Overview of the Mechanical Properties of Tungsten/Steel Brazed Joints for the DEMO Fusion Reactor

Total Page:16

File Type:pdf, Size:1020Kb

Overview of the Mechanical Properties of Tungsten/Steel Brazed Joints for the DEMO Fusion Reactor metals Review Overview of the Mechanical Properties of Tungsten/Steel Brazed Joints for the DEMO Fusion Reactor Diana Bachurina *, Vladimir Vorkel, Alexey Suchkov, Julia Gurova, Alexander Ivannikov, Milena Penyaz, Ivan Fedotov , Oleg Sevryukov and Boris Kalin Department of Materials Science, National Research Nuclear University MEPhI, Moscow, Kashirskoe shosse 31, 115409 Moscow, Russia; [email protected] (V.V.); [email protected] (A.S.); [email protected] (J.G.); [email protected] (A.I.); [email protected] (M.P.); [email protected] (I.F.); [email protected] (O.S.); [email protected] (B.K.) * Correspondence: [email protected] Abstract: A Demonstration (DEMO) thermonuclear reactor is the next step after the International Thermonuclear Experimental Reactor (ITER). Designs for a DEMO divertor and the First Wall require the joining of tungsten to steel; this is a difficult task, however, because of the metals’ physical properties and necessary operating conditions. Brazing is a prospective technology that could be used to solve this problem. This work examines a state-of-the-art solution to the problem of joining tungsten to steel by brazing, in order to summarize best practices, identify shortcomings, and clarify mechanical property requirements. Here, we outline the ways in which brazing technology can be developed to join tungsten to steel for use in a DEMO application. Keywords: DEMO; tungsten; reduced activation steel; brazing; divertor; First Wall; joining Citation: Bachurina, D.; Vorkel, V.; Suchkov, A.; Gurova, J.; Ivannikov, A.; Penyaz, M.; Fedotov, I.; Sevryukov, O.; Kalin, B. Overview of the Mechanical Properties of 1. Introduction Tungsten/Steel Brazed Joints for the The creation of a Demonstration (DEMO) thermonuclear reactor is the next step after DEMO Fusion Reactor. Metals 2021, the International Thermonuclear Experimental Reactor (ITER) with the final objective of a 11, 209. https://doi.org/10.3390/ fusion reactor power plant. As a result of the increased loads as compared to ITER, many met11020209 ITER solutions cannot be used in a DEMO, especially for the divertor and the First Wall (FW). This is due to higher heat and neutron fluxes. Therefore, tungsten is considered Academic Editor: suitable as a plasma-facing material (PFM) for both the divertor and the FW. Meanwhile, Kazuyuki Hokamoto steel is considered suitable as a structural material for a helium-cooled divertor [1–4] Received: 30 December 2020 and some FW concepts [5–7]. However, the direct connection of tungsten to steel is Accepted: 20 January 2021 difficult due to the difference in their coefficients of thermal expansion (CTE). Therefore, Published: 24 January 2021 the development of a reliable joining technology is of great interest. At the moment, diffusion bonding and brazing are the two main methodologies Publisher’s Note: MDPI stays neutral being considered to achieve such a joint. The first is carried out by means of hot isostatic with regard to jurisdictional claims in pressing [8,9] and spark plasma sintering [10,11]. The second is carried out by means published maps and institutional affil- of vacuum brazing, using foils [12,13], powders [14], and liquid-forming interlayers [15]. iations. Some of the advantages of considering brazing as a prospective technology include: • No deformation of the materials being joined, while during diffusion bonding the steel creeps up to 8% [16]; • Full integrity of the seam if the brazing alloy and brazing mode are chosen correctly, Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. which is important for good heat transportation; • This article is an open access article The possibility of simultaneous heat treatment of the base materials and the braz- distributed under the terms and ing procedure; conditions of the Creative Commons • The possible replacement of defective elements after manufacturing and during pro- Attribution (CC BY) license (https:// duction [17]; creativecommons.org/licenses/by/ 4.0/). Metals 2021, 11, 209. https://doi.org/10.3390/met11020209 https://www.mdpi.com/journal/metals Metals 2021, 11, 209 2 of 11 • Low cost, i.e., no expensive equipment is required to carry out the process. There is a wide range of brazing methods available, from vacuum brazing to ohmic or induction brazing, even in air under flux, or blowing with an inert gas. Therefore, this technology is used in the assembly of ITER components and is cur- rently actively investigated with a view to its use in DEMO production. Meanwhile, a compensating interlayer is usually used [12,18,19] to reduce the residual stresses arising from differences in CTE. In this case, the development of brazing alloys suitable for two seams (tungsten/interlayer and interlayer/steel) is required. This work examines the state-of-the-art solution to the problem of joining tungsten to steel by brazing in order to summarize best practices, identify shortcomings, and clarify mechanical property requirements: • Section2 is a review of the working conditions of a tungsten/steel joint, including heat loads (Section 2.1), understanding the mechanical property requirements using Finite Element Analysis (FEM) (Section 2.2), and other requirements aside from the mechanical properties (Section 2.3); • Section3 gives an overview of the recent progress made in tungsten/steel brazing (attention is mainly paid to mechanical properties); • Section4 presents conclusions based on the overview of Sections2 and3. Finally, recommendations to all authors working on tungsten/steel brazing are given. 2. Working Conditions and Requirements 2.1. Heat Loads The most challenging application in which tungsten/steel joints are used is a helium- cooled divertor. The operating conditions of such a divertor are more extreme than the operating conditions of the FW, i.e., a heat flux of at least 10 MW/m2 [20]. This concept requires a tungsten/steel joint capable of withstanding a ≈700 ◦C operating temperature [2,21,22]. As a result of the very extreme operating conditions, Eurofusion’s target design was changed [23]. As a result, an ITER-type CuCrZr pipe concept was chosen for Research & Development (R&D) activities for divertor applications. However, a lot of studies have already been published on helium-cooled divertor concepts [13,15,24–27]. Tungsten surfaces are subjected to cyclic power loads by particles and radiation from plasma. It is expected that a heat load during steady-state operation will be no higher than 0.5–1 MW/m2 [28,29], but a load of 7 MW/m2 is expected in the inner and outer baffle regions [29]. The DEMO reactor will work in a quasi-stationary pulse mode, whereby the reactor starts up and shuts down for several cycles. The entire pulse [30] will take 7200 s, in which the plateau takes 7000 s. The number of pulses will reach 1000–10,000 cycles, which will require nearly 20 years of functionality at operating temperature. This means that not only base materials, but brazed joints must be resistant to long-term aging and creep. Additionally, the damage of plasma-facing components, due to the huge heat loads during disruptions, is of great concern in a DEMO. The power load of uncontrolled-edge localized modes (ELMs) is expected to be ~0.2–0.5 MJ/m2 over 0.6 ms [31], so the tungsten temperature can change from ≈280 to ≈630 ◦C in 1 s several times. Thus, resistance to thermocycling is very important for any tungsten/steel joints. 2.2. FEM Calculations The first and foremost requirement for any joint is to be strong enough for a chosen application. However, there are still no clear requirements for the mechanical properties of a tungsten/steel joint. Therefore, we decided to make an approximate calculation of a direct joint under minimal heat load (0.5 MW/m2), using the example of the Water Cooled Lithium Lead (WCLL) FW. We calculated a simplified part of the FW component by means of Finite Element Analysis in ANSYS Workbench 18.2. The test component and the boundary conditions for modeling are shown in Figure1. The temperatures used are mean values, designed for cooling and breeding in the WCLL blanket. The geometry was designed based on the Metals 2021, 11, x FOR PEER REVIEW 3 of 11 Metals 2021, 11, 209 ic-martensitic steel (RAFM) Rusfer were modeled, and the properties of the materials3 of 11 Metals 2021, 11, x FOR PEER REVIEWwere taken from [26]. 3 of 11 The following load steps were modeled: 1.parameters Cooling, presentedfrom a joining in [32 temperature]. The 2-mm-thick of 1100 °C tungsten to room and temperature reduced activation within 100 ferritic- s; 2.martensitic Increasing steel the (RAFM) temperature Rusfer and were pressure modeled, of the and breeder the properties and coolant of the within materials 1 h; were ic-martensitic steel (RAFM) Rusfer were modeled, and the properties of the materials 3.taken Power from ignition—with [26]. a heat load of 0.5 MW⁄m2 on the tungsten surface within 100 s. were taken from [26]. The following load steps were modeled: 1. Cooling, from a joining temperature of 1100 °C to room temperature within 100 s; 2. Increasing the temperature and pressure of the breeder and coolant within 1 h; 3. Power ignition—with a heat load of 0.5 MW⁄m2 on the tungsten surface within 100 s. FigureFigure 1. 1.TestTest component component (a ()a and) and boundary boundary conditions conditions for for FEM FEM model model (b (b). ). TheThe mesh following near the load contact steps wereregion modeled: for FEM calculations is shown in Figure 2. There are1. 10 inflationCooling, layers from aon joining each side; temperature the smallest of 1100 elements◦C to roomare 0.02 temperature mm by 0.2 within mm, and 100 the s; growth2. Increasing rate in the the vertical temperature direction and is 1.1.
Recommended publications
  • Metals and Metal Products Tariff Schedules of the United States
    251 SCHEDULE 6. - METALS AND METAL PRODUCTS TARIFF SCHEDULES OF THE UNITED STATES SCHEDULE 6. - METALS AND METAL PRODUCTS 252 Part 1 - Metal-Bearing Ores and Other Metal-Bearing Schedule 6 headnotes: Materials 1, This schedule does not cover — Part 2 Metals, Their Alloys, and Their Basic Shapes and Forms (II chemical elements (except thorium and uranium) and isotopes which are usefully radioactive (see A. Precious Metals part I3B of schedule 4); B. Iron or Steel (II) the alkali metals. I.e., cesium, lithium, potas­ C. Copper sium, rubidium, and sodium (see part 2A of sched­ D. Aluminum ule 4); or E. Nickel (lii) certain articles and parts thereof, of metal, F. Tin provided for in schedule 7 and elsewhere. G. Lead 2. For the purposes of the tariff schedules, unless the H. Zinc context requires otherwise — J. Beryllium, Columbium, Germanium, Hafnium, (a) the term "precious metal" embraces gold, silver, Indium, Magnesium, Molybdenum, Rhenium, platinum and other metals of the platinum group (iridium, Tantalum, Titanium, Tungsten, Uranium, osmium, palladium, rhodium, and ruthenium), and precious- and Zirconium metaI a Iloys; K, Other Base Metals (b) the term "base metal" embraces aluminum, antimony, arsenic, barium, beryllium, bismuth, boron, cadmium, calcium, chromium, cobalt, columbium, copper, gallium, germanium, Part 3 Metal Products hafnium, indium, iron, lead, magnesium, manganese, mercury, A. Metallic Containers molybdenum, nickel, rhenium, the rare-earth metals (Including B. Wire Cordage; Wire Screen, Netting and scandium and yttrium), selenium, silicon, strontium, tantalum, Fencing; Bale Ties tellurium, thallium, thorium, tin, titanium, tungsten, urani­ C. Metal Leaf and FoU; Metallics um, vanadium, zinc, and zirconium, and base-metal alloys; D, Nails, Screws, Bolts, and Other Fasteners; (c) the term "meta I" embraces precious metals, base Locks, Builders' Hardware; Furniture, metals, and their alloys; and Luggage, and Saddlery Hardware (d) in determining which of two or more equally specific provisions for articles "of iron or steel", "of copper", E.
    [Show full text]
  • 6 W Elding Accessories Tungsten Electrodes Magnesium Aluminum
    Sylvania Tungsten Vendor Code: SYL Tungsten Electrodes Magnesium Magnesium alloys are in 3 groups. They are: (1) aluminum-zinc-magnesium, (2) aluminum-magnesium and (3) manganese-magnesium. Since magnesium will absorb a number of harmful ingredients and oxidize rapidly when subjected to welding heat, TIG welding in an inert gas atmosphere is distinctly advantageous. The welding of magnesium is similar, in many respects, to the welding of aluminum. Magnesium was one of the first metals to be welded commercially by the inert-gas nonconsumable process (TIG). Accessories Welding Aluminum The use of TIG welding for aluminum has many advantages for both manual and automatic processes. Filler metal can be either wire or rod and should be compatible with the base alloy. Filler metal must be Ground Dia. Length Electrodes dry, free of oxides, grease or other foreign matter. If filler metal becomes damp, heat for 2 hours at Part No. (inches) (inches) 250˚ F before using. Although AC high-frequency stabilized current is recommended, DC reverse polarity 0407G .040 7 has been successfully used for thicknesses up to 3/32". 1167G 1/16 7 Stainless Steel Pure 3327G 3/32 7 In TIG welding of stainless steel, welding rods having the AWS-ASTM prefixes of E or ER can be used as 187G 1/8 7 filler rods. However, only bare uncoated rods should be used. Stainless steel can be welded using AC high frequency stabilized current, however, for DC straight polarity current recommendations must be increased 5327G 5/32 7 6 25%. Light gauge metal less than 1/16" thick should always be welded with DC straight polarity using 0407GL .040 7 argon gas.
    [Show full text]
  • Section XV BASE METALS and ARTICLES of BASE METAL Notes
    Section XV BASE METALS AND ARTICLES OF BASE METAL Notes. 1.- This Section does not cover : (a) Prepared paints, inks or other products with a basis of metallic flakes or powder (headings 32.07 to 32.10, 32.12, 32.13 or 32.15); (b) Ferro-cerium or other pyrophoric alloys (heading 36.06); (c) Headgear or parts thereof of heading 65.06 or 65.07; (d) Umbrella frames or other articles of heading 66.03; (e) Goods of Chapter 71 (for example, precious metal alloys, base metal clad with precious metal, imitation jewellery); (f) Articles of Section XVI (machinery, mechanical appliances and electrical goods); (g) Assembled railway or tramway track (heading 86.08) or other articles of Section XVII (vehicles, ships and boats, aircraft); (h) Instruments or apparatus of Section XVIII, including clock or watch springs; (ij) Lead shot prepared for ammunition (heading 93.06) or other articles of Section XIX (arms and ammunition); (k) Articles of Chapter 94 (for example, furniture, mattress supports, lamps and lighting fittings, illuminated signs, prefabricated buildings); (l) Articles of Chapter 95 (for example, toys, games, sports requisites); (m) Hand sieves, buttons, pens, pencil-holders, pen nibs or other articles of Chapter 96 (miscellaneous manufactured articles); or (n) Articles of Chapter 97 (for example, works of art). 2.- Throughout the Nomenclature, the expression “parts of general use” means : (a) Articles of heading 73.07, 73.12, 73.15, 73.17 or 73.18 and similar articles of other base metal; (b) Springs and leaves for springs, of base metal, other than clock or watch springs (heading 91.14); and (c) Articles of headings 83.01, 83.02, 83.08, 83.10 and frames and mirrors, of base metal, of heading 83.06.
    [Show full text]
  • Tungsten Minerals and Deposits
    DEPARTMENT OF THE INTERIOR FRANKLIN K. LANE, Secretary UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, Director Bulletin 652 4"^ TUNGSTEN MINERALS AND DEPOSITS BY FRANK L. HESS WASHINGTON GOVERNMENT PRINTING OFFICE 1917 ADDITIONAL COPIES OF THIS PUBLICATION MAY BE PROCURED FROM THE SUPERINTENDENT OF DOCUMENTS GOVERNMENT PRINTING OFFICE WASHINGTON, D. C. AT 25 CENTS PER COPY CONTENTS. Page. Introduction.............................................................. , 7 Inquiries concerning tungsten......................................... 7 Survey publications on tungsten........................................ 7 Scope of this report.................................................... 9 Technical terms...................................................... 9 Tungsten................................................................. H Characteristics and properties........................................... n Uses................................................................. 15 Forms in which tungsten is found...................................... 18 Tungsten minerals........................................................ 19 Chemical and physical features......................................... 19 The wolframites...................................................... 21 Composition...................................................... 21 Ferberite......................................................... 22 Physical features.............................................. 22 Minerals of similar appearance.................................
    [Show full text]
  • Smelter and Refiner List
    Smelter and Refiner List This list includes the facilities which, to the extent known, processed Tin, Tantalum, Tungsten, Gold, and Cobalt in Intel products as of March 3, 2020. Intel conducts no direct transactions and has no contractual relationship with these smelter and refiner facilities nor their sources of ore. Metal Smelter or Refinery Facility Name† Country† Tantalum Asaka Riken Co., Ltd.* JAPAN Tantalum Changsha South Tantalum Niobium Co., Ltd.* CHINA Tantalum D Block Metals, LLC* UNITED STATES OF AMERICA Tantalum Exotech Inc.* UNITED STATES OF AMERICA Tantalum F&X Electro-Materials Ltd.* CHINA Tantalum FIR Metals & Resource Ltd.* CHINA Tantalum Global Advanced Metals Aizu* JAPAN Tantalum Global Advanced Metals Boyertown* UNITED STATES OF AMERICA Tantalum Guangdong Zhiyuan New Material Co., Ltd.* CHINA Tantalum H.C. Starck Co., Ltd.* THAILAND Tantalum H.C. Starck Tantalum and Niobium GmbH* GERMANY Tantalum H.C. Starck Hermsdorf GmbH* GERMANY Tantalum H.C. Starck Inc.* UNITED STATES OF AMERICA Tantalum H.C. Starck Ltd.* JAPAN Tantalum H.C. Starck Smelting GmbH & Co. KG* GERMANY Tantalum Hengyang King Xing Lifeng New Materials Co., Ltd.* CHINA Tantalum Jiangxi Dinghai Tantalum & Niobium Co., Ltd.* CHINA Tantalum JiuJiang JinXin Nonferrous Metals Co., Ltd.* CHINA Tantalum Jiujiang Tanbre Co., Ltd.* CHINA Tantalum Jiujiang Zhongao Tantalum & Niobium Co., Ltd.* CHINA Tantalum KEMET Blue Metals* MEXICO Tantalum LSM Brasil S.A.* BRAZIL Tantalum Metallurgical Products India Pvt., Ltd.* INDIA Tantalum Mineracao Taboca S.A.* BRAZIL Tantalum
    [Show full text]
  • A Study of the Surface Reactions of Hydrocarbons on Tungsten by Field Electron Emission Microscopy Nelson Craig Gardner Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1966 A study of the surface reactions of hydrocarbons on tungsten by field electron emission microscopy Nelson Craig Gardner Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Physical Chemistry Commons Recommended Citation Gardner, Nelson Craig, "A study of the surface reactions of hydrocarbons on tungsten by field electron emission microscopy " (1966). Retrospective Theses and Dissertations. 5365. https://lib.dr.iastate.edu/rtd/5365 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been microfihned exactly as received ® 7-5587 GARDNER, Nelson Craig, 1937- A STUDY OF THE SURFACE REACTIONS OF HYDRO­ CARBONS ON TUNGSTEN BY FIELD ELECTRON EMIS­ SION MICROSCOPY. Iowa State University of Science and Technology, Ph.D„ 1966 Chemistry, physical University Microfilms, Inc., Ann Arbor, Michigan A STUDY OF THE SURFACE REACTIONS OF HYDROCARBONS ON TUNGSTEN BY FIELD ELECTRON EMISSION MICROSCOPY by Nelson Craig Gardner A Dissertation Submitted to the Graduate Faculty in partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject:
    [Show full text]
  • Tungsten Alloys Rod, Counterweights
    19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.0983 40.078 44.955908 47.867 50.9415 51.9961 54.938044 55.845 58.933194 58.6934 63.546 65.38 69.723 72.630 74.921595 78.971 79.904 83.798 Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton 74 37 38 39 40 41 43 44 45 46 47 48 49 50 51 52 53 54 5 W Tungsten Alloys THE MATERIALS YOU NEED, WHEN YOU NEED THEM Rb Sr Y Zr Nb 183.84 Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 85.4678 87.62 88.90584 91.224 92.90637 Refractory98 101.07 Metals102.90550 and 1Alloys06.42 107.8682 112.4www.edfagan.com14 114.818 | [email protected] 121.760 127.60 126.90447 131.293 Rubidium Stronum Yrium Zirconium Niobium Tungsten Techneum Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Anmony Tellurium Iodine Xenon 29 26 28 toll free 800.348.6268 Cu Fe Ni 55 56 72 73 7463.546 55.845 58.6934 75 76 77 78 79 80 81 82 83 84 85 86 Copper Iron Nickel 6 Cs Ba 57 Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 132.90545196 137.327 71 178.49 180.94788 183.84 186.207 190.23 192.217 195.084 196.966569 200.592 204.38 207.2 208.98040 209 210 222 Caesium Barium Hafnium Tantalum DESCRIPTIONTungsten Rhenium Osmium Iridium Planum Gold Mercury Thallium Lead Bismuth Polonium Astane Radon The element tungsten (W) is quite brittle and difficult to machine, but with the addition of nickel, copper and/or iron, a group of alloys are produced that are machinable with enhanced engineering properties.
    [Show full text]
  • SILVER BRAZING FILLER METALS for TUNGSTEN CARBIDE and PCD for Brazing Tungsten Carbide and Tungsten Carbide Backed Poly-Crystalline Diamond Pieces
    Metal Joining SILVER BRAZING FILLER METALS FOR TUNGSTEN CARBIDE AND PCD for brazing tungsten carbide and tungsten carbide backed poly-crystalline diamond pieces CONTENTS PRODUCTS AT A GLANCE Products at a glance 2 Compositions TM For Brazing Tungsten Carbide and 3 Argo-braze products Alloy System Ag Cu Zn Ni have the following Poly-crystalline Diamond compositions: Additional Elements Mn In Tri-foil Products For Brazing 4 Tungsten Carbide Standard products are supplied to conform to ISO17672. Special products conform to proprietary Johnson Matthey specifications. Recommended Uses For These 5 TM Argo-braze Products Uses for the Products Technical 5 TM These Argo-braze products are most commonly used to form joints on a combination of the following Key 7 materials: Tungsten carbide and tungsten carbide backed poly-crystalline diamond Carbon/low alloy, tool and stainless steel* Note: *Special considerations apply if stainless steel joints are exposed to water in service Other materials such as cast iron and aluminium bronze Conditions for Use The Argo-brazeTM products are intended for use by brazing in air using a hand torch, fixed burner system, high frequency induction or resistance heating method. They should be used with a compatible brazing flux. This can be introduced to the joint by applying a separate flux powder or paste, or a brazing paste with a flux binder system. 2 Metal Joining products FOR BRAZING TUNGSTEN CARBIDE AND POLY-CRYSTALLINE DIAMOND These products have been formulated as brazing filler metals for the joining of tungsten carbide or poly-crystalline diamond pieces where the greatest dimension does not exceed 20mm.
    [Show full text]
  • Welding Titanium a Designers and Users Handbook Tig the Titanium Information Group
    - Guide to best practice - WELDING TITANIUM A DESIGNERS AND USERS HANDBOOK TIG THE TITANIUM INFORMATION GROUP WORLD CENTRE FOR MATERIALS JOINING TECHNOLOGY Electronic copyright in this document as follows: Copyright TWI and the Titanium Information Group, 1999 £25.00 TITANIUM INFORMATION GROUP The TITANIUM INFORMATION GROUP, (TIG) is an association of European suppliers, design engineers, and fabricators of titanium formed with the intention of promoting the use of titanium. The aim of the Group is to influence the initial selection of materials so that titanium is given the consideration merited by its unique combination of physical and mechanical properties, outstanding resistance to corrosion and cost effectiveness in a wide range of demanding applications. Regular publications and literature available from the Group present detailed and up-to-date technical and commercial information to materials engineers, plant and equipment designers and buyers, and provide the answers to everyday questions about cost, availability, fabrication and use of titanium and its alloys. Members of the Group are available to give presentations about titanium on either general or specific topics to companies or at seminars. A list of member companies of TIG appears on pages 32 and 33 Copies of the TIG video, ‘Titanium Today’ and the data diskette ‘Titanium and Its Alloys’ are available for use in educational and training establishments to provide an introduction to the metal its applications and properties. Further information on TIG publications can be found on the web: www.titaniuminfogroup.co.uk TWI TWI is based at Abington, near Cambridge, UK and is one of Europe’s largest independent contract research and technology organisations.
    [Show full text]
  • Microsoft Devices Smelter and Refiner List
    Microsoft Devices Smelter and Refiner List Tin, Tantalum, Tungsten, Gold, and Cobalt smelters and refiners identified in Microsoft Devices’ supply chain as of December 31, 2019. Last updated September 2020 This smelter and refiner list includes Tin, Tantalum, Tungsten, Gold, and Cobalt smelters and refiners identified in Microsoft Devices’ supply chain as of December 31, 2019. Microsoft conducts no direct transactions and has no contractual relationship with these smelter and refiner facilities nor their sources of ore. For more details and the most current status of each smelter or refiner, visit the Responsible Minerals Assurance Process (RMAP) website at http://www.responsiblemineralsinitiative.org. Additional details about Microsoft Devices’ Responsible Sourcing can be found in the Microsoft Responsible Sourcing of Raw Materials Policy and the Microsoft 2020 Sustainability Report. Smelter ID Metal Smelter or Refiner Name Country CID003226 Cobalt Freeport Cobalt Oy Finland CID003227 Cobalt Gangzhou Yi Hao Umicore Industry Co. China CID003212 Cobalt Ganzhou Tengyuan Cobalt New Material Co., Ltd. China CID003209 Cobalt Gem (Jiangsu) Cobalt Industry Co., Ltd. China CID003291 Cobalt Guangdong Jiana Energy Technology Co., Ltd. China CID003219 Cobalt Hunan Brunp Recycling Technology Co., Ltd. China CID003467 Cobalt Hunan Shiji Yintian New Material Co., Ltd. China CID003404 Cobalt Hunan Yacheng New Materials Co., Ltd. China CID003411 Cobalt Hunan Zoomwe New Energy Science & Technology Co., Ltd. China CID003447 Cobalt Jiangxi Rui da Xinnengyuan Technology Co., Ltd. China CID003378 Cobalt Jingmen GEM Co., Ltd. China CID003233 Cobalt JSC Kolskaya Mining and Metallurgical Company (Kola MMC) Russia CID003210 Cobalt Lanzhou Jinchuan Advanced Materials Technology Co., Ltd. China CID003215 Cobalt Maolian China CID003255 Cobalt Quzhou Huayou Cobalt New Material Co., Ltd.
    [Show full text]
  • Silver Tungsten
    AgW Silver Tungsten SCOPE: This information refers to silver based contact material with tungsten as the second main component manufactured by: » infiltration of molten silver into a porous tungsten preform » press-sinter-repress of a silver tungsten powder blend Tips are available with silver excess (infiltration) or backing layer, e. g. Ag, AgNi (press-sinter-repress) and optionally with an additional layer of a brazing alloy. Designation of standard compositions Applications Microstructure The tungsten content is designated in » circuit breakers (ACB, MCCB) An higher amount of tungsten weight percent. It can be adjusted between » earth leakage breakers (RCCB) leads to a more regular 40 to 80 %. » miniature circuit breakers (MCB) distribution of the components. » arc fault and ground fault circuit Characteristics interrupters (AFCI, GFCI) » lowest arc erosion of all contact materials » high welding resistance » low electrical conductivity » high contact resistance by formation of tungsten oxides as well as silvertungstates » poor arc migration properties AgW50 » very hard Physical Properties MATERIAL DENSITY ELECTRICAL CONDUCTIVITY HARDNESS [g / cm3] [m/(Ω·mm2)] [HRB] AgW60 AgW 12.5 41 50 AgW 13.2 38 80 AgW 14.0 34 85 AgW 14.4 32 90 AgW 14.9 31 90 AgW 16.0 23 100 AgW70 AgW | Silver Tungsten USA Attleboro Umicore Electrical Materials USA, Inc. 527 Pleasant Street, Building 11 Attleboro, MA 02703 Phone: +1 508 838 2064 Fax: +1 508 838 2062 [email protected] The information and statements contained herein are provided free of charge and are for Glens Falls general information purposes only. They are believed to be accurate at the time of Umicore Technical Materials North America Inc.
    [Show full text]
  • Injection Moulded Tungsten and Molybdenum Copper Alloys for Microelectronic Housings
    AT0100373 44 RM 9 M. Knuwer et al. 15" International Plansee Seminar, Eds. G. Kneringer, P. Rodhammer and H. Wildner, Plansee Holding AG, Reutte (2001), Vol. 1 Injection Moulded Tungsten and Molybdenum Copper Alloys for Microelectronic Housings M. Knuwer, H. Meinhardf, K.-H. Wichmanrf Fraunhofer-lnstitute for Manufacturing and Advanced Materials (IFAM), Bremen, Germany *H.C. Starck GmbH & Co. KG, Laufenburg, Germany +EADS Deutschland GmbH, Ulm, Germany Summary Molybdenum- and tungsten-copper alloys were developed as promising housing materials for high-frequency- (HF-) microelectronic packaging. Three different powder processing routes (mixing, attritor milling, compound powder), different particle sizes and copper contents were tested to achieve the best possible result in thermal and mechanical properties. Net shape processing of the parts took place via metal-injection-moulding, debindering and sintering. It could be seen that the sintering behaviour (density and shrinking rate) was strongly depending on the copper content and tungsten particle size. Lowest sinter activity was detected for a W90Cu10 powder mixture with coarse (d50=3,5um) tungsten powder, highest for the new developed Mo68Cu32 compound powder. Using compound powder leads to higher density at lower sinter temperatures compared to conventional processed WCu or MoCu powder mixtures. MoCu and WCu housing demonstrators were produced and HF-equipment was integrated. First electrical tests of the integrated demonstrator were performed successfully. Keywords tungsten, molybdenum, copper, thermal management, high frequency, thermal expansion 1 Introduction The current technical development is distinguished by an extensively growing use of mobile-communication and multi-media systems. The increasing number of these systems results in a likewise increasing demand on high 1.
    [Show full text]