Geochronology for the Next Decade: Return Missions to Accomplish Longstanding Geochronology Goals Within a New Frontiers Envelope

Total Page:16

File Type:pdf, Size:1020Kb

Geochronology for the Next Decade: Return Missions to Accomplish Longstanding Geochronology Goals Within a New Frontiers Envelope The aim of this study is to give the next Decadal Survey panel a viable alternative or addition to sample In Situ Geochronology for the Next Decade: return missions to accomplish longstanding geochronology goals within a New Frontiers envelope. • Absolute ages for multiple worlds are a desire in both the 2003 and 2013 Planetary Science Decadal A Planetary Mission Concept Study Surveys, but in these two decades, only sample return was considered a viable method for geochronology. PI: Barbara A. Cohen, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA The Decadal Surveys recommended mission lists reflect the reality for those decades that sample return is ([email protected]) the only way to yield reliable and interpretable geochronology. Our Science Definition Team comprises a diverse team of geologists and geochronologists • In the last two decades, NASA has invested in the development of in situ dating techniques, increasing the with expertise across the Moon, Mars, and small bodies to represent inner Solar System maturity of instruments using complementary radiogenic isotopic systems (K-Ar and Rb-Sr) to TRL 6. science.: Kris Zacny, Honeybee Robotics; Kelsey Young, NASA Goddard Space Flight Center; R. Aileen Yingst, Planetary Science Institute; Tim Swindle, University of Arizona; Stuart Robbins, • The time is right to consider how the precision achievable with in situ geochronology can advance Southwest Research Institute; Jennifer Grier, Planetary Science Institute; John Grant, important science goals for the next Decadal Survey Smithsonian Institution; Caleb Fassett, NASA Marshall Space Flight Center; Ken Farley, Current Element Objective Heritage Mass (kg) Power (W) California Institute of Technology; Bethany Ehlmann, California Institute of Technology; TRL Darby Dyar, Planetary Science Institute; Carolyn van der Bogert, University of Münster; KArLE K-Ar geochronology PIDDP and DALI 25 65 (peak) 6* Ricardo Arevalo, University of Maryland; F. Scott Anderson, Southwest Research Institute PIDDP and CDEX Rb-Sr geochronology 50 180 (peak) 6* MatISSE Trace-element ICP-MS PIDDP 25 3 Major advances in understanding formation and evolution of the inner solar system can geochemistry Point or Sample selection and MicrOmega (ESA), be driven by absolute geochronology in the next decade: calibrating body-specific 2 to 3 24 6* imaging characterization, NIRVSS (NPLP) chronologies and creating a framework for understanding Solar System formation, the spectrometer geologic context Geologic context, MER MI/Pancam, effects of impact bombardment on life, and the evolution of planets and interiors. 9 for Mars workspace MSL Potential Cameras 2 (for 2) 4 and Moon documentation, sample MAHLI/Mastcam, Science Small Bodies solutions asteroids (SCEM/ASM- Mars (iMOST) characterization WATSON Drivers (SBAG) (illustrative, not SAT) definitive) Acquire and sort 6 for PlanetVac MMX regolith samples asteroids 1a. Determinethe 1.2.3. Use the Sample triage Introduce samples to age of lunar distribution of SAM carousel (MSL) 10 TBD 9 for Mars and analysis analysis instruments basins; 1b. compositions and Absolute ages of carousels Anchor the early ages of small large planetary Total 105 180 (peak) Impacts and Earth-Moon 3. Determine the bodies to make basins (e.g. South Solar System impact flux curve evolutionary testable Pole-Aitken, *these instruments are currently funded for development to TRL 6 through NASA and ESA instrument development programs; no dynamics by determining timeline of Mars. predictions about Nectaris, Isidis, additional costs would be required to achieve this TRL rating. MatISSE - Maturation of Instruments for Solar System Exploration, the age of SPA observable Caloris, DALI - Development of Advanced Lunar Instrumentation, NPLP - NASA-Provided Lunar Payloads Basin; 1d. Assess parameters in Rheasilvia) the recent impact forming planetary This study will formulate and cost a medium- or flagship-class mission for Solar System chronology flux. systems. • Science Definition Team (SDT) will identify the most important science questions that can be answered in the next decade using the first generation of in situ dating techniques and examine 1.4.3. Determine 5b. Determine the the evolution of Correlate mission-level requirements, trades, and instrumentation for answering these questions age of the the interiors of crystallization age youngest and • Notional payload includes two geochronology techniques (Rb-Sr and K-Ar), sample acquisition and 1.5 Determine the small bodies, of igneous rocks Igneous oldest mare petrogenesis of including from a wide range handling, and contextual measurements evolution and basalts; 5d. martian igneous differentiation and of geographic interior Determine the • Mission trades include mobility, number of samples and sites required, operations timelines, and rocks in time and melting, locations with processes flux of lunar space. metamorphism, petrology, mission architecture choices. Going-in positions for this study are in bold but could change in volcanism and its and mineralogy, and evolution through concert with the Mission Design activity. fragmentation/ composition. space and time. reaccretion. Determine the 4b. Determine the 4.0 Constrain the radiometric ages Topic Trades source(s) for inventory of of unhydrated Destination • Moon - Pre-Imbrian basin impact melt, youngest basalt lunar polar martian volatiles 1.3.4. Use ages of primary materials • Mars - Noachian potentially habitable crust , keystone Hesperian lava flow volatiles. 7c. as a function of meteorites and and hydrated Habitability Understand geologic time and returned samples • Vesta - Rheasilvia and Veneneia basins secondary and delivery regolith determine the to determine the materials. Sampling Regolith/pneumatic vs rock/drill design; sample handling and presentation pathways; amount of workspace of volatiles modification ways in which most recent Determine the required processes, these volatiles dynamical history timescales of particularly have interacted of these objects. Landing • Passive delivery of deposition of with Mars as a • Terrain-relative navigation (identify existing map products) volatile-bearing volatile materials. geologic system. • materials. Active hazard avoidance Mobility • Local - single lander Calibrate the • Regional – rover 5.0 Reconstruct 1.2.2. Determine cratering • Global - multiple landers and/or a hopper Calibrating the history of the timing of chronology Operations Sample acquisition and delivery operations run with ground in the loop or autonomously, fault tolerance for absolute 1c. Establish a Mars as a planet, events in the across multiple ages across precise absolute the origin and early Solar bodies by dating sample acquisition and delivery, sample analysis decision rules (e.g., geochronology systems not agreeing or the Solar chronology. modification of System, using surfaces with converging) System the crust, mantle meteorites and well-defined and core. returned samples cratering Mission Sizing of lander, power (solar + battery vs nuclear), common elements (C&DH, comm, etc.) statistics..
Recommended publications
  • Download File
    Chronology and Faunal Evolution of the Middle Eocene Bridgerian North American Land Mammal “Age”: Achieving High Precision Geochronology Kaori Tsukui Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2016 © 2015 Kaori Tsukui All rights reserved ABSTRACT Chronology and Faunal Evolution of the Middle Eocene Bridgerian North American Land Mammal “Age”: Achieving High Precision Geochronology Kaori Tsukui The age of the Bridgerian/Uintan boundary has been regarded as one of the most important outstanding problems in North American Land Mammal “Age” (NALMA) biochronology. The Bridger Basin in southwestern Wyoming preserves one of the best stratigraphic records of the faunal boundary as well as the preceding Bridgerian NALMA. In this dissertation, I first developed a chronological framework for the Eocene Bridger Formation including the age of the boundary, based on a combination of magnetostratigraphy and U-Pb ID-TIMS geochronology. Within the temporal framework, I attempted at making a regional correlation of the boundary-bearing strata within the western U.S., and also assessed the body size evolution of three representative taxa from the Bridger Basin within the context of Early Eocene Climatic Optimum. Integrating radioisotopic, magnetostratigraphic and astronomical data from the early to middle Eocene, I reviewed various calibration models for the Geological Time Scale and intercalibration of 40Ar/39Ar data among laboratories and against U-Pb data, toward the community goal of achieving a high precision and well integrated Geological Time Scale. In Chapter 2, I present a magnetostratigraphy and U-Pb zircon geochronology of the Bridger Formation from the Bridger Basin in southwestern Wyoming.
    [Show full text]
  • The Water on Mars Vanished. This Might Be Where It Went
    The water on Mars vanished. This might be where it went. timesofindia.indiatimes.com/home/science/the-water-on-mars-vanished-this-might-be-where- it-went-/articleshow/81599751.cms NYT News Service | Mar 20, 2021, 10:32 IST Mars was once wet, with an ocean’s worth of water on its surface. Today, most of Mars is as dry as a desert except for ice deposits in its polar regions. Where did the rest of the water go? Some of it disappeared into space. Water molecules, pummeled by particles of solar wind, broke apart into hydrogen and oxygen atoms, and those, especially the lighter hydrogen atoms, sped out of the atmosphere, lost to outer space. A tall outcropping of rock, with layered deposits of sediments in the distance, marking a remnant of an ancient, long-vanished river delta in Jezero Crater, are pictured in this undated image taken by NASA's Mars rover Perseverance. (Reuters) But most of the water, a new study concludes, went down, sucked into the red planet’s rocks. And there it remains, trapped within minerals and salts. Indeed, as much as 99% of the water that once flowed on Mars could still be there, the researchers estimated in a paper published this week in the journal Science. Data from the past two decades of robotic missions to Mars, including NASA ’s Curiosity rover and the Mars Reconnaissance Orbiter, showed a wide distribution of what geologists call hydrated minerals. “It became very, very clear that it was common and not rare to find evidence of water alteration,” said Bethany Ehlmann, a professor of planetary science at the California Institute of Technology and one of the authors of the paper.
    [Show full text]
  • Geochronology Database for Central Colorado
    Geochronology Database for Central Colorado Data Series 489 U.S. Department of the Interior U.S. Geological Survey Geochronology Database for Central Colorado By T.L. Klein, K.V. Evans, and E.H. DeWitt Data Series 489 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2010 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1-888-ASK-USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: T.L. Klein, K.V. Evans, and E.H. DeWitt, 2009, Geochronology database for central Colorado: U.S. Geological Survey Data Series 489, 13 p. iii Contents Abstract ...........................................................................................................................................................1 Introduction.....................................................................................................................................................1
    [Show full text]
  • Concepts and Approaches for Mars Exploration1
    June 24, 2012 Concepts and Approaches for Mars Exploration1 ‐ Report of a Workshop at LPI, June 12‐14, 2012 – Stephen Mackwell2 (LPI) Michael Amato (NASA Goddard), Bobby Braun (Georgia Institute of Technology), Steve Clifford (LPI), John Connolly (NASA Johnson), Marcello Coradini (ESA), Bethany Ehlmann (Caltech), Vicky Hamilton (SwRI), John Karcz (NASA Ames), Chris McKay (NASA Ames), Michael Meyer (NASA HQ), Brian Mulac (NASA Marshall), Doug Stetson (SSECG), Dale Thomas (NASA Marshall), and Jorge Vago (ESA) Executive Summary Recent deep cuts in the budget for Mars exploration at NASA necessitate a reconsideration of the Mars robotic exploration program within NASA’s Science Mission Directorate (SMD), especially in light of overlapping requirements with future planning for human missions to the Mars environment. As part of that reconsideration, a workshop on “Concepts and Approaches for Mars Exploration” was held at the USRA Lunar and Planetary Institute in Houston, TX, on June 12‐14, 2012. Details of the meeting, including abstracts, video recordings of all sessions, and plenary presentations, can be found at http://www.lpi.usra.edu/meetings/marsconcepts2012/. Participation in the workshop included scientists, engineers, and graduate students from academia, NASA Centers, Federal Laboratories, industry, and international partner organizations. Attendance was limited to 185 participants in order to facilitate open discussion of the critical issues for Mars exploration in the coming decades. As 390 abstracts were submitted by individuals interested in participating in the workshop, the Workshop Planning Team carefully selected a subset of the abstracts for presentation based on their appropriateness to the workshop goals, and ensuring that a broad diverse suite of concepts and ideas was presented.
    [Show full text]
  • Bethany L. Ehlmann California Institute of Technology 1200 E. California Blvd. MC 150-21 Pasadena, CA 91125 USA Ehlmann@Caltech
    Bethany L. Ehlmann California Institute of Technology [email protected] 1200 E. California Blvd. Caltech office: +1 626.395.6720 MC 150-21 JPL office: +1 818.354.2027 Pasadena, CA 91125 USA Fax: +1 626.568.0935 EDUCATION Ph.D., 2010; Sc. M., 2008, Brown University, Geological Sciences (advisor, J. Mustard) M.Sc. by research, 2007, University of Oxford, Geography (Geomorphology; advisor, H. Viles) M.Sc. with distinction, 2005, Univ. of Oxford, Environ. Change & Management (advisor, J. Boardman) A.B. summa cum laude, 2004, Washington University in St. Louis (advisor, R. Arvidson) Majors: Earth & Planetary Sciences, Environmental Studies; Minor: Mathematics International Baccalaureate Diploma, Rickards High School, Tallahassee, Florida, 2000 Additional Training: Nordic/NASA Summer School: Water, Ice and the Origin of Life in the Universe, Iceland, 2009 Vatican Observatory Summer School in Astronomy &Astrophysics, Castel Gandolfo, Italy, 2005 Rainforest to Reef Program: Marine Geology, Coastal Sedimentology, James Cook Univ., Australia, 2004 School for International Training, Development and Conservation Program, Panamá, Sept-Dec 2002 PROFESSIONAL EXPERIENCE Professor of Planetary Science, Division of Geological & Planetary Sciences, California Institute of Technology, Assistant Professor 2011-2017, Professor 2017-present; Associate Director, Keck Institute for Space Studies 2018-present Research Scientist, Jet Propulsion Laboratory, California Institute of Technology, 2011-2020 Lunar Trailblazer, Principal Investigator, 2019-present MaMISS
    [Show full text]
  • Data of Geochemistry
    Data of Geochemistry * Chapter T. Nondetrital Siliceous Sediments GEOLOGICAL SURVEY PROFESSIONAL PAPER 440-T Data of Geochemistry Michael Fleischer, Technical Editor Chapter T. Nondetrital Siliceous Sediments By EARLE R. CRESSMAN GEOLOGICAL SURVEY PROFESSIONAL PAPER 440-T Tabulation and discussion of chemical analyses of chert with respect to mineralogic composition, petrographic type, and geologic occurrence UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEW ART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. DATA OP GEOCHEMISTRY, SIXTH EDITION Michael Fleischer, Technical Editor The first edition of the Data of Geochemistry, by F. W. Clarke, was published in 1908 as U.S. Geological Survey Bulletin 330. Later editions, also by Clarke, were published in 1911, 1916, 1920, and 1924 as Bul­ letins 491, 616, 695, and 770. This, the sixth edition, has been written by several scientists in the Geological Survey and in other institutions in the United States and abroad, each preparing a chapter on his special field. The current edition is being published in individual chapters, titles of which are listed below. Chapters already published are indicated by boldface type. CHAPTER A. The chemical elements B. Cosmochemistry C. Internal structure and composition of the Earth D. Composition of the earth's crust E. Chemistry of the atmosphere F. Chemical composition of subsurface waters, by Donald E. White, John D. Hem, and G. A. Waring G. Chemical composition of rivers and lakes, by Daniel A. Livingstone H. Chemistry of the oceans I.
    [Show full text]
  • It's About Time: Opportunities & Challenges for U.S
    I t’s About Time: Opportunities & Challenges for U.S. Geochronology About Time: Opportunities & Challenges for t’s It’s About Time: Opportunities & Challenges for U.S. Geochronology 222508_Cover_r1.indd 1 2/23/15 6:11 PM A view of the Bowen River valley, demonstrating the dramatic scenery and glacial imprint found in Fiordland National Park, New Zealand. Recent innovations in geochronology have quantified how such landscapes developed through time; Shuster et al., 2011. Photo taken Cover photo: The Grand Canyon, recording nearly two billion years of Earth history (photo courtesy of Dr. Scott Chandler) from near the summit of Sheerdown Peak (looking north); by J. Sanders. 222508_Cover.indd 2 2/21/15 8:41 AM DEEP TIME is what separates geology from all other sciences. This report presents recommendations for improving how we measure time (geochronometry) and use it to understand a broad range of Earth processes (geochronology). 222508_Text.indd 3 2/21/15 8:42 AM FRONT MATTER Written by: T. M. Harrison, S. L. Baldwin, M. Caffee, G. E. Gehrels, B. Schoene, D. L. Shuster, and B. S. Singer Reviews and other commentary provided by: S. A. Bowring, P. Copeland, R. L. Edwards, K. A. Farley, and K. V. Hodges This report is drawn from the presentations and discussions held at a workshop prior to the V.M. Goldschmidt in Sacramento, California (June 7, 2014), a discussion at the 14th International Thermochronology Conference in Chamonix, France (September 9, 2014), and a Town Hall meeting at the Geological Society of America Annual Meeting in Vancouver, Canada (October 21, 2014) This report was provided to representatives of the National Science Foundation, the U.S.
    [Show full text]
  • Terminology of Geological Time: Establishment of a Community Standard
    Terminology of geological time: Establishment of a community standard Marie-Pierre Aubry1, John A. Van Couvering2, Nicholas Christie-Blick3, Ed Landing4, Brian R. Pratt5, Donald E. Owen6 and Ismael Ferrusquía-Villafranca7 1Department of Earth and Planetary Sciences, Rutgers University, Piscataway NJ 08854, USA; email: [email protected] 2Micropaleontology Press, New York, NY 10001, USA email: [email protected] 3Department of Earth and Environmental Sciences and Lamont-Doherty Earth Observatory of Columbia University, Palisades NY 10964, USA email: [email protected] 4New York State Museum, Madison Avenue, Albany NY 12230, USA email: [email protected] 5Department of Geological Sciences, University of Saskatchewan, Saskatoon SK7N 5E2, Canada; email: [email protected] 6Department of Earth and Space Sciences, Lamar University, Beaumont TX 77710 USA email: [email protected] 7Universidad Nacional Autónomo de México, Instituto de Geologia, México DF email: [email protected] ABSTRACT: It has been recommended that geological time be described in a single set of terms and according to metric or SI (“Système International d’Unités”) standards, to ensure “worldwide unification of measurement”. While any effort to improve communication in sci- entific research and writing is to be encouraged, we are also concerned that fundamental differences between date and duration, in the way that our profession expresses geological time, would be lost in such an oversimplified terminology. In addition, no precise value for ‘year’ in the SI base unit of second has been accepted by the international bodies. Under any circumstances, however, it remains the fact that geologi- cal dates – as points in time – are not relevant to the SI.
    [Show full text]
  • Role of Glaciers in Halting Syrtis Major Lava Flows to Preserve and Divert a Fluvial System
    ROLE OF GLACIERS IN HALTING SYRTIS MAJOR LAVA FLOWS TO PRESERVE AND DIVERT A FLUVIAL SYSTEM A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Geology in The Department of Geology and Geophysics by Connor Michael Matherne B.S., Louisiana State University, 2017 December 2019 ACKNOWLEDGMENTS Special thanks to J.R. Skok and Jack Mustard for conceiving the initial ideas behind this project and to Suniti Karunatillake and J.R. Skok for their guidance. Additionally, thank you to my committee members Darrell Henry and Peter Doran for aid in understanding the complex volcanic and climate history for this location. This work has benefited from reviews and discussions with Tim Goudge, Steven Ruff, Jim Head, and Bethany Ehlmann. We thank Caleb Fassett for providing the CTX DEM processing of the outlet fan and Tim Goudge for providing the basin Depression CTX DEM. All data and observations used in this study are publically available from the NASA PDS. Derived products such as produced CTX DEMs can be attained through processing or contacting the primary author. Connor Matherne was supported by the Frank’s Chair funds, W.L. Calvert Memorial Scholarship, NASA-EPSCoR funded LASpace Graduate Student Research Assistantship grant, and Louisiana Board of Regents Research Award Program grant LEQSF-EPS(2017)-RAP-22 awarded to Karunatillake. J.R. Skok was supported with the MDAP award NNX14AR93G. Suniti Karunatillake’s work was supported by NASA- MDAP grant 80NSSC18K1375. ii TABLE OF CONTENTS Acknowledgments..............................................................................................................
    [Show full text]
  • Petrology on Mars†K
    American Mineralogist, Volume 100, pages 2380–2395, 2015 INVITED CENTENNIAL ARTICLE REVIEW Petrology on Mars†k HARRY Y. MCSWEEN JR.1,* 1Department of Earth and Planetary Sciences and Planetary Geoscience Institute, University of Tennessee, Knoxville, Tennessee 37996-1410, U.S.A. ABSTRACT Petrologic investigations of martian rocks have been accomplished by mineralogical, geochemical, and textural analyses from Mars rov- ers (with geologic context provided by orbiters), and by laboratory analyses of martian meteorites. Igneous rocks are primarily lavas and volcaniclastic rocks of basaltic composition, and ultramafic cumulates; alkaline rocks are common in ancient terranes and tholeiitic rocks occur in younger terranes, suggesting global magmatic evolution. Relatively uncommon feldspathic rocks represent the ultimate fractionation prod- ucts, and granitic rocks are unknown. Sedimentary rocks are of both clastic (mudstone, sandstone, conglomerate, all containing significant igneous detritus) and chemical (evaporitic sulfate and less common carbonate) origin. High-silica sediments formed by hydrothermal activity. Sediments on Mars formed from different protoliths and were weathered under different environmental conditions from terrestrial sediments. Metamorphic rocks have only been inferred from orbital remote-sensing measurements. Metabasalt and serpentinite have mineral assemblages consistent with those predicted from low-pressure phase equilibria and likely formed in geothermal systems. Shock effects are com- mon in martian meteorites, and impact breccias are probably widespread in the planet’s crustal rocks. The martian rock cycle during early periods was similar in many respects to that of Earth. However, without plate tectonics Mars did not experience the thermal metamorphism and flux melting associated with subduction, nor deposition in subsided basins and rapid erosion resulting from tectonic uplift.
    [Show full text]
  • Early Mars As a Key to Understanding Planetary Habitability
    Early Mars as a Key to Understanding Planetary Habitability Bethany Ehlmann Professor of Planetary Science, Geological & Planetary Sciences Research Scientist, Jet Propulsion Laboratory California Institute of Technology July 13, 2017 | Midterm Review Planetary Decadal Survey Outline: Early Mars as a Key to Understanding Planetary Habitability • What we have learned and what we can learn about early Mars [15 min] • Suggested exploration plans [5 min] • Questions/Discussion [10 min] Key Discoveries in Mars Science since 2010 *Publication date of last Mars references in V&V • Extent and diversity of potential ancient habitats (lakes, rivers, aquifers, hydrothermal systems, soil formation) • Mafic, Ultramafic, and Felsic igneous rocks • Modern liquid water • Recent Ice Ages and Episodicity of Climates above the Triple Point of Water • Modern active methane, likely with local sources • Modern active surface processes • Modern atmospheric loss rates See also MEPAG report to V&V Decadal Midterm (May 4, 2017): https://mepag.jpl.nasa.gov/meeting/2017-07/MEPAG_Johnson_MTDS_v04.pdf Key Discoveries in Mars Science since 2010 *Publication date of last Mars references in V&V • Extent and diversity of potential ancient habitats (lakes, Ancient rivers, aquifers, hydrothermal systems, soil formation) • Mafic, Ultramafic, and Felsic igneous rocks • Modern liquid water • Recent Ice Ages and Episodicity of Climates above the Triple Point of Water [see also Byrne talk, next] • Modern active methane, likely with local sources • Modern active surface processes • Modern atmospheric loss rates [see Jakosky talk, next] Modern See also MEPAG report to V&V Decadal Midterm (May 4, 2017): https://mepag.jpl.nasa.gov/meeting/2017-07/MEPAG_Johnson_MTDS_v04.pdf Key Finding since V&V: Modern Mars is active (methane, geomorphology, ice, water) Bridges et al., 2011; 2012 Mass wasting of the N.
    [Show full text]
  • Issue 117, March 2009
    NNASA’sASA’s LunarLunar ScienceScience InstituteInstitute BeginsBegins WorkWork It has been 40 years since humans fi rst set foot upon the Moon, taking that historic “giant step” for mankind. Although interest in our nearest celestial neighbor has waned considerably, it has never disappeared completely and is now enjoying a remarkable resurgence. The Moon was born when our home planet encountered a rogue planet at its birth, and has since recorded the earliest history of the solar system (a record nearly obliterated on Earth). With four spacecraft orbiting the Moon in the past three years (from four separate nation groups) and a fi fth, Lunar Reconnaissance Orbiter, due to arrive this spring, we are about to remake our understanding of this planetary body. To further contribute to the advancement of our knowledge, NASA recently created a Lunar Science Institute (NLSI) to revitalize the lunar science community and train a new generation of scientists. This spring, NASA has selected seven academic and research teams to form the initial core of the NLSI. This virtual institute is designed to support scientifi c research that supplements and extends existing NASA lunar science programs in coordination with U.S. space exploration policy. The new teams that augment NLSI were selected in a competitive evaluation process that began with the release of a cooperative agreement notice in June 2008. NASA received proposals from 33 research teams. L“We are extremely pleased with the response of the science community and the high quality of proposals received,” said David Morrison, the institute’s interim director at NASA Ames Research Center in Moffett Field, California.
    [Show full text]