3. High-Level Functional Programming
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Functional Languages
Functional Programming Languages (FPL) 1. Definitions................................................................... 2 2. Applications ................................................................ 2 3. Examples..................................................................... 3 4. FPL Characteristics:.................................................... 3 5. Lambda calculus (LC)................................................. 4 6. Functions in FPLs ....................................................... 7 7. Modern functional languages...................................... 9 8. Scheme overview...................................................... 11 8.1. Get your own Scheme from MIT...................... 11 8.2. General overview.............................................. 11 8.3. Data Typing ...................................................... 12 8.4. Comments ......................................................... 12 8.5. Recursion Instead of Iteration........................... 13 8.6. Evaluation ......................................................... 14 8.7. Storing and using Scheme code ........................ 14 8.8. Variables ........................................................... 15 8.9. Data types.......................................................... 16 8.10. Arithmetic functions ......................................... 17 8.11. Selection functions............................................ 18 8.12. Iteration............................................................. 23 8.13. Defining functions ........................................... -
Causal Commutative Arrows Revisited
Causal Commutative Arrows Revisited Jeremy Yallop Hai Liu University of Cambridge, UK Intel Labs, USA [email protected] [email protected] Abstract init which construct terms of an overloaded type arr. Most of the Causal commutative arrows (CCA) extend arrows with additional code listings in this paper uses these combinators, which are more constructs and laws that make them suitable for modelling domains convenient for defining instances, in place of the notation; we refer such as functional reactive programming, differential equations and the reader to Paterson (2001) for the details of the desugaring. synchronous dataflow. Earlier work has revealed that a syntactic Unfortunately, speed does not always follow succinctness. Al- transformation of CCA computations into normal form can result in though arrows in poetry are a byword for swiftness, arrows in pro- significant performance improvements, sometimes increasing the grams can introduce significant overhead. Continuing with the ex- speed of programs by orders of magnitude. In this work we refor- ample above, in order to run exp, we must instantiate the abstract mulate the normalization as a type class instance and derive op- arrow with a concrete implementation, such as the causal stream timized observation functions via a specialization to stream trans- transformer SF (Liu et al. 2009) that forms the basis of signal func- formers to demonstrate that the same dramatic improvements can tions in the Yampa domain-specific language for functional reactive be achieved without leaving the language. programming (Hudak et al. 2003): newtype SF a b = SF {unSF :: a → (b, SF a b)} Categories and Subject Descriptors D.1.1 [Programming tech- niques]: Applicative (Functional) Programming (The accompanying instances for SF , which define the arrow operators, appear on page 6.) Keywords arrows, stream transformers, optimization, equational Instantiating exp with SF brings an unpleasant surprise: the reasoning, type classes program runs orders of magnitude slower than an equivalent pro- gram that does not use arrows. -
Higher-Order Functions 15-150: Principles of Functional Programming – Lecture 13
Higher-order Functions 15-150: Principles of Functional Programming { Lecture 13 Giselle Reis By now you might feel like you have a pretty good idea of what is going on in functional program- ming, but in reality we have used only a fragment of the language. In this lecture we see what more we can do and what gives the name functional to this paradigm. Let's take a step back and look at ML's typing system: we have basic types (such as int, string, etc.), tuples of types (t*t' ) and functions of a type to a type (t ->t' ). In a grammar style (where α is a basic type): τ ::= α j τ ∗ τ j τ ! τ What types allowed by this grammar have we not used so far? Well, we could, for instance, have a function below a tuple. Or even a function within a function, couldn't we? The following are completely valid types: int*(int -> int) int ->(int -> int) (int -> int) -> int The first one is a pair in which the first element is an integer and the second one is a function from integers to integers. The second one is a function from integers to functions (which have type int -> int). The third type is a function from functions to integers. The two last types are examples of higher-order functions1, i.e., a function which: • receives a function as a parameter; or • returns a function. Functions can be used like any other value. They are first-class citizens. Maybe this seems strange at first, but I am sure you have used higher-order functions before without noticing it. -
Typescript Language Specification
TypeScript Language Specification Version 1.8 January, 2016 Microsoft is making this Specification available under the Open Web Foundation Final Specification Agreement Version 1.0 ("OWF 1.0") as of October 1, 2012. The OWF 1.0 is available at http://www.openwebfoundation.org/legal/the-owf-1-0-agreements/owfa-1-0. TypeScript is a trademark of Microsoft Corporation. Table of Contents 1 Introduction ................................................................................................................................................................................... 1 1.1 Ambient Declarations ..................................................................................................................................................... 3 1.2 Function Types .................................................................................................................................................................. 3 1.3 Object Types ...................................................................................................................................................................... 4 1.4 Structural Subtyping ....................................................................................................................................................... 6 1.5 Contextual Typing ............................................................................................................................................................ 7 1.6 Classes ................................................................................................................................................................................. -
Scala Tutorial
Scala Tutorial SCALA TUTORIAL Simply Easy Learning by tutorialspoint.com tutorialspoint.com i ABOUT THE TUTORIAL Scala Tutorial Scala is a modern multi-paradigm programming language designed to express common programming patterns in a concise, elegant, and type-safe way. Scala has been created by Martin Odersky and he released the first version in 2003. Scala smoothly integrates features of object-oriented and functional languages. This tutorial gives a great understanding on Scala. Audience This tutorial has been prepared for the beginners to help them understand programming Language Scala in simple and easy steps. After completing this tutorial, you will find yourself at a moderate level of expertise in using Scala from where you can take yourself to next levels. Prerequisites Scala Programming is based on Java, so if you are aware of Java syntax, then it's pretty easy to learn Scala. Further if you do not have expertise in Java but you know any other programming language like C, C++ or Python, then it will also help in grasping Scala concepts very quickly. Copyright & Disclaimer Notice All the content and graphics on this tutorial are the property of tutorialspoint.com. Any content from tutorialspoint.com or this tutorial may not be redistributed or reproduced in any way, shape, or form without the written permission of tutorialspoint.com. Failure to do so is a violation of copyright laws. This tutorial may contain inaccuracies or errors and tutorialspoint provides no guarantee regarding the accuracy of the site or its contents including this tutorial. If you discover that the tutorialspoint.com site or this tutorial content contains some errors, please contact us at [email protected] TUTORIALS POINT Simply Easy Learning Table of Content Scala Tutorial .......................................................................... -
Smalltalk Smalltalk
3/8/2008 CSE 3302 Programming Languages Smalltalk Everyygthing is obj ect. Obj ects communicate by messages. Chengkai Li Spring 2008 Lecture 14 – Smalltalk, Spring Lecture 14 – Smalltalk, Spring CSE3302 Programming Languages, UT-Arlington 1 CSE3302 Programming Languages, UT-Arlington 2 2008 ©Chengkai Li, 2008 2008 ©Chengkai Li, 2008 Object Hierarchy Object UndefinedObject Boolean Magnitude Collection No Data Type. True False Set … There is only Class. Char Number … Fraction Integer Float Lecture 14 – Smalltalk, Spring Lecture 14 – Smalltalk, Spring CSE3302 Programming Languages, UT-Arlington 3 CSE3302 Programming Languages, UT-Arlington 4 2008 ©Chengkai Li, 2008 2008 ©Chengkai Li, 2008 Syntax • Smalltalk is really “small” – Only 6 keywords (pseudo variables) – Class, object, variable, method names are self explanatory Sma llta lk Syn tax is Simp le. – Only syntax for calling method (messages) and defining method. • No syntax for control structure • No syntax for creating class Lecture 14 – Smalltalk, Spring Lecture 14 – Smalltalk, Spring CSE3302 Programming Languages, UT-Arlington 5 CSE3302 Programming Languages, UT-Arlington 6 2008 ©Chengkai Li, 2008 2008 ©Chengkai Li, 2008 1 3/8/2008 Expressions Literals • Literals • Number: 3 3.5 • Character: $a • Pseudo Variables • String: ‘ ’ (‘Hel’,’lo!’ and ‘Hello!’ are two objects) • Symbol: # (#foo and #foo are the same object) • Variables • Compile-time (literal) array: #(1 $a 1+2) • Assignments • Run-time (dynamic) array: {1. $a. 1+2} • Comment: “This is a comment.” • Blocks • Messages Lecture 14 – Smalltalk, Spring Lecture 14 – Smalltalk, Spring CSE3302 Programming Languages, UT-Arlington 7 CSE3302 Programming Languages, UT-Arlington 8 2008 ©Chengkai Li, 2008 2008 ©Chengkai Li, 2008 Pseudo Variables Variables • Instance variables. -
Python Functions
PPYYTTHHOONN FFUUNNCCTTIIOONNSS http://www.tutorialspoint.com/python/python_functions.htm Copyright © tutorialspoint.com A function is a block of organized, reusable code that is used to perform a single, related action. Functions provide better modularity for your application and a high degree of code reusing. As you already know, Python gives you many built-in functions like print, etc. but you can also create your own functions. These functions are called user-defined functions. Defining a Function You can define functions to provide the required functionality. Here are simple rules to define a function in Python. Function blocks begin with the keyword def followed by the function name and parentheses ( ). Any input parameters or arguments should be placed within these parentheses. You can also define parameters inside these parentheses. The first statement of a function can be an optional statement - the documentation string of the function or docstring. The code block within every function starts with a colon : and is indented. The statement return [expression] exits a function, optionally passing back an expression to the caller. A return statement with no arguments is the same as return None. Syntax def functionname( parameters ): "function_docstring" function_suite return [expression] By default, parameters have a positional behavior and you need to inform them in the same order that they were defined. Example The following function takes a string as input parameter and prints it on standard screen. def printme( str ): "This prints a passed string into this function" print str return Calling a Function Defining a function only gives it a name, specifies the parameters that are to be included in the function and structures the blocks of code. -
S-Algol Reference Manual Ron Morrison
S-algol Reference Manual Ron Morrison University of St. Andrews, North Haugh, Fife, Scotland. KY16 9SS CS/79/1 1 Contents Chapter 1. Preface 2. Syntax Specification 3. Types and Type Rules 3.1 Universe of Discourse 3.2 Type Rules 4. Literals 4.1 Integer Literals 4.2 Real Literals 4.3 Boolean Literals 4.4 String Literals 4.5 Pixel Literals 4.6 File Literal 4.7 pntr Literal 5. Primitive Expressions and Operators 5.1 Boolean Expressions 5.2 Comparison Operators 5.3 Arithmetic Expressions 5.4 Arithmetic Precedence Rules 5.5 String Expressions 5.6 Picture Expressions 5.7 Pixel Expressions 5.8 Precedence Table 5.9 Other Expressions 6. Declarations 6.1 Identifiers 6.2 Variables, Constants and Declaration of Data Objects 6.3 Sequences 6.4 Brackets 6.5 Scope Rules 7. Clauses 7.1 Assignment Clause 7.2 if Clause 7.3 case Clause 7.4 repeat ... while ... do ... Clause 7.5 for Clause 7.6 abort Clause 8. Procedures 8.1 Declarations and Calls 8.2 Forward Declarations 2 9. Aggregates 9.1 Vectors 9.1.1 Creation of Vectors 9.1.2 upb and lwb 9.1.3 Indexing 9.1.4 Equality and Equivalence 9.2 Structures 9.2.1 Creation of Structures 9.2.2 Equality and Equivalence 9.2.3 Indexing 9.3 Images 9.3.1 Creation of Images 9.3.2 Indexing 9.3.3 Depth Selection 9.3.4 Equality and Equivalence 10. Input and Output 10.1 Input 10.2 Output 10.3 i.w, s.w and r.w 10.4 End of File 11. -
An Overview of the Scala Programming Language
An Overview of the Scala Programming Language Second Edition Martin Odersky, Philippe Altherr, Vincent Cremet, Iulian Dragos Gilles Dubochet, Burak Emir, Sean McDirmid, Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, Lex Spoon, Matthias Zenger École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne, Switzerland Technical Report LAMP-REPORT-2006-001 Abstract guage for component software needs to be scalable in the sense that the same concepts can describe small as well as Scala fuses object-oriented and functional programming in large parts. Therefore, we concentrate on mechanisms for a statically typed programming language. It is aimed at the abstraction, composition, and decomposition rather than construction of components and component systems. This adding a large set of primitives which might be useful for paper gives an overview of the Scala language for readers components at some level of scale, but not at other lev- who are familar with programming methods and program- els. Second, we postulate that scalable support for compo- ming language design. nents can be provided by a programming language which unies and generalizes object-oriented and functional pro- gramming. For statically typed languages, of which Scala 1 Introduction is an instance, these two paradigms were up to now largely separate. True component systems have been an elusive goal of the To validate our hypotheses, Scala needs to be applied software industry. Ideally, software should be assembled in the design of components and component systems. Only from libraries of pre-written components, just as hardware is serious application by a user community can tell whether the assembled from pre-fabricated chips. -
(Pdf) of from Push/Enter to Eval/Apply by Program Transformation
From Push/Enter to Eval/Apply by Program Transformation MaciejPir´og JeremyGibbons Department of Computer Science University of Oxford [email protected] [email protected] Push/enter and eval/apply are two calling conventions used in implementations of functional lan- guages. In this paper, we explore the following observation: when considering functions with mul- tiple arguments, the stack under the push/enter and eval/apply conventions behaves similarly to two particular implementations of the list datatype: the regular cons-list and a form of lists with lazy concatenation respectively. Along the lines of Danvy et al.’s functional correspondence between def- initional interpreters and abstract machines, we use this observation to transform an abstract machine that implements push/enter into an abstract machine that implements eval/apply. We show that our method is flexible enough to transform the push/enter Spineless Tagless G-machine (which is the semantic core of the GHC Haskell compiler) into its eval/apply variant. 1 Introduction There are two standard calling conventions used to efficiently compile curried multi-argument functions in higher-order languages: push/enter (PE) and eval/apply (EA). With the PE convention, the caller pushes the arguments on the stack, and jumps to the function body. It is the responsibility of the function to find its arguments, when they are needed, on the stack. With the EA convention, the caller first evaluates the function to a normal form, from which it can read the number and kinds of arguments the function expects, and then it calls the function body with the right arguments. -
An Exploration of the Effects of Enhanced Compiler Error Messages for Computer Programming Novices
Technological University Dublin ARROW@TU Dublin Theses LTTC Programme Outputs 2015-11 An Exploration Of The Effects Of Enhanced Compiler Error Messages For Computer Programming Novices Brett A. Becker Technological University Dublin Follow this and additional works at: https://arrow.tudublin.ie/ltcdis Part of the Computer and Systems Architecture Commons, and the Educational Methods Commons Recommended Citation Becker, B. (2015) An exploration of the effects of enhanced compiler error messages for computer programming novices. Thesis submitted to Technologicl University Dublin in part fulfilment of the requirements for the award of Masters (M.A.) in Higher Education, November 2015. This Theses, Masters is brought to you for free and open access by the LTTC Programme Outputs at ARROW@TU Dublin. It has been accepted for inclusion in Theses by an authorized administrator of ARROW@TU Dublin. For more information, please contact [email protected], [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License An Exploration of the Effects of Enhanced Compiler Error Messages for Computer Programming Novices A thesis submitted to Dublin Institute of Technology in part fulfilment of the requirements for the award of Masters (M.A.) in Higher Education by Brett A. Becker November 2015 Supervisor: Dr Claire McDonnell Learning Teaching and Technology Centre, Dublin Institute of Technology Declaration I certify that this thesis which I now submit for examination for the award of Masters (M.A.) in Higher Education is entirely my own work and has not been taken from the work of others, save and to the extent that such work has been cited and acknowledged within the text of my own work. -
Directing Javascript with Arrows
Directing JavaScript with Arrows Khoo Yit Phang Michael Hicks Jeffrey S. Foster Vibha Sazawal University of Maryland, College Park {khooyp,mwh,jfoster,vibha}@cs.umd.edu Abstract callback with a (short) timeout. Unfortunately, this style of event- JavaScript programmers make extensive use of event-driven pro- driven programming is tedious, error-prone, and hampers reuse. gramming to help build responsive web applications. However, The callback sequencing code is strewn throughout the program, standard approaches to sequencing events are messy, and often and very often each callback must hard-code the names of the next lead to code that is difficult to understand and maintain. We have events and callbacks in the chain. found that arrows, a generalization of monads, are an elegant solu- To combat this problem, many researchers and practitioners tion to this problem. Arrows allow us to easily write asynchronous have developed libraries to ease the construction of rich and highly programs in small, modular units of code, and flexibly compose interactive web applications. Examples include jQuery (jquery. them in many different ways, while nicely abstracting the details of com), Prototype (prototypejs.org), YUI (developer.yahoo. asynchronous program composition. In this paper, we present Ar- com/yui), MochiKit (mochikit.com), and Dojo (dojotoolkit. rowlets, a new JavaScript library that offers arrows to the everyday org). These libraries generally provide high-level APIs for com- JavaScript programmer. We show how to use Arrowlets to construct mon features, e.g., drag-and-drop, animation, and network resource a variety of state machines, including state machines that branch loading, as well as to handle API differences between browsers.