease.