To Neoproterozoic Ghanzi Basin in Botswana and Namibia, and Implications for Copper-Silver Mineralization in the Kalahari Copperbelt

Total Page:16

File Type:pdf, Size:1020Kb

To Neoproterozoic Ghanzi Basin in Botswana and Namibia, and Implications for Copper-Silver Mineralization in the Kalahari Copperbelt GEOCHRONOLOGY, MAGNETIC LITHOSTRATIGRAPHY, AND THE TECTONOSTRATIGRAPHIC EVOLUTION OF THE LATE MESO- TO NEOPROTEROZOIC GHANZI BASIN IN BOTSWANA AND NAMIBIA, AND IMPLICATIONS FOR COPPER-SILVER MINERALIZATION IN THE KALAHARI COPPERBELT By Wesley Scott Hall Copyright by Wesley S. Hall 2017 All Rights Reserved A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfilment of the requirements for the degree of Doctor of Philosophy (Geology). Golden, Colorado Date ____________________________ Signed: ________________________________ Wesley S. Hall Signed: ________________________________ Dr. Murray H. Hitzman Thesis Advisor Signed: ________________________________ Dr. Yvette Kuiper Thesis Advisor Golden, Colorado Date ____________________________ Signed: ________________________________ Dr. Merritt Stephen Enders Professor and Department Head of Geology and Geological Engineering ii ABSTRACT Despite a wealth of research on the Kalahari Copperbelt over the past 30 years, two crucial aspects of the mineralizing systems have remained elusive. First, the age of the rift sequence hosting the deposits and, second, the nature of the fluid pathways for the mineralizing fluids. Laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) U-Pb isotopic analysis on one igneous sample of the Makgabana Hills rhyolite (Kgwebe Formation) within the central Kalahari Copperbelt in Botswana constrains the depositional age of the unconformably overlying Ghanzi Group to after 1085.5 ± 4.5 Ma. The statistically youngest detrital zircon age populations obtained from the uppermost unit of the Ngwako Pan Formation (1066 ± 9.4 Ma, MSWD = 0.88, n = 3), the overlying D’Kar Formation (1063 ± 11, MSWD = 0.056, n = 3), and the lower Mamuno Formation (1056.0 ± 9.9 Ma, MSWD = 0.68, n = 4) indicate that the middle and upper Ghanzi Groups were deposited after ~1060 to ~1050 Ma. Lu-Hf analysis of detrital zircon suggests that the Mesoproterozoic and Paleoproterozoic rocks of the Namaqua Sector and the Rehoboth Basement Inlier were the primary sediment sources for the siliciclastic rocks of the Ghanzi Group and lesser material was derived from the basin-bounding footwall margin of the northwest Botswana rift, the Paleoproterozoic Magondi Belt and the Okwa Block, and possibly parts of the Limpopo Belt on the northern margin of the Kalahari Craton in southern Africa. A molybdenite Re-Os age of 981 ± 3 Ma provides a minimum depositional age constraint on D’Kar Formation sedimentation. Authigenic xenotime U-Th-Pb ages of ~925 and 950 Ma further the evidence for an earliest Neoproterozoic (Tonian) age for the D’Kar Formation. Re-Os ages of 549 ± 11.2 Ma (low-level highly radiogenic chalcocite-idaite) and 515.9 ± 2.4 Ma (molybdenite), and a U-Th-Pb age of 538.4 ± 8.3 Ma (xenotime inclusion in chalcopyrite) from several Cu-Ag deposits in the central Kalahari Copperbelt suggest prolonged mineralizing events during basin inversion related to the Pan- African (~600 to 480 Ma) Damara orogen. High-resolution aeromagnetic maps were utilized to define the stratigraphy and structure of the Ghanzi Group of the central Kalahari Copperbelt. Maps of the second vertical derivative transformation were compared with detailed stratigraphic data from drill holes. These data reveal previously unrecognized thinning of the Ngwako Pan Formation onto rocks of the underlying Kgwebe Formation and suggest the presence of syn-sedimentary horst and graben and/or half-graben structures. Truncation of the aeromagnetics fabric of the uppermost Ngwako Pan Formation rocks suggests that the rocks were gently folded and eroded above paleotopographic highs prior to the ensuing basin-wide marine transgression and sedimentation of the unconformably overlying mixed marine siliciclastic and carbonate rocks of the D’Kar Formation. Detailed facies architecture derived from both drilling and magnetic data at the Zone 5 Cu-Ag deposit, located east of the Kgwebe and Makgabana Hills, suggests that its physical iii (stratigraphic) and chemical (organic material and in-situ bacteriogenic sulfide) nature were influenced by the underlying basin architecture, which was critical in development of trap sites and in funneling epigenetic hydrothermal fluids into those traps. The presented new data indicate that the basin architecture underlying the Kalahari Copperbelt strongly influenced the localization of deformation and hydrothermal fluid flow during epigenetic events. The results of this study can be used to help vector exploration for Cu-Ag deposits through the recognition of buried paleotopographic highs and associated favorable trap sites. iv TABLE OF CONTENTS ABSTRACT . iii LIST OF FIGURES . ix LIST OF TABLES . .xix ACKNOWLEDGEMENTS . xx CHAPTER 1 INTRODUCTION. 1 1.1 Introduction . 1 1.2 Dissertation organization. .5 1.2.1 Igneous and detrital zircon geochronology . .5 1.2.2 Xenotime U-Th-Pb geochronology. .6 1.2.3 Sulfide (Re-Os) geochronology. .6 1.2.4 Geophysics – magnetics . 7 1.2.5 General conclusions . .8 1.3 References cited. .8 CHAPTER 2 LITERATURE REVIEW. 11 2.1 Introduction . 11 2.2 The sedimentary rock-hosted stratiform copper ore system. 11 2.3 Geologic framework of the Kalahari Copperbelt in Botswana . .14 2.3.1 The Koras-Sinclair-Ghanzi rift system of southern Africa . .15 2.3.2 The Ghanzi basin. .17 2.3.3 The Okwa Group and the Damara Orogen in Botswana . .19 2.3.4 Post-Damara geology. .23 2.4 Geophysical exploration in the Kalahari Copperbelt. 23 2.5 Exploration and development history of the Kalahari Copperbelt . .24 2.6 Mineralization in the Kalahari Copperbelt . .26 2.6.1 Deposit characteristics. 26 2.6.2 Hydrothermal fluids . 29 2.6.3 Sulfur source . 30 2.6.4 Timing of mineralizing events. 32 2.7 References cited. 33 CHAPTER 3 IGNEOUS AND DETRITAL ZIRCON U-PB GEOCHRONOLOGY AND LU- HF ISOTOPE GEOCHEMISTRY OF THE LATE MESO- TO NEOPROTEROZOIC NORTHWEST BOTSWANA RIFT: IMPLICATIONS FOR THE TIMING OF DEPOSITION AND PROVENANCE OF THE GHANZI BASIN (KALAHARI COPPERBELT), EASTERN NAMIBIA AND NORTHWESTERN BOTSWANA. 36 v 3.1 Abstract . 36 3.2 Introduction . 37 3.3 Geologic background. 39 3.3.1 Stratigraphy and evolution of the Ghanzi basin . 41 3.3.2 Previous detrital zircon studies . 44 3.4 Samples . 45 3.5 Methods . 45 3.6 Geochronology results . 48 3.6.1 Porphyritic rhyolite, Makgabana Hills, east-central Ghanzi basin. 49 3.6.2 Detrital zircon U-Pb results. 49 3.6.3 Detrital zircon Lu-Hf results . 54 3.7 Discussion . 55 3.7.1 Implications for depositional ages and regional stratigraphic correlations . .56 3.7.2 Provenance of the Ghanzi Group. .57 3.8 Conclusions . 68 3.9 Acknowledgements . 69 3.10 References cited . 69 CHAPTER 4 RE-OS SULFIDE AND U-TH-PB XENOTIME GEOCHRONOLOGY OF SEDIMENTARY ROCK-HOSTED CU-AG DEPOSITS, KALAHARI COPPERBELT, BOTSWANA . .79 4.1 Abstract . 79 4.2 Introduction . 80 4.3 Geologic background . 82 4.3.1 Host rocks . 82 4.3.2 Sedimentary rock-hosted Cu-Ag deposits . .84 4.4 Sample descriptions and petrography . 86 4.4.1 Northeast Fold deposit, molybdenite (AIRIE Run # MD-1700). 86 4.4.2 Northeast Mango Two deposit, molybdenite (AIRIE Run #’s εD-1370 and MD-1380). ..
Recommended publications
  • Friday Mosque Of
    No.2330,Monday,17 May,2021 www.TOURISMpaper.com Some 20 historical objects have recently been confiscated from three smugglers in The World`s Only Print Tourism Newspaper Kuhdasht, western Lorestan province, a senior police official in charge of protecting cultural heritage said on Friday, CHTN reported. Including a decorative box, statue base, tray, and a few coins, the relics which had been embedded inside a car, were discovered during a routine inspection, Moham- Iranian Police madrezaMoradian announced. The official, however, did not refer to the exact age of the relics. The culprits were Seize Relics from detained and surrendered to the judicial system for further investigation, he noted. Smugglers 4 cooking Some $2m Paid to Support Tourism BozGhormeh Stew BozGhormeh Stew is a traditional recipe Businesses in South Khorasan from Kerman. Kerman is located in the he Iranian government has paid though to tempt archaeologists (rela- southeast of Iran. 1 lb (454g) Stew Beef. some 85 billion rials (over $2 tively accessible Old Esfandiar and Old Inredients: T million at the official exchange Deyhuk are amongst our favorites). ■ 1 Cup Garbanzo Beans rate of 42,000 rials per dollar) in loans Castle lovers will swoon over Birjand’s ■ 6 oz (170g) Whey Kashk to the tourism businesses affected by fortress – which might be slightly over- ■ 1 Onion the coronavirus pandemic in the eastern restored but make a great site for a tradi- ■ 2 Garlic Cloves province of South Khorasan. tional restaurant – and the mountain-top ■ 1/4 Tsp Saffron The loans have been paid to travel agen- fortifications at Qa’en, especially magi- ■ Turmeric cies, tourist complexes, and tour leaders cal at sunset; Forg is one of the most ■ Salt, White Pepper as well as handicrafts units across the picture-perfect castle-citadels in Iran.
    [Show full text]
  • Okavango River Basin Groundwater Overview
    Okavango River Basin Groundwater Overview Specialist Report prepared by Interconsult Namibia for : PERMANENT OKAVANGO RIVER BASIN COMMISSION Angola Botswana Namibia Ministério da Energia e Águas Ministry of Mineral Resources and Water Affairs Ministry of Agriculture, Water and Rural Development GABHIC Department of Water Affairs Department of Water Affairs Cx. P. 6695 Private Bag 0029 Private Bag 13193 LUANDA GABORONE WINDHOEK Tel: +244 2 393 681 Tel: +267 360 7100 Tel: +264 61 296 9111 Fax: +244 2 393 687 Fax: +267 303508 Fax: +264 61 232 861 PERMANENT OKAVANGO RIVER BASIN COMMISSION (OKACOM) OKAVANGO RIVER BASIN PREPARATORY ASSESSMENT: GROUNDWATER OVERVIEW Report prepared by: Interconsult Namibia (Pty) Ltd P. O. Box 20690 Windhoek With input from Wellfield Consulting Services, and E. Bereslawski March 1999 TABLE OF CONTENTS 1 INTRODUCTION ............................................................................................................... 1 1.1. BACKGROUND.............................................................................................................. 1 1.2. TERMS OF REFERENCE ................................................................................................ 1 2 OVERVIEW OF THE GEOHYDROLOGY OF THE BASIN .............................................. 2 2.1 BASIN GEOLOGY.............................................................................................................. 2 2.2 GEOHYDROLOGY OVERVIEW ...........................................................................................
    [Show full text]
  • Mineralised Pegmatites of the Damara Belt, Namibia: Fluid Inclusion and Geochemical Characteristics with Implications for Post- Collisional Mineralisation
    Mineralised Pegmatites of the Damara Belt, Namibia: Fluid inclusion and geochemical characteristics with implications for post- collisional mineralisation Luisa Ashworth A dissertation submitted to the Fa culty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Doctor of Philosophy. Johannesburg, 2014 DECLARATION I declare that this thesis is my own, unaided work. It is being submitted for the degree of Doctor of Philosophy at the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination in any other university. _______________________ Luisa Ashworth 20 of March 2014 i ABSTRACT Namibia is renowned for its abundant mineral resources, a large proportion of which are hosted in the metasedimentary lithologies of the Damara Belt, the northeast-trending inland branch of the Neoproterozoic Pan-African Damara Orogen. Deposit types include late- to post-tectonic (~ 523 – 506 Ma) LCT (Li-Be, Sn-, and miarolitic gem-tourmaline- bearing) pegmatites, and uraniferous pegmatitic sheeted leucogranites (SLGs), which have an NYF affinity. Fluid inclusion studies reveal that although mineralization differs between the different types of pegmatites located at different geographic locations, and by extension, different stratigraphic levels, the fluid inclusion assemblages present in these pegmatites are similar; thus different types of pegmatites are indistinguishable from each other based on their fluid inclusion assemblages. Thorough fluid inclusion petrography indicated that although fluid inclusions are abundant in the pegmatites, no primary fluid inclusions could be identified, and rather those studied are pseudosecondary and secondary. Fluid inclusions are aqueo-carbonic (± NaCl), carbonic, and aqueous. It is proposed that all of the pegmatites studied share a similar late-stage evolution, with fluids becoming less carbonic and less saline with the progression of crystallisation.
    [Show full text]
  • Download File
    Chronology and Faunal Evolution of the Middle Eocene Bridgerian North American Land Mammal “Age”: Achieving High Precision Geochronology Kaori Tsukui Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2016 © 2015 Kaori Tsukui All rights reserved ABSTRACT Chronology and Faunal Evolution of the Middle Eocene Bridgerian North American Land Mammal “Age”: Achieving High Precision Geochronology Kaori Tsukui The age of the Bridgerian/Uintan boundary has been regarded as one of the most important outstanding problems in North American Land Mammal “Age” (NALMA) biochronology. The Bridger Basin in southwestern Wyoming preserves one of the best stratigraphic records of the faunal boundary as well as the preceding Bridgerian NALMA. In this dissertation, I first developed a chronological framework for the Eocene Bridger Formation including the age of the boundary, based on a combination of magnetostratigraphy and U-Pb ID-TIMS geochronology. Within the temporal framework, I attempted at making a regional correlation of the boundary-bearing strata within the western U.S., and also assessed the body size evolution of three representative taxa from the Bridger Basin within the context of Early Eocene Climatic Optimum. Integrating radioisotopic, magnetostratigraphic and astronomical data from the early to middle Eocene, I reviewed various calibration models for the Geological Time Scale and intercalibration of 40Ar/39Ar data among laboratories and against U-Pb data, toward the community goal of achieving a high precision and well integrated Geological Time Scale. In Chapter 2, I present a magnetostratigraphy and U-Pb zircon geochronology of the Bridger Formation from the Bridger Basin in southwestern Wyoming.
    [Show full text]
  • Geology of the Kranzberg Syncline and Emplacement Controls of the Usakos Pegmatite Field, Damara Belt, Central Namibia
    GEOLOGY OF THE KRANZBERG SYNCLINE AND EMPLACEMENT CONTROLS OF THE USAKOS PEGMATITE FIELD, DAMARA BELT, CENTRAL NAMIBIA by Geoffrey J. Owen Thesis presented in fulfilment of the requirements for the degree Master of Science at the University of Stellenbosch Supervisor: Prof. Alex Kisters Faculty of Science Department of Earth Sciences March 2011 i DECLARATION By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitely otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Signature: Date: 15. February 2011 ii ABSTRACT The Central Zone (CZ) of the Damara belt in central Namibia is underlain by voluminous Pan-African granites and is host to numerous pegmatite occurrences, some of which have economic importance and have been mined extensively. This study discusses the occurrence, geometry, relative timing and emplacement mechanisms for the Usakos pegmatite field, located between the towns of Karibib and Usakos and within the core of the regional-scale Kranzberg syncline. Lithological mapping of the Kuiseb Formation in the core of the Kranzberg syncline identified four litho-units that form an up to 800 m thick succession of metaturbidites describing an overall coarsening upward trend. This coarsening upwards trend suggests sedimentation of the formation’s upper parts may have occurred during crustal convergence and basin closure between the Kalahari and Congo Cratons, rather than during continued spreading as previously thought.
    [Show full text]
  • Geochronology Database for Central Colorado
    Geochronology Database for Central Colorado Data Series 489 U.S. Department of the Interior U.S. Geological Survey Geochronology Database for Central Colorado By T.L. Klein, K.V. Evans, and E.H. DeWitt Data Series 489 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2010 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1-888-ASK-USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: T.L. Klein, K.V. Evans, and E.H. DeWitt, 2009, Geochronology database for central Colorado: U.S. Geological Survey Data Series 489, 13 p. iii Contents Abstract ...........................................................................................................................................................1 Introduction.....................................................................................................................................................1
    [Show full text]
  • The Falling Netanyahu Takes Down a Cantankerous Political Class
    WWW.TEHRANTIMES.COM I N T E R N A T I O N A L D A I L Y 8 Pages Price 50,000 Rials 1.00 EURO 4.00 AED 43rd year No.13954 Saturday MAY 29, 2021 Khordad 8, 1400 Shawwal 17, 1442 Elections is Brighton’s Alireza Steel ingot export Germany recognizes competition to Jahanbakhsh to decide rises 135% in colonial-era massacres in serve people Page 2 on his future Page 3 a month on year Page 4 Namibia as genocide Page 5 Unity is the secret behind the Resistance’s victories: Amir-Abdollahian TEHRAN - Hossein Amir-Abdollahian, the resistance and steadfastness victory could special aide to the speaker of the Iranian be achieved. This victory sent an important Parliament on international affairs, has re- message that the Zionist enemy only under- flected on the secret behind the recent victory stands the language of force and resistance,” of the Palestinian resistance against Israel. he told the Lebanese Al-Ahed News. Amir-Abdollahian said the 2006 victo- The Iranian diplomat added, “This ry of the Lebanese resistance movement victory and other victories achieved by against Israel raised faith in the resistance the resistance, especially the victory of and sent a message that Israel understands July 2006, were achieved in light of the only the language of power. unity of the Lebanese people and the gold- “The flight of the Zionist entity from en equation in Lebanon – the army, the southern Lebanon raised faith in the resist- people, and the resistance. Crabs in ance among the Lebanese, and that through Continued on page 3 Tehran, Moscow confer on joint investment in agricultural sector TEHRAN – Iranian Agriculture Minis- investment in various agricultural fields.
    [Show full text]
  • Data of Geochemistry
    Data of Geochemistry * Chapter T. Nondetrital Siliceous Sediments GEOLOGICAL SURVEY PROFESSIONAL PAPER 440-T Data of Geochemistry Michael Fleischer, Technical Editor Chapter T. Nondetrital Siliceous Sediments By EARLE R. CRESSMAN GEOLOGICAL SURVEY PROFESSIONAL PAPER 440-T Tabulation and discussion of chemical analyses of chert with respect to mineralogic composition, petrographic type, and geologic occurrence UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEW ART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. DATA OP GEOCHEMISTRY, SIXTH EDITION Michael Fleischer, Technical Editor The first edition of the Data of Geochemistry, by F. W. Clarke, was published in 1908 as U.S. Geological Survey Bulletin 330. Later editions, also by Clarke, were published in 1911, 1916, 1920, and 1924 as Bul­ letins 491, 616, 695, and 770. This, the sixth edition, has been written by several scientists in the Geological Survey and in other institutions in the United States and abroad, each preparing a chapter on his special field. The current edition is being published in individual chapters, titles of which are listed below. Chapters already published are indicated by boldface type. CHAPTER A. The chemical elements B. Cosmochemistry C. Internal structure and composition of the Earth D. Composition of the earth's crust E. Chemistry of the atmosphere F. Chemical composition of subsurface waters, by Donald E. White, John D. Hem, and G. A. Waring G. Chemical composition of rivers and lakes, by Daniel A. Livingstone H. Chemistry of the oceans I.
    [Show full text]
  • Okavango Delta - 2020 Conservation Outlook Assessment
    IUCN World Heritage Outlook: https://worldheritageoutlook.iucn.org/ Okavango Delta - 2020 Conservation Outlook Assessment Okavango Delta 2020 Conservation Outlook Assessment SITE INFORMATION Country: Botswana Inscribed in: 2014 Criteria: (vii) (ix) (x) This delta in north-west Botswana comprises permanent marshlands and seasonally flooded plains. It is one of the very few major interior delta systems that do not flow into a sea or ocean, with a wetland system that is almost intact. One of the unique characteristics of the site is that the annual flooding from the River Okavango occurs during the dry season, with the result that the native plants and animals have synchronized their biological cycles with these seasonal rains and floods. It is an exceptional example of the interaction between climatic, hydrological and biological processes. The Okavango Delta is home to some of the world’s most endangered species of large mammal, such as the cheetah, white rhinoceros, black rhinoceros, African wild dog and lion. © UNESCO SUMMARY 2020 Conservation Outlook Finalised on 01 Dec 2020 GOOD WITH SOME CONCERNS The nature of the Okavango Delta – a vast inaccessible wetland on the fringes of a sparsely populated desert – gives it a high degree of natural protection. The values of the site remain in good condition overall, largely due to the sites large size and inaccessibility, allowing the site to maintain its largely unaltered, pristine condition through low human impact. Threats to the site are generally of low concern but for a few issues which remain challenging to address. Whilst tourism has some negative impacts, there are very few roads and the industry is built around a high-cost low-volume business model with small lodge facilities accessed by private charter aircraft.
    [Show full text]
  • Mega Kalahari Geology: Challenges of Kimberlite Exploration in This Medium
    MEGA KALAHARI GEOLOGY: CHALLENGES OF KIMBERLITE EXPLORATION IN THIS MEDIUM Clint Williams1, Brett van Coller1, Tom Nowicki2 and John Gurney1 1 Mineral Services South Africa Pty Ltd, Cape Town.; 2 Mineral Services Canada Inc, Vancouver. obstacles and challenges to the kimberlite explorationist INTRODUCTION attempting to locate bedrock-hosted diamondiferous kimberlite bodies. The paper presents the complexities of this cover sequence, with a view to formulating In southern Africa the name Kalahari refers to a improved kimberlite exploration strategies in this structural basin, a group of terrestrial continental environment. sediments and an ill-defined desert, all of which are intimately linked yet also possess distinct characteristics. The surface units of the Kalahari Group CHARACTERISTICS cover represent the worlds largest body of sand covering over 2.5 million km² of central and southern The Mega Kalahari sediments represent an ancient Africa from the Orange River at 29°S to 1°N in the depositional environment with a complex history in western Congo and southern Gabon (Thomas, which the stratigraphy and age of the deposits are not 1988),(Figure 1). Thomas and Shaw (1990) grouped all particularly well constrained or understood. Low fossil these sediments together under the term Mega Kalahari. content, limited exposure, poor differentiation of the This term has been adopted for the review. dominant surficial Kalahari Sand and a limited comprehension of an extensive duricrust suite has delayed the understanding of the sedimentological and environmental history of the basin. Collectively the sediments are referred to as the Kalahari Group (SACS, 1980). SACS (1980) distinguished 6 major lithological types in the Kalahari Group: conglomerate and gravel, marl, sandstone, alluvium and lacustrine deposits, Kalahari Sand, and duricrusts (mainly calcrete and silcrete).
    [Show full text]
  • It's About Time: Opportunities & Challenges for U.S
    I t’s About Time: Opportunities & Challenges for U.S. Geochronology About Time: Opportunities & Challenges for t’s It’s About Time: Opportunities & Challenges for U.S. Geochronology 222508_Cover_r1.indd 1 2/23/15 6:11 PM A view of the Bowen River valley, demonstrating the dramatic scenery and glacial imprint found in Fiordland National Park, New Zealand. Recent innovations in geochronology have quantified how such landscapes developed through time; Shuster et al., 2011. Photo taken Cover photo: The Grand Canyon, recording nearly two billion years of Earth history (photo courtesy of Dr. Scott Chandler) from near the summit of Sheerdown Peak (looking north); by J. Sanders. 222508_Cover.indd 2 2/21/15 8:41 AM DEEP TIME is what separates geology from all other sciences. This report presents recommendations for improving how we measure time (geochronometry) and use it to understand a broad range of Earth processes (geochronology). 222508_Text.indd 3 2/21/15 8:42 AM FRONT MATTER Written by: T. M. Harrison, S. L. Baldwin, M. Caffee, G. E. Gehrels, B. Schoene, D. L. Shuster, and B. S. Singer Reviews and other commentary provided by: S. A. Bowring, P. Copeland, R. L. Edwards, K. A. Farley, and K. V. Hodges This report is drawn from the presentations and discussions held at a workshop prior to the V.M. Goldschmidt in Sacramento, California (June 7, 2014), a discussion at the 14th International Thermochronology Conference in Chamonix, France (September 9, 2014), and a Town Hall meeting at the Geological Society of America Annual Meeting in Vancouver, Canada (October 21, 2014) This report was provided to representatives of the National Science Foundation, the U.S.
    [Show full text]
  • Dynamic Evolution of the Zambezi-Limpopo Watershed, Central Zimbabwe
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Online Research @ Cardiff Moore, Blenkinsop and Cotterill Zim watershed_20120408_AEM DYNAMIC EVOLUTION OF THE ZAMBEZI-LIMPOPO WATERSHED, CENTRAL ZIMBABWE Andy Moore1,2, Tom Blenkinsop3 and Fenton (Woody) Cotterill4 1African Queen Mines Ltd., Box 66 Maun, Botswana. 2Dept of Geology, Rhodes University, Grahamstown 6140, South Africa. Email: [email protected] 3School of Earth and Environmental Sciences, James Cook University, Townsville, QLD4811, Australia. Email: [email protected] 4AEON – African Earth Observatory Network, Geoecodynamics Research Hub, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa. Email: [email protected] ABSTRACT Prospecting carried out to the south of the Zambezi-Limpopo drainage divide in the vicinity of Bulawayo, Zimbabwe, led to the recovery of a suite of ilmenites with a chemical “fingerprint” that can be closely matched with the population found in the early Palaeozoic Colossus kimberlite, which is located to the north of the modern watershed. The ilmenite geochemistry eliminates other Zimbabwe Kimberlites as potential sources of these pathfinder minerals. Geophysical modelling has been used to ascribe the elevation of southern Africa to dynamic topography sustained by a mantle plume; however, the evolution of the modern divide between the Zambezi and Limpopo drainage basins is not readily explained in terms of this model. Rather, it can be interpreted to represent a late Palaeogene continental flexure, which formed in response to crustal shortening, linked to intra-plate transmission of stresses associated with an episode of spreading reorganization at the ocean ridges surrounding southern Africa.
    [Show full text]