Brock String and the Horopter: a Perspective
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Management of Microtropia
Br J Ophthalmol: first published as 10.1136/bjo.58.3.281 on 1 March 1974. Downloaded from Brit. J. Ophthal. (I974) 58, 28 I Management of microtropia J. LANG Zirich, Switzerland Microtropia or microstrabismus may be briefly described as a manifest strabismus of less than 50 with harmonious anomalous correspondence. Three forms can be distinguished: primary constant, primary decompensating, and secondary. There are three situations in which the ophthalmologist may be confronted with micro- tropia: (i) Amblyopia without strabismus; (2) Hereditary and familial strabismus; (3) Residual strabismus after surgery. This may be called secondary microtropia, for everyone will admit that in most cases of convergent strabismus perfect parallelism and bifoveal fixation are not achieved even after expert treatment. Microtropia and similar conditions were not mentioned by such well-known early copyright. practitioners as Javal, Worth, Duane, and Bielschowsky. The views of Maddox (i898), that very small angles were extremely rare, and that the natural tendency to fusion was much too strong to allow small angles to exist, appear to be typical. The first to mention small residual angles was Pugh (I936), who wrote: "A patient with monocular squint who has been trained to have equal vision in each eye and full stereoscopic vision with good amplitude of fusion may in 3 months relapse into a slight deviation http://bjo.bmj.com/ in the weaker eye and the vision retrogresses". Similar observations of small residual angles have been made by Swan, Kirschberg, Jampolsky, Gittoes-Davis, Cashell, Lyle, Broadman, and Gortz. There has been much discussion in both the British Orthoptic Journal and the American Orthoptic journal on the cause of this condition and ways of avoiding it. -
Routine Eye Examination
CET Continuing education Routine eye examination Part 3 – Binocular assessment In the third part of our series on the eye examination, Andrew Franklin and Bill Harvey look at the assessment and interpretation of binocular status. Module C8290, one general CET point, suitable for optometrists and DOs he assessment of binocular previous question. Leading questions function is often one of the should be avoided, especially when weaker areas of a routine, dealing with children. If they are out if observation of candidates of line ask the patient ‘Which one is out in the professional qualifica- of line with the X?’ Ttions examination is any guide. Tests are You should know before you start the done for no clearly logical reason, often test which line is seen by which eye. because they always have been, and in If you cannot remember it from last an order which defeats the object of the time, simply look at the target through testing. Binocular vision seems to be one the visor yourself (Figure 1). Even if of those areas that practitioners shy away you think you can remember, check from, and students often take an instant anyway, as it is possible for the polarisa- dislike to. Many retests and subsequent tion of the visor not to match that of the remakes of spectacles are the result of a Mallett Unit at distance or near or both, practitioner overlooking the effects of a Figure 1 A distance fixation disparity target especially if the visor is a replacement. change of prescription on the binocular If both eyes can see both bars, nobody status of the patient. -
The Effect of the Fixation Disparity on Photogrammetric Processes
The Effect of the Fixation Disparity on Photogrammetric Processes SANDOR A. VERES, Asst. Proj., Surveying and Mapping, Purdue University ABSTRACT: This paper reviews the function oj the human eyes in photogram metry, and discusses its limitations. The correction of the observation error is presented by mathematical derivations and practical examples. The paper points out the need for continued development of techniques in view of con stantly increasing requirements. INTRODUCTION study of coincidence is most important from the photogrammetric point of view. For a HOTOGRAMMETRIC instrumentation has undergone a revolutionary development study of this kind an instrument called a P horopter has been used. since the second World War. A precision photogrammetric instrument today is able to The horopter designed by Tschermak con provide measurement to within a precision of sists of thirteen steel channels mounted so as ± 3 microns. By using these precision in to converge to the midpoint of the inter struments the compensation of errors in pupillary base line of the two eyes of an volved in the measurements becomes of pri observer. The central channel lies in a median mary importance. The compensation of errors plane, perpendicular to the eyebase of the is based upon the geometrical knowledge of observer, and the others make angles of 1, 2. the source of errors. The human eye is in 4, 8, 12, and 16 degrees on each side of the volved in every photogrammetric measure central channel. A small vertical steel rod can ment; consequently the geometrical knowl slide smoothly in each channel and the rods edge of the errors due to the limi tation of the are mounted for use at visual distances of 20, human eye is very important. -
The Nature, Testing, and Variables Influencing
THE NATURE, TESTING, AND VARIABLES INFLUENCING FIXATION DISPARITY; ROLE OF THE FUSION LOCK 1 by Leland W. Carr with Dr. James J. Saladin I ... *I Tl.e N.-1• .._1 Tufi"), A.l IJ.,.;.,l/.s I.{l..•• :? F1*'/:·.., /);,,_,. ; ~ R.lc. OF 'Tlc. ~="••1•.. C. •• l( I Introduction A fixation disparity is a small angular measurement of the mis alignment of the two eyes which can occur while still permitting single, fused binocular vision. It represents a small error in the aiming of the eyes which occurs without diplopia being detected. Fixation disparity is allowed because of the slight "slippage" pro vided to the fusional system through the existence of Panum's fusional areas. So long as binocular alignment is precise enough to place the two retinal images of a single object within corre sponding Panum's areas, the final perception is likely to be single and fused. Sensory fusion thus occurs in spite of a small error in motor fusion. A slight muscle imbalance is the rule, rather than the excep tion in individuals even with normal assymptomatic binocular systems. It is rare that all twelve extraocular muscles are precisely bal anced in their agonist-antagonist relationships, and thus the inate drive to achieve single vision requires a fusional effort to over come existing imbalance. When binocularity is dissociated (as with a covertest) the fusional drive is interrupted and the eyes deviate out of alignment under the influence of the muscle imbalance. This deviation under dissociation is referred to as the heterophoria. When both eyes are permitted to view without dissociative conditions the fusional drive to achieve single binocular vision pulls the eyes toward alignment in opposition to the phoric "stress" operating to deviate the alignment. -
427663 1 En Bookbackmatter 215..297
Conclusion The intention of this book was to test the interdependence between medieval theories of optics and the practice of perspective. More particularly we chose to examine the question of physiological optics, because the proof of a connection between optics and perspective would be less probative if it took geometric optics as its starting point (for example, it is not possible to separate the respective influences of optics and geometry in the use of similar triangles, a method shared by the two sciences). In contrast, the theory of binocular vision is critically dependent on the particular way in which optics was addressed in the Middle Ages, combining as it did geometric and physical optics with anatomy and ocular physiology. It is within this framework that the differing interpretations of “axial perspective” and “two-point perspective” were examined here. As has been seen, these forms of representations do not correspond to any type of parallel projection that places the spectator at infinity, therefore excluding the possibility that they might constitute axonometric (isometric, dimetric, trimetric) or oblique (cavalier and military) pro- jections. One could go even further in the critical analysis of the two-point system of representation: 1. Two-point perspective is not a linear perspective, because the two vanishing points are separated by distances that are many times greater than the maximal metric error. 2. Two-point perspective bears no relationship to bifocal perspective (Parronchi’s hypothesis). 3. Two-point perspective cannot be considered a form of trifocal perspective, whose object verticals are always represented by parallel lines. 4. The two vanishing points are not the result of an absence of parallelism in the side walls nor of an alteration in the parallelism intended to highlight the subject of the scene. -
Care of the Patient with Accommodative and Vergence Dysfunction
OPTOMETRIC CLINICAL PRACTICE GUIDELINE Care of the Patient with Accommodative and Vergence Dysfunction OPTOMETRY: THE PRIMARY EYE CARE PROFESSION Doctors of optometry are independent primary health care providers who examine, diagnose, treat, and manage diseases and disorders of the visual system, the eye, and associated structures as well as diagnose related systemic conditions. Optometrists provide more than two-thirds of the primary eye care services in the United States. They are more widely distributed geographically than other eye care providers and are readily accessible for the delivery of eye and vision care services. There are approximately 36,000 full-time-equivalent doctors of optometry currently in practice in the United States. Optometrists practice in more than 6,500 communities across the United States, serving as the sole primary eye care providers in more than 3,500 communities. The mission of the profession of optometry is to fulfill the vision and eye care needs of the public through clinical care, research, and education, all of which enhance the quality of life. OPTOMETRIC CLINICAL PRACTICE GUIDELINE CARE OF THE PATIENT WITH ACCOMMODATIVE AND VERGENCE DYSFUNCTION Reference Guide for Clinicians Prepared by the American Optometric Association Consensus Panel on Care of the Patient with Accommodative and Vergence Dysfunction: Jeffrey S. Cooper, M.S., O.D., Principal Author Carole R. Burns, O.D. Susan A. Cotter, O.D. Kent M. Daum, O.D., Ph.D. John R. Griffin, M.S., O.D. Mitchell M. Scheiman, O.D. Revised by: Jeffrey S. Cooper, M.S., O.D. December 2010 Reviewed by the AOA Clinical Guidelines Coordinating Committee: David A. -
Comparison of a Unique Anaglyphic Vertical Fixation Disparity Test to the Sheedy Disparometer
Pacific University CommonKnowledge College of Optometry Theses, Dissertations and Capstone Projects 5-2003 Comparison of a unique anaglyphic vertical fixation disparity test to the Sheedy disparometer Paul Stasik Pacific University Randy Kelly Pacific University Matt Hoppe Pacific University Recommended Citation Stasik, Paul; Kelly, Randy; and Hoppe, Matt, "Comparison of a unique anaglyphic vertical fixation disparity test to the Sheedy disparometer" (2003). College of Optometry. 1456. https://commons.pacificu.edu/opt/1456 This Thesis is brought to you for free and open access by the Theses, Dissertations and Capstone Projects at CommonKnowledge. It has been accepted for inclusion in College of Optometry by an authorized administrator of CommonKnowledge. For more information, please contact [email protected]. Comparison of a unique anaglyphic vertical fixation disparity test ot the Sheedy disparometer Abstract The clinical gold standard for deriving vertical prism prescriptions is the patient's vertical associated phoria (The relieving prism to bring a vertical fixation disparity ot zero). It is generally accepted that the most accurate device used to measure fixation disparity at nearpoint is the Sheedy disparometer. However, the Sheedy disparometer is relatively large, expensive and not currently manufactured. These factors may make measurements of vertical associated phorias less appealing and accessible to practitioners. This study evaluated the vertical associated phoria measurements of twenty non- asthenopic subjects with measurable vertical phorias. Vertical associated phoria measurements were made using the Sheedy disparometer and a unique inexpensive anaglyphic vertical fixation disparity test composed of a card with a specifically designed edr and green image and a pair of standard anaglyphic glasses for the patient to wear. -
Causing and Curing Infantile Esotropia in Primates
Washington University School of Medicine Digital Commons@Becker Open Access Publications 2007 Causing and curing infantile esotropia in primates: The oler of decorrelated binocular input (an American Ophthalmological Society thesis) Lawrence Tychsen Washington University School of Medicine in St. Louis Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Tychsen, Lawrence, ,"Causing and curing infantile esotropia in primates: The or le of decorrelated binocular input (an American Ophthalmological Society thesis)." Transactions of the American Ophthalmological Society.105,. 564-593. (2007). https://digitalcommons.wustl.edu/open_access_pubs/3298 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. CAUSING AND CURING INFANTILE ESOTROPIA IN PRIMATES: THE ROLE OF DECORRELATED BINOCULAR INPUT (AN AMERICAN OPHTHALMOLOGICAL SOCIETY THESIS) BY Lawrence Tychsen, MD ABSTRACT Purpose: Human infants at greatest risk for esotropia are those who suffer cerebral insults that could decorrelate signals from the 2 eyes during an early critical period of binocular, visuomotor development. The author reared normal infant monkeys, under conditions of binocular decorrelation, to determine if this alone was sufficient to cause esotropia and associated behavioral as well as neuroanatomic deficits. Methods: Binocular decorrelation was imposed using prism-goggles for durations of 3 to 24 weeks (in 6 experimental, 2 control monkeys). Behavioral recordings were obtained, followed by neuroanatomic analysis of ocular dominance columns and binocular, horizontal connections in the striate visual cortex (area V1). -
Binocular Vision
0331—Foundations of Clinical Ophthalmology—Ch24—R2—05-21-04 15:35:55— advantage in detection of faint images and rejection of the optical distortions within the eyes. 24 4. The presence of two mobile eyes allows the organism to converge the line of sight on distant objects and obtain a reading as to their absolute distance. 5. And, probably the most dramatic reason for binocu- Binocular lar vision, two eyes permit stereoscopic depth per- ception–the ability to use the differences in the im- ages caused by each eye viewing from a slightly Vision different viewpoint, known as binocular disparities, to perceive distance in the third dimension of visual space. Presumably all animals develop a visual system with Christopher W. Tyler some weighting among these different factors. Most lower animals take advantage of the possibility of a 360- degree field of view by having the eyes pointing in op- posite directions. This advantage applies to fish, many birds, and to a large extent, mammals that are preyed upon. However, most predatory animals, from spiders and crustaceans through birds to mammals and humans, Eyes come in pairs, providing special capabilities that tend to have the eyes facing in the same direction. This are not available to a single imaging system. This chap- arrangement is, presumably, to take advantage of stereo- ter provides an overview of the ways that visual process- scopic depth perception, which has been demonstrated ing has evolved to utilize the joint capabilities of a dual in humans, monkeys, cats, and falcons, and is likely to optical system for the perception of the third spatial be widespread across other species.2–5 dimension, of the visual deficits that can occur specific Actually, almost all animals show some degree of to the binocular coupling of this system, and of current binocular overlap, even those with a full 360-degree approaches to ameliorating those deficits. -
Foveal Diplopia Thresholds and Fixation Disparities
Perception & Psychophysics 1981.30 (4), 321·329 Foveal diplopia thresholds and fixation disparities A.L.DUWAER and G. van den BRINK Department ofBiologicaland Medical Physics, Erasmus University Rotterdam' 3000DR Rotterdam, The Netherlands Comparison of the magnitude and intrinsic spread of foveal diplopia thresholds with the ac curacy of ocular alignment as determined with a subjective alignment method shows that: the accuracy of alignment in the vertical direction (within 1-2 min) is remarkably good and much better than in the horizontal direction; the largest disparities occurring due to restricted align ment accuracy are usually substantially smaller than the foveal diplopia thresholds; inter individual variability in the magnitude of foveal diplopia thresholds is not due only to inter individual variability in the alignment accuracy; and the spread of foveal diplopia thresholds exceeds the spread of ocular alignment, which implies that the noise in the foveal disparity do main is not only due to the restricted alignment accuracy but also to sensory processes. Finally, the data confirm that, unlike the case with diplopia thresholds, the spread of stereoscopic thresholds is not affected by the restricted alignment accuracy. When an observer with normal binocular vision but also for the reported foveal diplopia thresholds looks with both eyes at an object, the eyes align with (see, e.g., Ouwaer & van den Brink, 1981). respect to the fixated part of the object in such a way Because of these variabilities, the comparative that the images in the foveae of the two eyes fall on magnitudes of fixation disparities and foveal dip nearly corresponding retinal locations. -
Accommodative and Vergence Dysfunction
OPTOMETRY: OPTOMETRIC CLINICAL THE PRIMARY EYE CARE PROFESSION PRACTICE GUIDELINE Doctors of optometry are independent primary health care providers who examine, diagnose, treat, and manage diseases and disorders of the visual system, the eye, and associated structures as well as diagnose related systemic conditions. Optometrists provide more than two-thirds of the primary eye care services in the United States. They are more widely distributed geographically than other eye care providers and are readily accessible for the delivery of eye and vision care services. There are approximately 32,000 full-time equivalent doctors of optometry currently in practice in the United States. Optometrists practice in more than 7,000 communities across the United States, serving as the sole primary eye care provider in more than 4,300 communities. Care of the Patient with The mission of the profession of optometry is to fulfill the vision and eye Accommodative and care needs of the public through clinical care, research, and education, all of which enhance the quality of life. Vergence Dysfunction OPTOMETRIC CLINICAL PRACTICE GUIDELINE CARE OF THE PATIENT WITH ACCOMMODATIVE AND VERGENCE DYSFUNCTION Reference Guide for Clinicians Prepared by the American Optometric Association Consensus Panel on Care of the Patient with Accommodative or Vergence Dysfunction: Jeffrey S. Cooper, M.S., O.D., Principal Author Carole R. Burns, O.D. Susan A. Cotter, O.D. Kent M. Daum, O.D., Ph.D. John R. Griffin, M.S., O.D. Mitchell M. Scheiman, O.D. Reviewed by the AOA Clinical Guidelines Coordinating Committee: John F. Amos, O.D., M.S., Chair Kerry L. -
Ibn Al-Haytham Sur La Vision Binoculaire: Un Précurseur De L’Optique Physiologique Dominique Raynaud
Ibn al-Haytham sur la vision binoculaire: un précurseur de l’optique physiologique Dominique Raynaud To cite this version: Dominique Raynaud. Ibn al-Haytham sur la vision binoculaire: un précurseur de l’optique physi- ologique. Arabic Sciences and Philosophy, Cambridge University Press (CUP), 2003, 13, pp.79-99. halshs-00005585 HAL Id: halshs-00005585 https://halshs.archives-ouvertes.fr/halshs-00005585 Submitted on 15 Nov 2005 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Slightly revised for Arabic Science and Philosophy, 2003, 13: 79-99 Ibn al-Haytham sur la vision binoculaire: un précurseur de l'optique physiologique DOMINIQUE RAYNAUD Université Pierre-Mendès-France (Grenoble) Résumé: L'optique physiologique moderne introduit les notions relatives aux conditions de fusion des ima- ges binoculaires par le concept de correspondance, prêté à Christiaan Huygens (1704), et par une expérience at- tribuée à Christoph Scheiner (1619). L'article montre que la conceptualisation de l'expérience remonte en fait à Ptolémée (90-168) et à Ibn al-Haytham (m. ap. 1040), et précise les connaissances que ce dernier avait des méca- nismes de la vision binoculaire. Il est ensuite expliqué pourquoi Ibn al-Haytham, mathématicien mais ici expéri- mentateur, ne donne pas la forme circulaire de l'horoptère théorique, dont la construction revient à Gerhard Vieth (1818) et Johannes Müller (1826).