Safety Assessment of Monoalkylglycol Dialkyl Acid Esters As Used in Cosmetics

Total Page:16

File Type:pdf, Size:1020Kb

Safety Assessment of Monoalkylglycol Dialkyl Acid Esters As Used in Cosmetics Safety Assessment of Monoalkylglycol Dialkyl Acid Esters as Used in Cosmetics Status: Tentative Report for Public Comment Release Date: June 22, 2017 Panel Meeting Date: September 11-12, 2017 All interested persons are provided 60 days from the above date to comment on this safety assessment and to identify additional published data that should be included or provide unpublished data which can be made public and included. Information may be submitted without identifying the source or the trade name of the cosmetic product containing the ingredient. All unpublished data submitted to CIR will be discussed in open meetings, will be available at the CIR office for review by any interested party and may be cited in a peer-reviewed scientific journal. Please submit data, comments, or requests to the CIR Interim Director, Dr. Bart Heldreth. The 2017 Cosmetic Ingredient Review Expert Panel members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Interim Director is Bart Heldreth Ph.D. This report was prepared by Lillian C. Becker, Scientific Analyst/Writer. © Cosmetic Ingredient Review 1620 L Street, NW, Suite 1200 Washington, DC 20036-4702 ph 202.331.0651 fax 202.331.0088 [email protected] ABSTRACT The Cosmetic Ingredient Review (CIR) Expert Panel (Panel) reviewed data relevant to assessing the safety of 28 monoalkylglycol dialkyl acid esters as used in cosmetics. The reported functions of these ingredients include: film former, hair conditioning agent, opacifying agent, plasticizer, skin-conditioning agents (emollient, miscellaneous, and occlusive), slip modifier, solvent, surface modifier, and viscosity increasing agent – nonaqueous. The Panel concluded that 25 of these monoalkylglycol dialkyl acid esters are safe in cosmetics in the present practices of use and concentration described in this safety assessment and that the available data are insufficient to make a determination that Diethylpentanediol Dineopentanoate, Dioctadecanyl Didecyltetradecanoate, and Dioctadecanyl Ditetradecyloctadecanoate are safe under the intended conditions of use in cosmetic formulations. INTRODUCTION This is a safety assessment of 28 monoalkylglycol dialkyl acid esters as used in cosmetics (Table 1). The ingredients in this report are structurally related to each other as alkyl esters of monoalkyl diols (i.e. not polyalkyldiols such as polyethylene glycols (PEGs)) that vary by type of diol and lengths of the fatty acid residues. The ingredients in this report include: Trimethyl Pentanyl Diisobutyrate Glycol Ditallowate Butylene Glycol Dicaprylate/Dicaprate Hexanediol Distearate Butylene Glycol Diisononanoate Neopentyl Glycol Dicaprate Diethylpentanediol Dineopentanoate Neopentyl Glycol Dicaprylate/Dicaprate Dioctadecanyl Didecyltetradecanoate Neopentyl Glycol Dicaprylate/Dipelargonate/Dicaprate Dioctadecanyl Ditetradecyloctadecanoate Neopentyl Glycol Diethylhexanoate Glycol Dibehenate Neopentyl Glycol Diheptanoate Glycol Diethylhexanoate Neopentyl Glycol Diisononanoate Glycol Dilaurate Neopentyl Glycol Diisostearate Glycol Dioleate Neopentyl Glycol Dilaurate Glycol Dipalmate/Palm Kernelate/Olivate/Macadamiate Propanediol Dicaprylate Glycol Dipalmate/Rapeseedate/Soyate Propanediol Dicaprylate/Caprate Glycol Dipivalate Propanediol Diisostearate Glycol Distearate Propanediol Dipelargonate According to the International Cosmetic Dictionary and Handbook, the reported functions of these ingredients include: film former, hair conditioning agent, opacifying agent, plasticizer, skin-conditioning agents (emollient, miscellaneous, and occlusive), slip modifier, solvent, surface modifier, and viscosity increasing agent – nonaqueous (Table 1).1 Some of these ingredients have been previously assessed for safety by the Panel. Glycol Distearate has been previously reviewed by the Panel and was found to be safe as used; the conclusion was reaffirmed in 2001 (Table 2).2,3 Neopentyl Glycol Dicaprylate/Dipelargonate/Dicaprate and Neopentyl Glycol Diisononanoate have also been reviewed by the Panel and were found to be safe as used in 2011.4 The Panel has reviewed related ingredients, moieties, and component parts of these ingredients (Table 2). These CIR safety assessments have been utilized herein, in part, to inform the safety of the monoalkylglycol dialkyl acid esters. Please see the original reports for details (http://www.cir-safety.org/ingredients). Pertinent data were discovered in the European Chemicals Agency (ECHA) database for Glycol Distearate, Neopentyl Glycol Dicaprylate/Dicaprate, Neopentyl Glycol Diethylhexanoate, Neopentyl Glycol Diheptanoate, and Trimethyl Pentanyl Diisobutyrate.5-9 The ECHA website provides summaries of information submitted by industry. ECHA is cited in this assessment to identify the source of the data obtained from these summaries. Summaries from the original reports on Glycol Distearate, Neopentyl Glycol Dicaprylate/Dipelargon- ate/Dicaprate, and Neopentyl Glycol Diisononanoate are included in the appropriate sections in italics.3,4 Please see the original reports for further details (http://www.cir-safety.org/ingredients). CHEMISTRY Definition and Structure The ingredients in this report are structurally related to each other as alkyl diesters of monoalkane diols. These ingredients vary by the type of diol and the size of the carboxylic acid residues (Figure 1). For example, Neopentyl Glycol Dicaprate is a diol (neopentyl glycol) esterified at both hydroxyl groups with a carboxylic acid (capric acid) (Figure 2). Figure 1. Monoalkylglycol Dialkyl Acid Esters in which “ORO” is the residue of a diol and “R’C(O)” and “R”C(O)” are the residues of a fatty acids. Figure 2. Neopentyl Glycol Dicaprate, wherein “ORO” from Figure 1 is the residue of neopentyl glycol, and both R’C(O)” and “R”C(O)” are the residues of capic acid. Physical and Chemical Properties Physical and chemical properties for several of the monoalkylglycol dialkyl acid esters in this safety assessment are presented in Table 3. Some of the monoalkylglycol dialkyl acid esters (e.g., Neopentyl Glycol Diethylhexanoate and Propanediol Dicaprylate) are clear or yellow liquids that are insoluble in water.8,10-12 However, longer-chain diesters, such as Glycol Distearate, can be white to cream-colored waxy solids.3 The physical properties of these ingredients may vary within specified limits according to the proportions of mono- and diesters, and other components (e.g., variations in how many of the glycol residues in Glycol Distearate are mono- or di-substituted with stearic acid). Depending on the intended use, these variations can be set during manufacturing to achieve the desired physical characteristics. Diethylpentanediol Dineopentanoate is stable at 25°C under storage conditions.13 The average residual ash on ignition for Neopentyl Glycol Dicaprate is 0.05%.14 Trimethyl Pentanyl Diisobutyrate is stable at pH 4.0 and 7.0.15 The half-life in water at pH 9 is 178 days. UV Absorption Data provided by a manufacture indicated that Neopentyl Glycol Diisononanoate did not significantly absorb light in the 250 to 400 nm range.4 The structures of these ingredients lack chromophores that would result in UV absorption above 210 nm. Method of Manufacture In general, alkyl esters can be produced via the esterification of carboxylic acids with the corresponding glycols (with or without a metal catalyst).16 These carboxylic acids and glycols are often derived from plant or animal sources (e.g., Glycol Dipalmate/Rapeseedate/Soyate and Glycol Ditallowate). Acids from these sources are often mixtures; accordingly, the resulting esters are also mixtures (e.g., Glycol Dipalmate/Palm Kernelate/Olivate/ Macadamiate and Glycol Dipalmate/Rapeseedate/Soyate). Impurities/Constituents Ethylene glycol and/or ethylene oxide are used as starting material for the synthesis of Glycol Stearate. These starting materials are expected to be used as starting materials for Glycol Distearate, a related ingredient. Because the former is known to be contaminated with traces of 1,4-dioxane, it is possible that such traces also appear in the final synthesized material.17 A safety data sheet on a product mixture containing Glycol Distearate recited that 1,4-dioxane was not detected.18 A batch of Neopentyl Glycol Diheptanoate was reported to be > 99% pure; the impurities were not named.6 One batch of Trimethyl Pentanyl Diisobutyrate was reported to be > 99% pure, and another batch was reported to be 98.95% pure.7 The impurities were not named. Another source also reported that Trimethyl Pentanyl Diisobutyrate was > 99% pure and the major impurity was 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate.15 A product data sheet for a product mixture containing Glycol Distearate (88% - 5%), ethylene glycol monostearate (5% - 15%), and ethylene glycol (< 4%) reported that this product contained < 1 ppb toluene.18,19 According to this product data sheet, this product mixture contains < 10 ppm of the following: cadmium, mercury, antimony, arsenic, chromium, cobalt, nickel, lead, or silver. It was also reported to not contain ethylene oxide or propylene oxide. USE Cosmetic The safety of the cosmetic ingredients included in this assessment is evaluated based on data received from the U.S. Food and Drug Administration (FDA) and the cosmetic industry on the expected use of these ingredients in cosmetics.
Recommended publications
  • 36Th ITC Report
    Thursday August 17, 1995 Part V Environmental Protection Agency Thirty-Sixth Report of the TSCA Interagency Testing Committee to the Administrator; Receipt of Report, Request for Comments, Solicitation of Use and Exposure Data; Notice federal register 42981 42982 Federal Register / Vol. 60, No. 159 / Thursday, August 17, 1995 / Notices ENVIRONMENTAL PROTECTION comments and data in electronic form ``OPPTS±41043'' (including comments AGENCY must be identified by the docket number and data submitted electronically as OPPT±41043. No CBI should be described below). A public version of [OPPTS±41043; FRL±4965±6] submitted through e-mail. Electronic this record, including printed, paper Thirty-Sixth Report of the TSCA comments on this notice may be filed versions of electronic comments, which Interagency Testing Committee to the online at many Federal Depository does not include any information Administrator; Receipt of Report, Libraries. Additional information on claimed as confidential business Request for Comments, Solicitation of electronic submissions can be found in information (CBI), is available for Use and Exposure Data Unit III of this document. inspection from 12 noon to 4 p.m., FOR FURTHER INFORMATION CONTACT: Monday through Friday, excluding legal AGENCY: Environmental Protection Susan B. Hazen, Director, holidays. The public record is located in Agency (EPA). Environmental Assistance Division the TSCA Nonconfidential Information ACTION: Notice. (7408), Office of Pollution Prevention Center, Rm. NE-B607, 401 M St., SW., and Toxics, Environmental Protection Washington, DC 20460. SUMMARY: The TSCA Interagency Agency, 401 M Street, SW., Rm. E± Electronic comments can be sent Testing Committee (ITC), established 543B, Washington, DC 20460, (202) directly to EPA at: under section 4(e) of the Toxic 554±1404, TDD (202) 554±0551, [email protected] Substances Control Act (TSCA), Internet: TSCA- transmitted its Thirty-Sixth Report to [email protected].
    [Show full text]
  • Dipropylene Glycol Ethyl Ether (DPGEE) [Ethyl DIPROXITOL] Product Stewardship Summary December 2017
    DiPropylene Glycol Ethyl Ether (DPGEE) [Ethyl DIPROXITOL] Product Stewardship Summary December 2017 DiPropylene Glycol Ethyl Ether (DPGEE) [Ethyl DIPROXITOL] Product Stewardship Summary (CAS number 30025-38-8) Chemical Formula for DPGEE C8H18 O3 What is DPGEE? DPGEE is a glycol ether based on Propylene oxide and ethanol. It is a speciality solvent having a bi- functional nature (ether-alcohol). It is a clear liquid with an ethereal odour. The Shell Chemicals range of Propylene oxide-based glycol ethers are sold under the trade name PROXITOL. How is DPGEE Used? It is used as an intermediate and in formulations in industrial, professional or consumer applications, mainly in surface coatings and printing inks and paints, cleaners, agrochemical or de-icing/anti-icing formulations. Health, Safety and Environmental Considerations DPGEE is flammable liquids with a flashpoint of 180 0F/82 0C. DPGEE is an isomer mix, of which the main component is 1-Ethoxypropanol-2 (typically 98% or more). Shell PROXITOLs are not classified as carcinogens or mutagens, are not expected to cause cancer in humans, nor do they impair fertility or damage the developing foetus. DPGEE is of low toxicity towards aquatic organisms. They are completely miscible with water, biodegradable and not expected to bio-accumulate. Storing and Transporting DPGEE DPGEE is transported by tank truck, rail car and vessel, primarily in bulk quantities, but also as packed product. Due to its flammability, they are classified as hazardous for transport under transport regulations. Glycol Ethers should be stored at ambient temperatures away from sources of ignition and substances with oxidising or corrosive properties.
    [Show full text]
  • Toxicological Basis Data for the Derivation of EU-LCI Values For
    TEXTE 223/2020 Toxicological basis data for the derivation of EU- LCI values for neopentyl glycol, diisobutyl succinate, diisobutyl glutarate, 1,2- dimethoxyethane and 1,2-diethoxyethane Final report German Environment Agency TEXTE 223/2020 Ressortforschungsplan of the Federal Ministry for the Enviroment, Nature Conservation and Nuclear Safety Project No. (FKZ) 3719 62 205 0 Report No. FB000359/ENG Toxicological basis data for the derivation of EU-LCI values for neopentyl glycol, diisobutyl succinate, diisobutyl glutarate, 1,2- dimethoxyethane and 1,2-diethoxyethane Final report by Dr. Barbara Werschkun Wissenschaftsbüro, Berlin On behalf of the German Environment Agency Imprint Publisher Umweltbundesamt Wörlitzer Platz 1 06844 Dessau-Roßlau Tel: +49 340-2103-0 Fax: +49 340-2103-2285 [email protected] Internet: www.umweltbundesamt.de /umweltbundesamt.de /umweltbundesamt Report performed by: Wissenschaftsbüro Dr. Barbara Werschkun Monumentenstr. 31a 10829 Berlin Germany Report completed in: May 2020 Edited by: Section II 1.3 Indoor Hygiene, Health-related Environmental Impacts Dr. Ana Maria Scutaru Publication as pdf: http://www.umweltbundesamt.de/publikationen ISSN 1862-4804 Dessau-Roßlau, December 2020 The responsibility for the content of this publication lies with the author(s). TEXTE Toxicological basis data for the derivation of EU-LCI values for neopentyl glycol, diisobutyl succinate, diisobutyl glutarate, 1,2-dimethoxyethane and 1,2-diethoxyethane – Final report Abstract: Toxicological basis data for the derivation of EU-LCI values for neopentyl glycol, diisobutyl succinate, diisobutyl glutarate, 1,2-dimethoxyethane and 1,2-diethoxyethane The objective of this study was the evaluation of toxicological data for five substances as basis for the derivation of EU-LCI values.
    [Show full text]
  • R Graphics Output
    Dexamethasone sodium phosphate ( 0.339 ) Melengestrol acetate ( 0.282 ) 17beta−Trenbolone ( 0.252 ) 17alpha−Estradiol ( 0.24 ) 17alpha−Hydroxyprogesterone ( 0.238 ) Triamcinolone ( 0.233 ) Zearalenone ( 0.216 ) CP−634384 ( 0.21 ) 17alpha−Ethinylestradiol ( 0.203 ) Raloxifene hydrochloride ( 0.203 ) Volinanserin ( 0.2 ) Tiratricol ( 0.197 ) trans−Retinoic acid ( 0.192 ) Chlorpromazine hydrochloride ( 0.191 ) PharmaGSID_47315 ( 0.185 ) Apigenin ( 0.183 ) Diethylstilbestrol ( 0.178 ) 4−Dodecylphenol ( 0.161 ) 2,2',6,6'−Tetrachlorobisphenol A ( 0.156 ) o,p'−DDD ( 0.155 ) Progesterone ( 0.152 ) 4−Hydroxytamoxifen ( 0.151 ) SSR150106 ( 0.149 ) Equilin ( 0.3 ) 3,5,3'−Triiodothyronine ( 0.256 ) 17−Methyltestosterone ( 0.242 ) 17beta−Estradiol ( 0.24 ) 5alpha−Dihydrotestosterone ( 0.235 ) Mifepristone ( 0.218 ) Norethindrone ( 0.214 ) Spironolactone ( 0.204 ) Farglitazar ( 0.203 ) Testosterone propionate ( 0.202 ) meso−Hexestrol ( 0.199 ) Mestranol ( 0.196 ) Estriol ( 0.191 ) 2,2',4,4'−Tetrahydroxybenzophenone ( 0.185 ) 3,3,5,5−Tetraiodothyroacetic acid ( 0.183 ) Norgestrel ( 0.181 ) Cyproterone acetate ( 0.164 ) GSK232420A ( 0.161 ) N−Dodecanoyl−N−methylglycine ( 0.155 ) Pentachloroanisole ( 0.154 ) HPTE ( 0.151 ) Biochanin A ( 0.15 ) Dehydroepiandrosterone ( 0.149 ) PharmaCode_333941 ( 0.148 ) Prednisone ( 0.146 ) Nordihydroguaiaretic acid ( 0.145 ) p,p'−DDD ( 0.144 ) Diphenhydramine hydrochloride ( 0.142 ) Forskolin ( 0.141 ) Perfluorooctanoic acid ( 0.14 ) Oleyl sarcosine ( 0.139 ) Cyclohexylphenylketone ( 0.138 ) Pirinixic acid ( 0.137 )
    [Show full text]
  • Pesticides and Toxic Substances
    UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460 OFFICE OF PREVENTION, PESTICIDES AND TOXIC SUBSTANCES CERTIFIED MAIL Dear Registrant: This is to inform you that the Environmental Protection Agency (hereafter referred to as EPA or the Agency) has completed its review of the available data for the antimicrobials propylene glycol and dipropylene glycol. The Reregistration Eligibility Decision (RED) was approved in the form of a decision memorandum which summarized the regulatory decision for propylene glycol and dipropylene glycol on September 30, 2004. Based on its review, EPA is now publishing its Reregistration Eligibility Decision (RED) for propylene glycol and dipropylene glycol and its associated human health and environmental risks. A Notice of Availability will be published in the Federal Register announcing the publication of the RED. The RED and supporting documents for propylene glycol and dipropylene glycol will be available to the public in EPA’s Pesticide Docket EPA-HQ-OPP-2006-0831 at: www.regulations.gov. Please note that the attached RED document pertains only to propylene glycol and dipropylene glycol. This RED presents the Agency’s conclusions on the dietary, drinking water, occupational and ecological risks posed by exposure to propylene glycol or dipropylene glycol alone. This document also contains product-specific data that the Agency intends to require in Data Call-Ins (DCIs). Note that DCIs, with all pertinent instructions, will be sent to registrants at a later date. Currently, there are no generic data requirements. Additionally, for product- specific DCIs, the first set of required responses will be due 90 days from the receipt of the DCI letter.
    [Show full text]
  • The Toxicology of Glycol Ethers and Its Relevance to Man (Fourth Edition) Volume I
    The Toxicology of Glycol Ethers and its Relevance to Man (Fourth Edition) Volume I Technical Report No. 95 ISSN-0773-8072-95 Brussels, February 2005 The Toxicology of Glycol Ethers and its Relevance to Man ECETOC TECHNICAL REPORT No. 95 © Copyright – ECETOC AISBL European Centre for Ecotoxicology and Toxicology of Chemicals 4 Avenue E. Van Nieuwenhuyse (Bte 6), B-1160 Brussels, Belgium. All rights reserved. No part of this publication may be reproduced, copied, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the copyright holder. Applications to reproduce, store, copy or translate should be made to the Secretary General. ECETOC welcomes such applications. Reference to the document, its title and summary may be copied or abstracted in data retrieval systems without subsequent reference. The content of this document has been prepared and reviewed by experts on behalf of ECETOC with all possible care and from the available scientific information. It is provided for information only. ECETOC cannot accept any responsibility or liability and does not provide a warranty for any use or interpretation of the material contained in the publication. ECETOC TR No. 95 The Toxicology of Glycol Ethers and its Relevance to Man The Toxicology of Glycol Ethers and its Relevance to Man CONTENTS - VOLUMES I AND II EXECUTIVE SUMMARY 1 SUMMARY AND CONCLUSIONS 3 Recommendations for further work 13 1. INTRODUCTION 14 1.1 Conversion factors and physico-chemical properties 14 1.2 Production and use 14 1.2.1 Manufacture of ethylene-series glycol ethers 14 1.2.2 Manufacture of propylene-series glycol ethers 15 1.2.3 Uses 15 2.
    [Show full text]
  • Final Scope of the Risk Evaluation for Formaldehyde CASRN 50-00-0
    EPA Document# EPA-740-R-20-014 August 2020 United States Office of Chemical Safety and Environmental Protection Agency Pollution Prevention Final Scope of the Risk Evaluation for Formaldehyde CASRN 50-00-0 August 2020 TABLE OF CONTENTS ACKNOWLEDGEMENTS ......................................................................................................................6 ABBREVIATIONS AND ACRONYMS ..................................................................................................7 EXECUTIVE SUMMARY .....................................................................................................................11 1 INTRODUCTION ............................................................................................................................14 2 SCOPE OF THE EVALUATION ...................................................................................................14 2.1 Reasonably Available Information ..............................................................................................14 Search of Gray Literature ...................................................................................................... 15 Search of Literature from Publicly Available Databases (Peer-reviewed Literature) ........... 16 Search of TSCA Submissions ................................................................................................ 24 2.2 Conditions of Use ........................................................................................................................25 Conditions of Use
    [Show full text]
  • Formulating Water-Based Systems Y,Ith Propylene-Oxide­ Based Glycol Ethers
    Formulating Water-Based Systems y,ith Propylene-Oxide­ Based Glycol Ethers Carmen l. Rodriguez and Julia Weathers-lyondell Chemical Company· Bernadette Corujo-Engineered Polymer Solutions Patricia Peterson-Avecia To camply with environmental regulations, formulators have reformulated to water-based systems using non-hazardous air pollutants (non-HAP) cosolvents and developed new resin technology. In fully formulated water-based systems, however, changing the solvent system to meet environmental regulations has wide ranging effects on viscosity, surface defects, film shrinkage, adhesion, and durability. Formulators often adjust paint viscosity by balancing the levels of cosolvents, surfactants, and rheology modifiers. Reformulating with non-HAPs solvents such as propylene oxide-based glycol ethers (PG-glycol ethers) helps reduce volah1e organic content WOC) to meet environmental compliance and eliminates HAPs reporting requirements. When replacing ethylene oxide-based glycol ethers (EG-glycol ethers) with their PG-glycol ethers, reformulation seems simple enough, particularly if evaporation rates and solubility parameters are matched. A drop-in replacement, however, requires optimization. This study compares the use ofPG-glycol ethers in four architectural latex paints and assesses their effects on rheology, drying, and some key performance attributes. INTRODUCTION ing a suitable coalescent solvent for a solvent in the filmis stronglydependent waterborne coating.1 However, chang­ on the end use. The principal positive The primary reason for reformulating a ing the solvent package in a coating for­ effect of solvent entrapment is the in­ solventsystemis to meet environmental mulation may also necessitate optimiza­ creased fleXIbility of the cured coating compliance in volatile organic content tion of the other paint components. and possibly superior cure.
    [Show full text]
  • Diglycidyl Ethers
    Europaisches Patentamt (19) J European Patent Office Office europeen des brevets (11) EP0 911 326 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC (43) Date of publication: (51) Int. CI.6: C07D 303/27, C08G 59/04 28.04.1999 Bulletin 1999/17 (86) International application number: (21) Application number: 98905732.8 PCT/JP98/00861 (22) Date of filing: 03.03.1998 (87) International publication number: WO 98/3931 4 (1 1 .09.1 998 Gazette 1 998/36) (84) Designated Contracting States: • MURAYAMA, Toshikazu AT BE CH DE DK ES Fl FR GB GR IE IT LI LU MC Yokkaichi-shi, Mie 51 2-091 1 (JP) NL PT SE • TSUZAKI, Nobuko Yokkaichi-shi, Mie 51 2-091 1 (JP) (30) Priority: 04.03.1997 J P 48632/97 (74) Representative: (71 ) Applicant: Kyowa Yuka Co., Ltd. Le Guen, Gerard et al Tokyo 1 00-0004 (JP) CABINET LAVOIX 2, place d'Estienne d'Orves (72) Inventors: 75441 Paris Cedex 09 (FR) • MUTO, Kenji Yokkaichi-shi, Mie551 2-091 1 (JP) (54) DIGLYCIDYL ETHERS (57) The present invention relates to a diglycidyl ether represented by the following general formula (I): R' CH?-CH-CH2-0-CH2-CH-CH2-CH-CH2-O— CH2-CH-CH2 \/ v O 0 (I) (wherein, R1 and R2 are the same or different, and represent lower alkyl having 1-6 carbon atoms), a composition including the glycidyl ether and epoxy resin, and epoxy resin cured product obtained by the composition. The glycidyl ether can be used as a reactive diluent for epoxy resins.
    [Show full text]
  • Glycol Ether DPM CAS No
    Dipropylene Glycol (Mono) Methyl Ether Glycol Ether DPM CAS No. 34590-94-8 Molecular Weight = 148.2 Description Glycol Ether DPM is a colorless, liquid with low toxicity having a mild, pleasant odor. It is completely water soluble, miscible with a number of organic solvents and has good solvency for a number of substances. Product Chemical Name Methoxy Propoxy Propanol Identification Chemical Family Propylene Glycol Ether Other Names DPG Methyl Ether Dipropylene Glycol Methyl Ether Dipropylene Glycol Mono Methyl Ether Chemical Formula…………………………C7H16O3 Property Acidity, wt. % as 0.01 Acetic acid, max. Water, Wt. %, max. 0.15 Color, APHA, max. 10 GC Purity, Wt. %, min. 99.0 Appearance Clear For the most current product specification, please call 1-888-777-0232 or your local sales contact. Typical Density (pounds per gallon at 25°C) 7.9 Properties Distillation @ 760mm Hg IBP, min 180°C DP, max 195°C Evaporation Rate (BuAc = 100) 2 Flash Point (Tag Closed Cup) C(°F) 75(176) Solubility by weight in water at 20°C Complete Solubility Parameter (Total Hansen) 10.0 Specific Gravity @25/25°C 0.949-0.960 Surface Tension (Dynes/cm) @ 25°C (77°F) 28 Refractive Index @ 25° (77°F) 1.422 Viscosity (centistokes) @ 25° (77°) 3.6 Vapor Pressure @ 25°C (mm Hg) 0.2 Applications Coatings: Glycol Ether DPM provides good solvency for a wide variety of resins including acrylic, epoxies, alkyds, polyesters, nitrocellulose and polyurethanes. Glycol Ether DPM has a relatively low vapor pressure (volatility) and evaporates at a slow rate. Key properties for coating applications include complete water miscibility and good coupling ability.
    [Show full text]
  • TR-511: Dipropylene Glycol (CASRN 25265-71-8) in F344/N Rats And
    NTP TECHNICAL REPORT ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF DIPROPYLENE GLYCOL (CAS NO. 25265-71-8) IN F344/N RATS AND B6C3F1 MICE (DRINKING WATER STUDIES) NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709 June 2004 NTP TR 511 NIH Publication No. 04-4445 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health FOREWORD The National Toxicology Program (NTP) is made up of four charter agencies of the U.S. Department of Health and Human Services (DHHS): the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS. The NTP coordinates the relevant programs, staff, and resources from these Public Health Service agencies relating to basic and applied research and to biological assay development and validation. The NTP develops, evaluates, and disseminates scientific information about potentially toxic and hazardous chemicals. This knowledge is used for protecting the health of the American people and for the primary prevention of disease. The studies described in this Technical Report were performed under the direction of the NIEHS and were conducted in compliance with NTP laboratory health and safety requirements and must meet or exceed all applicable federal, state, and local health and safety regulations. Animal care and use were in accordance with the Public Health Service Policy on Humane Care and Use of Animals.
    [Show full text]
  • Neopentyl Glycol Flake 10470 Version / Revision 3.01 Revision Date 15-Dec-2020 Supersedes Version 3.00*** Issuing Date 15-Dec-2020 ______
    SAFETY DATA SHEET Neopentyl glycol flake 10470 Version / Revision 3.01 Revision Date 15-Dec-2020 Supersedes Version 3.00*** Issuing date 15-Dec-2020 ___________________________________________________________________________________________ SECTION 1: Identification of the substance / mixture and of the company / undertaking 1.1. Product identifier Identification of the substance/preparation Neopentyl glycol flake Chemical Name 2,2-Dimethylpropane-1,3-diol CAS-No 126-30-7 EC No. 204-781-0 Registration number (REACh) 01-2119480396-30 1.2. Relevant identified uses of the substance or mixture and uses advised against Identified uses Intermediate Formulation Distribution of substance laboratory chemicals Polymerization coatings Road and construction applications Uses advised against None 1.3. Details of the supplier of the safety data sheet Company/Undertaking OQ Chemicals GmbH Identification Rheinpromenade 4A D-40789 Monheim Germany Product Information Product Stewardship FAX: +49 (0)208 693 2053 email: [email protected] 1.4. Emergency telephone number Emergency telephone number +44 (0) 1235 239 671 (UK) available 24/7 SECTION 2: Hazards identification 2.1. Classification of the substance or mixture This substance is classified based on Directive 1272/2008/EC and its amendments (CLP Regulation) Serious eye damage/eye irritation Category 1, H318 Additional information For full text of Hazard- and EU Hazard-statements see SECTION 16. 2.2. Label elements ___________________________________________________________________________________________ 1 / 14 Africa and Asia (IAF) /EN SAFETY DATA SHEET 10470 Revision Date 15-Dec-2020 Neopentyl glycol flake Version / Revision 3.01 ___________________________________________________________________________________________ Labelling according to Regulation 1272/2008/EC and its amendments (CLP Regulation). Hazard pictograms Signal word Danger Hazard statements H318: Causes serious eye damage.
    [Show full text]