Arteries (Arteriae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Middle Cranial Fossa Sphenoidal Region Dural Arteriovenous Fistulas: Anatomic and Treatment Considerations
ORIGINAL RESEARCH INTERVENTIONAL Middle Cranial Fossa Sphenoidal Region Dural Arteriovenous Fistulas: Anatomic and Treatment Considerations Z.-S. Shi, J. Ziegler, L. Feng, N.R. Gonzalez, S. Tateshima, R. Jahan, N.A. Martin, F. Vin˜uela, and G.R. Duckwiler ABSTRACT BACKGROUND AND PURPOSE: DAVFs rarely involve the sphenoid wings and middle cranial fossa. We characterize the angiographic findings, treatment, and outcome of DAVFs within the sphenoid wings. MATERIALS AND METHODS: We reviewed the clinical and radiologic data of 11 patients with DAVFs within the sphenoid wing that were treated with an endovascular or with a combined endovascular and surgical approach. RESULTS: Nine patients presented with ocular symptoms and 1 patient had a temporal parenchymal hematoma. Angiograms showed that 5 DAVFs were located on the lesser wing of sphenoid bone, whereas the other 6 were on the greater wing of the sphenoid bone. Multiple branches of the ICA and ECA supplied the lesions in 7 patients. Four patients had cortical venous reflux and 7 patients had varices. Eight patients were treated with transarterial embolization using liquid embolic agents, while 3 patients were treated with transvenous embo- lization with coils or in combination with Onyx. Surgical disconnection of the cortical veins was performed in 2 patients with incompletely occluded DAVFs. Anatomic cure was achieved in all patients. Eight patients had angiographic and clinical follow-up and none had recurrence of their lesions. CONCLUSIONS: DAVFs may occur within the dura of the sphenoid wings and may often have a presentation similar to cavernous sinus DAVFs, but because of potential associations with the cerebral venous system, may pose a risk for intracranial hemorrhage. -
The Patellar Arterial Supply Via the Infrapatellar Fat Pad (Of Hoffa): a Combined Anatomical and Angiographical Analysis
Hindawi Publishing Corporation Anatomy Research International Volume 2012, Article ID 713838, 10 pages doi:10.1155/2012/713838 Research Article The Patellar Arterial Supply via the Infrapatellar Fat Pad (of Hoffa): A Combined Anatomical and Angiographical Analysis Gregor Nemschak and Michael L. Pretterklieber Center of Anatomy and Cell Biology, Department of Applied Anatomy, Medical University of Vienna, Waehringerstrasse 13, 1090 Vienna, Austria Correspondence should be addressed to Michael L. Pretterklieber, [email protected] Received 3 February 2012; Accepted 21 March 2012 Academic Editor: Konstantinos Natsis Copyright © 2012 G. Nemschak and M. L. Pretterklieber. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Even though the vascular supply of the human patella has been object of numerous studies until now, none of them has described in detail the rich arterial supply provided via the infrapatellar fat pad (of Hoffa). Therefore, we aimed to complete the knowledge about this interesting and clinically relevant topic. Five human patellae taken from voluntary body donators were studied at the Department of Applied Anatomy of the Medical University of Vienna. One was dissected under the operation microscope, a second was made translucent by Sihlers-solution, and three underwent angiography using a 3D X-ray unit. The results revealed that the patella to a considerable amount is supplied by arteries coursing through the surrounding parts of the infrapatellar fat pad. The latter were found to branch off from the medial and lateral superior and inferior genicular arteries. -
Netter's Musculoskeletal Flash Cards, 1E
Netter’s Musculoskeletal Flash Cards Jennifer Hart, PA-C, ATC Mark D. Miller, MD University of Virginia This page intentionally left blank Preface In a world dominated by electronics and gadgetry, learning from fl ash cards remains a reassuringly “tried and true” method of building knowledge. They taught us subtraction and multiplication tables when we were young, and here we use them to navigate the basics of musculoskeletal medicine. Netter illustrations are supplemented with clinical, radiographic, and arthroscopic images to review the most common musculoskeletal diseases. These cards provide the user with a steadfast tool for the very best kind of learning—that which is self directed. “Learning is not attained by chance, it must be sought for with ardor and attended to with diligence.” —Abigail Adams (1744–1818) “It’s that moment of dawning comprehension I live for!” —Calvin (Calvin and Hobbes) Jennifer Hart, PA-C, ATC Mark D. Miller, MD Netter’s Musculoskeletal Flash Cards 1600 John F. Kennedy Blvd. Ste 1800 Philadelphia, PA 19103-2899 NETTER’S MUSCULOSKELETAL FLASH CARDS ISBN: 978-1-4160-4630-1 Copyright © 2008 by Saunders, an imprint of Elsevier Inc. All rights reserved. No part of this book may be produced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system, without permission in writing from the publishers. Permissions for Netter Art figures may be sought directly from Elsevier’s Health Science Licensing Department in Philadelphia PA, USA: phone 1-800-523-1649, ext. 3276 or (215) 239-3276; or e-mail [email protected]. -
Branches of the Maxillary Artery of the Dromedary, Camelus Dromedarius
Table 3.5: Branches of the Maxillary Artery of the Dromedary, Camelus dromedarius Artery Origin Course Distribution Departs from common trunk with the deep temporal vessels, close to mandibular foramen; traverses mandibular canal, supplying Mandibular dentition; lower lip; Inferior Alveolar Maxillary Artery mandibular dentition. Terminates as mental anastomoses freely with ventral ramus artery after exiting at mental foramen, of the facial artery. whereupon supplies skin, mucosa, and muscle of the lower lip. Single deep temporal vessel is first major dorsal branch of the MA; ascends deep to the coronoid Deep Temporal Maxillary Artery Temporalis muscle process and fans out on the deep surface of the temporalis muscle. Lower lateral branch of deep temporal artery; passes through the mandibular incisure and Masseteric Deep Temporal Artery Masseter muscle curves rostrally to pierce the internal surface of the masseter muscle. Proximal to the foramen orbitorotundum and optic foramen, numerous rami anastomotica connect the maxillary artery to the carotid rete. Carotid rete, ophthalmic rete, external Ramus anastomoticus Maxillary Artery The network in the dromedary is extensive, ophthalmic artery; intracranial cavity forming a plexus between the carotid and ophthalmic retia, and giving rise to the external ophthalmic artery. Condenses from a dense retial mat (composed of maxillary rami, the extradural/extracranial portion of the carotid rete, and the ophthalmic Extraocular muscles, periorbita, External Ophthalmic MA/CR/OR rete). Perfuses the majority of the periorbita, lacrimal gland including branches to the extraocular muscles and the lacrimal gland Lateral branch of the MA, begins opposite the rami anastomotica; traverses parenchyma orbital Supplies the buccal fat pad, Buccal MA fossa, between malar and anterior border of buccinator; contributes ventral coronoid process. -
Impotence Due to External Iliac Steal Syndrome
Case Report http://dx.doi.org/10.3348/kjr.2013.14.1.81 pISSN 1229-6929 · eISSN 2005-8330 Korean J Radiol 2013;14(1):81-85 Impotence due to External Iliac Steal Syndrome: Treatment with Percutaneous Transluminal Angioplasty and Stent Placement Serkan Gür, MD1, Levent Oguzkurt, MD2, Bilal Kaya, MD2, Güven Tekbas, MD2, Ugur Ozkan, MD2 1Sifa University, Department of Radiology, 35240 Basmane, Izmir, Turkey; 2Baskent University, Faculty of Medicine, Department of Radiology, 01250, Yüregir, Adana, Turkey We report a case of erectile dysfunction caused by external iliac artery occlusion, associated with pelvic steal syndrome; bilateral internal iliac arteries were patent. The patient stated that he had experienced erectile dysfunction at similar times along with claudication, but he did not mention it before angiography. He expressed that the erectile dysfunction did not last long and that he felt completely okay after the interventional procedure, in addition to his claudication. Successful treatment of the occlusion, by percutaneous transluminal angioplasty and stent implantation, helped resolve erectile dysfunction completely and treat the steal syndrome. Index terms: Erectile dysfunction; Pelvic steal syndrome; Percutaneous angioplasty INTRODUCTION and obstructive disease of the penile arteries are two main vascular causes of impotence. Obstructive arterial diseases Erectile dysfunction (ED) affects 10% of men between cause impotence by obstructing blood supply to the penis, the ages of 40 and 70 (1). ED includes multiple negative and impotence also occurs when the rare entities do not consequences; it was once believed to be a primarily obstruct the blood flow to the penis rather divert blood flow psychological problem. However, it has been estimated away from it. -
The Anterior View of the Extraosseous Blood Supply to the Foot and Ankle in a Specimen That Was Injected with Batson's Com- Po
The Journal of Bone and Joint Surgery (Gilbert) Final 32 Author(s): Paragraph text formatting will be adjusted prior to publication. Fig. E-1 The anterior view of the extraosseous blood supply to the foot and ankle in a specimen that was injected with Batson’s com- pound. 1 = first cuneiform, 2 = second cuneiform, 3 = third cu- neiform, 4 = cuboid, 5 = calcaneus, 6 = fibula, 7 = tibia, 8 = talus, 9 = navicular, A = anterior tibial artery, B = anterior medial malleolar artery, C = anterior lateral malleolar artery, D = dorsa- lis pedis artery, E = proximal lateral tarsal artery, F = proximal medial tarsal artery, G = distal medial tarsal artery, H = distal lateral tarsal artery, I = arcuate artery, J = first dorsal metatar- sal artery, K = artery of the sinus tarsi, L = longitudinal branch to second intermetatarsal space, M = longitudinal branch to third intermetatarsal space, N = longitudinal branch to fourth in- termetatarsal space, and O = transverse pedicle branch. Author: Illustration(s) on this page may have been modified. Please check illustration(s) carefully! TABLE E-1 Extraosseous Vessel Characteristics Artery Artery Present (%) Internal Diameter (mean [range]) (mm) Anterior tibial artery 95 1.828 (1.302 - 2.222) Medial metaphyseal artery 100 0.389 (0.106 - 0.818) Medial malleolar branch 100 0.316 (0.103 - 0.595) Annular branch 100 0.243 (0.122 - 0.464) Recurrent branch 90 0.218 (0.100 - 0.491) Lateral metaphyseal artery 100 0.352 (0.143 - 0.778) Anterior medial malleolar artery 80 0.430 (0.119 - 1.039) Superficial branch 100 -
Classification System of the Tibiofibular Syndesmosis Blood Supply and Its
www.nature.com/scientificreports OPEN Classifcation system of the tibiofbular syndesmosis blood supply and its clinical relevance Received: 16 February 2018 Izabela Mróz1, Piotr J. Bachul1,2, Krzysztof A. Tomaszewski1, Tomasz Bereza1, Krzysztof Gil3, Accepted: 7 June 2018 Jerzy A. Walocha1 & Artur Pasternak 1 Published: xx xx xxxx Due to the lack of anatomical studies concerning complexity of the tibiofbular syndesmosis blood supply, density of blood vessels with further organization of syndesmotic vascular variations is presented in clinically relevant classifcation system. The material for the study was obtained from cadaveric dissections. We dissected 50 human ankles observing diferent types of arterial blood supply. Our classifcation system is based on the vascular variations of the anterior aspect of tibiofbular syndesmosis and corresponds with vascular density. According to our study the mean vascular density of tibiofbular syndesmosis is relatively low (4.4%) and depends on the type of blood supply. The highest density was observed among ankles with complete vasculature and the lowest when lateral anterior malleolar artery was absent (5.8% vs. 3.5%, respectively). Awareness of various types of tibiofbular syndesmosis arterial blood supply is essential for orthopedic surgeons who operate in the ankle region and radiologists for the anatomic evaluation of this area. Knowledge about possible variations along with relatively low density of vessels may contribute to modifcation of treatment approach by the increase of the recommended time of syndesmotic screw stabilization in order to prevent healing complications. Tibiofbular syndesmosis is a fbrous connection localized between the fbular notch of the tibia and medial surface of the lateral ankle. -
The Incidence and Anatomy of Accessory Pudendal Arteries As
The Incidence and Anatomy of Accessory Pudendal Arteries as Depicted on Multidetector-Row CT Angiography: Clinical Implications of Preoperative Evaluation for Laparoscopic and Robot-Assisted Radical Prostatectomy Beom Jin Park, MD1 Objective: To help preserve accessory pudendal arteries (APAs) and to Deuk Jae Sung, MD1 ensure optimal postoperative sexual function after a laparoscopic or robot-assist- Min Ju Kim, MD1 ed radical prostatectomy, we have evaluated the incidence of APAs as detected Sung Bum Cho, MD1 on multidetector-row CT (MDCT) angiography and have provided a detailed 1 Yun Hwan Kim, MD anatomical description. Kyoo Byung Chung, MD1 Materials and Methods: The distribution of APAs was evaluated in 121 con- Seok Ho Kang, MD2 secutive male patients between February 2006 and July 2007 who underwent 64- Jun Cheon, MD2 channel MDCT angiography of the lower extremities. We defined an APA as any artery located within the periprostatic region running parallel to the dorsal vascu- lar complex. We also subclassified APAs into lateral and apical APAs. Two radiol- ogists retrospectively evaluated the origin, course and number of APAs; the final Index terms: Accessory pudendal arteries APA subclassification based on MDCT angiography source data was determined Computed tomography (CT) by consensus. Angiography Results: We identified 44 APAs in 36 of 121 patients (30%). Two distinct vari- Laparoscopy Prostatectomy eties of APAs were identified. Thirty-three APAs (75%) coursed near the antero- lateral region of the prostatic apex, termed apical APAs. The remaining 11 APAs DOI:10.3348/kjr.2009.10.6.587 (25%) coursed along the lateral aspect of the prostate, termed lateral APAs. -
Vessels and Circulation
CARDIOVASCULAR SYSTEM OUTLINE 23.1 Anatomy of Blood Vessels 684 23.1a Blood Vessel Tunics 684 23.1b Arteries 685 23.1c Capillaries 688 23 23.1d Veins 689 23.2 Blood Pressure 691 23.3 Systemic Circulation 692 Vessels and 23.3a General Arterial Flow Out of the Heart 693 23.3b General Venous Return to the Heart 693 23.3c Blood Flow Through the Head and Neck 693 23.3d Blood Flow Through the Thoracic and Abdominal Walls 697 23.3e Blood Flow Through the Thoracic Organs 700 Circulation 23.3f Blood Flow Through the Gastrointestinal Tract 701 23.3g Blood Flow Through the Posterior Abdominal Organs, Pelvis, and Perineum 705 23.3h Blood Flow Through the Upper Limb 705 23.3i Blood Flow Through the Lower Limb 709 23.4 Pulmonary Circulation 712 23.5 Review of Heart, Systemic, and Pulmonary Circulation 714 23.6 Aging and the Cardiovascular System 715 23.7 Blood Vessel Development 716 23.7a Artery Development 716 23.7b Vein Development 717 23.7c Comparison of Fetal and Postnatal Circulation 718 MODULE 9: CARDIOVASCULAR SYSTEM mck78097_ch23_683-723.indd 683 2/14/11 4:31 PM 684 Chapter Twenty-Three Vessels and Circulation lood vessels are analogous to highways—they are an efficient larger as they merge and come closer to the heart. The site where B mode of transport for oxygen, carbon dioxide, nutrients, hor- two or more arteries (or two or more veins) converge to supply the mones, and waste products to and from body tissues. The heart is same body region is called an anastomosis (ă-nas ′tō -mō′ sis; pl., the mechanical pump that propels the blood through the vessels. -
Reconstructive
RECONSTRUCTIVE Angiosomes of the Foot and Ankle and Clinical Implications for Limb Salvage: Reconstruction, Incisions, and Revascularization Christopher E. Attinger, Background: Ian Taylor introduced the angiosome concept, separating the M.D. body into distinct three-dimensional blocks of tissue fed by source arteries. Karen Kim Evans, M.D. Understanding the angiosomes of the foot and ankle and the interaction among Erwin Bulan, M.D. their source arteries is clinically useful in surgery of the foot and ankle, especially Peter Blume, D.P.M. in the presence of peripheral vascular disease. Paul Cooper, M.D. Methods: In 50 cadaver dissections of the lower extremity, arteries were injected Washington, D.C.; New Haven, with methyl methacrylate in different colors and dissected. Preoperatively, each Conn.; and Millburn, N.J. reconstructive patient’s vascular anatomy was routinely analyzed using a Dopp- ler instrument and the results were evaluated. Results: There are six angiosomes of the foot and ankle originating from the three main arteries and their branches to the foot and ankle. The three branches of the posterior tibial artery each supply distinct portions of the plantar foot. The two branches of the peroneal artery supply the anterolateral portion of the ankle and rear foot. The anterior tibial artery supplies the anterior ankle, and its continuation, the dorsalis pedis artery, supplies the dorsum of the foot. Blood flow to the foot and ankle is redundant, because the three major arteries feeding the foot have multiple arterial-arterial connections. By selectively performing a Doppler examination of these connections, it is possible to quickly map the existing vascular tree and the direction of flow. -
A Study of Popliteal Artery and Its Variations with Clinical Applications
Dissertation on A STUDY OF POPLITEAL ARTERY AND ITS VARIATIONS WITH CLINICAL APPLICATIONS. Submitted in partial fulfillment for M.D. DEGREE EXAMINATION BRANCH- XXIII, ANATOMY Upgraded Institute of Anatomy Madras Medical College and Rajiv Gandhi Government General Hospital, Chennai - 600 003 THE TAMILNADU Dr.M.G.R. MEDICAL UNIVERSITY CHENNAI – 600 032 TAMILNADU MAY-2018 CERTIFICATE This is to certify that this dissertation entitled “A STUDY OF POPLITEAL ARTERY AND ITS VARIATIONS WITH CLINICAL APPLICATIONS” is a bonafide record of the research work done by Dr.N.BAMA, Post graduate student in the Institute of Anatomy, Madras Medical College and Rajiv Gandhi Government General Hospital, Chennai- 03, in partial fulfillment of the regulations laid down by The Tamil Nadu Dr.M.G.R. Medical University for the award of M.D. Degree Branch XXIII- Anatomy, under my guidance and supervision during the academic year from 2015-2018. Dr. Sudha Seshayyan,M.B.B.S., M.S., Dr. B. Chezhian, M.B.B.S., M.S., Director & Professor, Associate Professor, Institute of Anatomy, Institute of Anatomy, Madras Medical College, Madras Medical College, Chennai– 600 003. Chennai– 600 003. The Dean, Madras Medical College & Rajiv Gandhi Govt. General Hospital, Chennai Chennai – 600003. ACKNOWLEDGEMENT I wish to express exquisite thankfulness and gratitude to my most respected teachers, guides Dr. B. Chezhian, Associate Professor Dr.Sudha Seshayyan, Director and Professor, Institute ofAnatomy, Madras Medical College, Chennai – 3, for their invaluable guidance, persistent support and quest for perfection which has made this dissertation take its present shape. I am thankful to Dr. R. Narayana Babu, M.D., DCH, Dean, Madras Medical College, Chennai – 3 for permitting me to avail the facilities in this college for performing this study. -
Cervical Arterial Collateral Network References Reply: Reference Age
Cervical Arterial Collateral Network Age and Gender Effects on Normal Regional Cerebral Purkayastha et al1 reported 3 cases of proatlantal intersegmental Blood Flow arteries of external carotid artery origin associated with Galen’s vein We read with great interest the article of Takahashi et al.1 The article malformation; however, because of their configuration, I believe that points out the use of 3D stereotactic surface projections (3D-SSP) to the 3 cases do not demonstrate this rare arterial variation, but rather study the age-effect on regional cerebral blood flow (rCBF). The show collateral blood flow from the occipital artery (OA) to the ver- greatest rCBF reduction observed was in the bilateral anterior cingu- tebral artery (VA). In patients with a vein of Galen malformation, the late. Although we generally agree with the conclusions, we would like intra-arterial blood pressure in the VA is lower than that in the OA to emphasize some methodologic issues that may have had an impact because of blood steal phenomenon at the malformation. It is well on the obtained results. known that there is a cervical arterial collateral network between OA, In the study, 31 healthy volunteers between 50 and 79 years were classified in 3 different age classes (50–59, 60–69, and 70–79 years). VA, and the deep cervical artery arising from the subclavian artery.2 If Statistical analysis was performed 2 by 2 by using unpaired Student t test. one of these arteries is occluded, the remaining arteries and their Rather than considering age as a discrete variable, the analysis would have branches are dilated and supply the distal segment of the occluded been strengthened by performing a multivariate analysis based on the artery.