Causal Commutative Arrows Revisited

Total Page:16

File Type:pdf, Size:1020Kb

Causal Commutative Arrows Revisited Causal Commutative Arrows Revisited Jeremy Yallop Hai Liu University of Cambridge, UK Intel Labs, USA [email protected] [email protected] Abstract init which construct terms of an overloaded type arr. Most of the Causal commutative arrows (CCA) extend arrows with additional code listings in this paper uses these combinators, which are more constructs and laws that make them suitable for modelling domains convenient for defining instances, in place of the notation; we refer such as functional reactive programming, differential equations and the reader to Paterson (2001) for the details of the desugaring. synchronous dataflow. Earlier work has revealed that a syntactic Unfortunately, speed does not always follow succinctness. Al- transformation of CCA computations into normal form can result in though arrows in poetry are a byword for swiftness, arrows in pro- significant performance improvements, sometimes increasing the grams can introduce significant overhead. Continuing with the ex- speed of programs by orders of magnitude. In this work we refor- ample above, in order to run exp, we must instantiate the abstract mulate the normalization as a type class instance and derive op- arrow with a concrete implementation, such as the causal stream timized observation functions via a specialization to stream trans- transformer SF (Liu et al. 2009) that forms the basis of signal func- formers to demonstrate that the same dramatic improvements can tions in the Yampa domain-specific language for functional reactive be achieved without leaving the language. programming (Hudak et al. 2003): newtype SF a b = SF {unSF :: a → (b, SF a b)} Categories and Subject Descriptors D.1.1 [Programming tech- niques]: Applicative (Functional) Programming (The accompanying instances for SF , which define the arrow operators, appear on page 6.) Keywords arrows, stream transformers, optimization, equational Instantiating exp with SF brings an unpleasant surprise: the reasoning, type classes program runs orders of magnitude slower than an equivalent pro- gram that does not use arrows. The programmer is faced with the 1. Introduction familiar need to choose between a high level of abstraction and acceptable performance. Liu et al. (2009) describe the problem in Arrows (Hughes 2000) provide a high-level interface to computa- more detail, and also propose a remedy: the laws which arrow im- tion, allowing programs to be expressed abstractly rather than con- plementations must obey can be used to rewrite arrow computations cretely, using reusable combinators in place of special-purpose con- into a normal form which eliminates the overhead of the arrow ab- trol flow code. Here is a program written using arrows: straction. Their design is formalized as a more restricted form of ar- exp = proc () → do rows, called causal commutative arrows (CCA), and implemented rec let e =1+ i as a Template Haskell library, which transforms the syntax of pro- i ← integral−≺ e grams during compilation to rewrite CCA computations into nor- returnA−≺ e mal form. The solution described by Liu et al. achieves significant perfor- which corresponds to the following recursive definition of the mance improvements, but the use of Template Haskell introduces exponential function a number of drawbacks. Perhaps most significantly, the Template t Haskell implementation of normalization is untyped: there is no e(t)=1+ e(t)dt Z check that the types of the unnormalized and normalized terms are 0 the same. Although the normalizer code operates on untyped syn- Paterson’s arrow notation (Paterson 2001), used in the definition of tax, its output is passed to the type checker, so there is no danger of exp, makes the data flow pleasingly clear: the integral function actually running ill-typed code. Nevertheless, the fact that the nor- forms the shaft of an arrow that turns e at the nock into i at malizer is not guaranteed to preserve typing means that errors may the head. The name e appears twice more, once above the arrow be discovered significantly later. A further drawback is that the nor- as the successor of i, and once below as the result of the whole malizer can only operate on computations whose structure is fully computation. (The definition of integral itself appears later in this known during compilation, when Template Haskell operates. paper, on page 4.) The notation need not be taken as primitive; there In this paper we address the first of these drawbacks and suggest is a desugaring into a set of combinators arr, ≫, first, loop, and a path to addressing the second. The reader familiar with recent Template Haskell developments might at this point expect us to propose switching the existing normalizer to using typed quotations and splices. Instead, we present a simpler approach, eschewing Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and syntactic transformations altogether and defining normalization as the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. an operation on values, implemented as a type class instance. ThisAbstracting is the with author’s credit is permitted. version To of copy the otherwise, work. It to isrepublish, posted to herepost on for servers, your or topersonal redistribute use. to lists, Not contact for redistribution.the Owner/Author(s). The Request definitive permissions version from [email protected] was published in or Publications the following Dept., publication:ACM, Inc., fax +1 (212) 869-0481. 1.1 Contributions Haskell’16Haskell ’16 September, September 18–22, 2016, 22-23, Nara, Japan 2016, Nara, Japan Copyright c 2016 held by owner/author(s). Publication rights licensed to ACM. ACM.ACM 978-1-4503-4434-0/16/09. 978-1-4503-4434-0/16/09... $15.00 Section 2 reviews Causal Commutative Arrows (CCA), their defi- http://dx.doi.org/10.1145/2976002.2976019DOI: http://dx.doi.org/10.1145/2976002.2976019 nition as a set of Haskell type classes, the accompanying laws, and 21 class Arrow (arr :: ∗→∗→∗) where to applying arrow computation f to the first of a pair of inputs to obtain the first output, while connecting the second input directly to arr :: (a → b) → arr a b the second output. The dual of first, called second, can be defined ≫ ( ) :: arr a b → arr b c → arr a c as follows: first :: arr a b → arr (a, c)(b, c) second :: Arrow arr ⇒ arr a b → arr (c, a)(c, b) class Arrow arr ⇒ ArrowLoop arr where second f = arr swap ≫ first f ≫ arr swap loop :: arr (a, c)(b, c) → arr a b where swap (a, b)=(b, a) class ArrowLoop arr ⇒ ArrowInit arr where init :: a → arr a a Parallel composition ⋆⋆⋆ of two arrows can then be defined as a sequence of first and second: (⋆⋆⋆) :: Arrow arr ⇒ arr a b → arr c d → arr (a, c)(b, d) f ⋆⋆⋆ g = first f ≫ second g Together, these combinators form an interface to first-order com- (a) arr f (b) f ≫ g putations, i.e. computations which do not dynamically construct or change their compositional structure during the course of their ex- ecution. Like monads, all arrows are governed by a set of algebraic laws, which are shown in Figure 2a. (Lindley et al. (2010) further showed that these nine arrow laws can be reduced to eight.) It is worth not- (c) first f (d) loop f ing that all arrow laws respect the order of sequential composition of “impure” arrows, while a number of them (exchange, unit and Figure 1: The Arrow, ArrowLoop and ArrowInit classes association) allow “pure” arrows to be moved around without af- fecting the computation. Arrows can be extended to have more operations, governed by their normal form (CCNF). The contributions of the remainder of additional laws. Paterson (2001) defines the ArrowLoop class (Fig- this paper are as follows: ure 1) with an operator loop, which corresponds to the rec syntax in the arrow notation. Intuitively, the second output of the arrow in- • We derive a new implementation of CCA normalization, re- side loop is immediately connected back to its second input, and alised as a set of type class instances for a data type which thus becomes a form of recursion at value level, as opposed to represents the CCA normal form (Section 3) recursively defined arrows (an example of which is given in Sec- • We derive an optimized version of the “observation” function tion 5.3). Figure 2b gives the set of laws for ArrowLoop. that interprets normalized CCA computations using other arrow instances (Section 4). 2.2 Causal Commutative Arrows • We present a second implementation of the normalizing in- Based on looping arrows, Liu et al. (2009) introduces another stances for CCA based on mutable state, and use it to improve extension called causal commutative arrows (CCA) with an init the performance of the Euterpea library (Section 5). combinator in the ArrowInit class (Figure 1), and two additional laws to place further constraints on the computation (Figure 2c). In • We demonstrate via a series of micro- and macro-benchmarks the context of synchronous circuits, ArrowInit is almost identical that the performance of our normalizing instances compares to the ArrowCircuit class first introduced by Paterson (2001), favourably with the Template Haskell implementation used in with init being equivalent to delay that supplies its argument the original CCA work (Section 6). as its initial output, and copies from its input to the rest of its outputs. For the purpose of this paper, we will continue using the Finally, Section 7 contextualizes our work in the existing literature.
Recommended publications
  • An Exploration of the Effects of Enhanced Compiler Error Messages for Computer Programming Novices
    Technological University Dublin ARROW@TU Dublin Theses LTTC Programme Outputs 2015-11 An Exploration Of The Effects Of Enhanced Compiler Error Messages For Computer Programming Novices Brett A. Becker Technological University Dublin Follow this and additional works at: https://arrow.tudublin.ie/ltcdis Part of the Computer and Systems Architecture Commons, and the Educational Methods Commons Recommended Citation Becker, B. (2015) An exploration of the effects of enhanced compiler error messages for computer programming novices. Thesis submitted to Technologicl University Dublin in part fulfilment of the requirements for the award of Masters (M.A.) in Higher Education, November 2015. This Theses, Masters is brought to you for free and open access by the LTTC Programme Outputs at ARROW@TU Dublin. It has been accepted for inclusion in Theses by an authorized administrator of ARROW@TU Dublin. For more information, please contact [email protected], [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License An Exploration of the Effects of Enhanced Compiler Error Messages for Computer Programming Novices A thesis submitted to Dublin Institute of Technology in part fulfilment of the requirements for the award of Masters (M.A.) in Higher Education by Brett A. Becker November 2015 Supervisor: Dr Claire McDonnell Learning Teaching and Technology Centre, Dublin Institute of Technology Declaration I certify that this thesis which I now submit for examination for the award of Masters (M.A.) in Higher Education is entirely my own work and has not been taken from the work of others, save and to the extent that such work has been cited and acknowledged within the text of my own work.
    [Show full text]
  • Directing Javascript with Arrows
    Directing JavaScript with Arrows Khoo Yit Phang Michael Hicks Jeffrey S. Foster Vibha Sazawal University of Maryland, College Park {khooyp,mwh,jfoster,vibha}@cs.umd.edu Abstract callback with a (short) timeout. Unfortunately, this style of event- JavaScript programmers make extensive use of event-driven pro- driven programming is tedious, error-prone, and hampers reuse. gramming to help build responsive web applications. However, The callback sequencing code is strewn throughout the program, standard approaches to sequencing events are messy, and often and very often each callback must hard-code the names of the next lead to code that is difficult to understand and maintain. We have events and callbacks in the chain. found that arrows, a generalization of monads, are an elegant solu- To combat this problem, many researchers and practitioners tion to this problem. Arrows allow us to easily write asynchronous have developed libraries to ease the construction of rich and highly programs in small, modular units of code, and flexibly compose interactive web applications. Examples include jQuery (jquery. them in many different ways, while nicely abstracting the details of com), Prototype (prototypejs.org), YUI (developer.yahoo. asynchronous program composition. In this paper, we present Ar- com/yui), MochiKit (mochikit.com), and Dojo (dojotoolkit. rowlets, a new JavaScript library that offers arrows to the everyday org). These libraries generally provide high-level APIs for com- JavaScript programmer. We show how to use Arrowlets to construct mon features, e.g., drag-and-drop, animation, and network resource a variety of state machines, including state machines that branch loading, as well as to handle API differences between browsers.
    [Show full text]
  • The Glasgow Haskell Compiler User's Guide, Version 4.08
    The Glasgow Haskell Compiler User's Guide, Version 4.08 The GHC Team The Glasgow Haskell Compiler User's Guide, Version 4.08 by The GHC Team Table of Contents The Glasgow Haskell Compiler License ........................................................................................... 9 1. Introduction to GHC ....................................................................................................................10 1.1. The (batch) compilation system components.....................................................................10 1.2. What really happens when I “compile” a Haskell program? .............................................11 1.3. Meta-information: Web sites, mailing lists, etc. ................................................................11 1.4. GHC version numbering policy .........................................................................................12 1.5. Release notes for version 4.08 (July 2000) ........................................................................13 1.5.1. User-visible compiler changes...............................................................................13 1.5.2. User-visible library changes ..................................................................................14 1.5.3. Internal changes.....................................................................................................14 2. Installing from binary distributions............................................................................................16 2.1. Installing on Unix-a-likes...................................................................................................16
    [Show full text]
  • SOME USEFUL STRUCTURES for CATEGORICAL APPROACH for PROGRAM BEHAVIOR in Computer Science, Where We Often Use More Complex Structures Not Expressible by Sets
    JIOS, VOL. 35, NO. 1 (2011) SUBMITTED 02/11; ACCEPTED 03/11 UDC 004.423.45 [ SomeSome useful Useful structures Structures for categorical for Categorical approach Approach for program for Programbehavior Behavior Viliam Slodicákˇ [email protected] Department of Computers and Informatics Faculty of Electrical Engineering and Informatics Technical university of Košice Letná 9, 042 00 Košice Slovak Republic Abstract Using of category theory in computer science has extremely grown in the last decade. Categories allow us to express mathematical structures in unified way. Algebras are used for constructing basic structures used in computer programs. A program can be considered as an element of the initial algebra arising from the used programming language. In our contribution we formulate two ways of expressing algebras in categories. We also construct the codomain functor from the arrow category of algebras into the base category of sets which objects are also the carrier-sets of the algebras. This functor expresses the relation between algebras and carrier-sets. Keywords: Algebra, arrow category, monad, Kleisli category, codomain functor 1. Introduction Knowing and proving of the expected behavior of complex program systems is very important and actual rôle. It carries the time and cost savings: in mathematics [8] or in practical applications of economical character. The aim of programming is to construct such correct programs and program systems that during their execution provide expected behavior [7]. A program can be considered as an element of the initial algebra arising from the used programming language [14]. Algebraic structures and number systems are widely used in computer science.
    [Show full text]
  • The Bluej Environment Reference Manual
    The BlueJ Environment Reference Manual Version 2.0 for BlueJ Version 2.0 Kasper Fisker Michael Kölling Mærsk Mc-Kinney Moller Institute University of Southern Denmark HOW DO I ... ? – INTRODUCTION ........................................................................................................ 1 ABOUT THIS DOCUMENT................................................................................................................................. 1 RELATED DOCUMENTS.................................................................................................................................... 1 REPORT AN ERROR.......................................................................................................................................... 1 USING THE CONTEXT MENU........................................................................................................................... 1 1 PROJECTS.......................................................................................................................................... 2 1.1 CREATE A NEW PROJECT................................................................................................................... 2 1.2 OPEN A PROJECT ............................................................................................................................... 2 1.3 FIND OUT WHAT A PROJECT DOES .................................................................................................... 2 1.4 COPY A PROJECT ..............................................................................................................................
    [Show full text]
  • Companion Object
    1. Functional Programming Functional Programming What is functional programming? What is it good for? Why to learn it? Functional Programming Programs as a composition of pure functions. Pure function? Deterministic. Same result for the same inputs. Produces no observable side eects. fun mergeAccounts(acc1: Account, acc2: Account): Account = Account(acc1.balance + acc2.balance) val mergedAcc = mergeAccounts(Account(500), Account(1000)) Target platform: JVM Running on Arrow v. 0.11.0-SNAPSHOT Running on Kotlin v. 1.3.50 Referential Transparency Function can be replaced with its corresponding value without changing the program's behavior. Based on the substitution model. Referential Transparency Better reasoning about program behavior. Pure functions referentially transparent. Substitution model Replace a named reference (function) by its value. Based on equational reasoning. Unlocks local reasoning. fun add(a: Int, b: Int): Int = a + b val two = add(1, 1) // could be replaced by 2 everywhere in the program val equal = (two == 1 + 1) Target platform: JVM Running on Arrow v. 0.11.0-SNAPSHOT Running on Kotlin v. 1.3.50 Substitution model Same example, but with two Accounts. fun mergeAccounts(acc1: Account, acc2: Account): Account = Account(acc1.balance + acc2.balance) val mergedAcc = mergeAccounts(Account(100), Account(200)) // could be replaced by Account(300) everywhere // in the program val equal = (mergedAcc == Account(300)) Target platform: JVM Running on Arrow v. 0.11.0-SNAPSHOT Running on Kotlin v. 1.3.50 Side eect? Function tries to access or modify the external world. val accountDB = AccountDB() fun mergeAccounts(acc1: Account, acc2: Account): Account { val merged = Account(acc1.balance + acc2.balance) accountDB.remove(listOf(acc1, acc2)) // side effect! accountDB.save(merged) // side effect! return merged } val merged = mergeAccounts(Account(100), Account(400)) Target platform: JVM Running on Arrow v.
    [Show full text]
  • It's All About Morphisms
    It’s All About Morphisms Uberto Barbini @ramtop https://medium.com/@ramtop About me OOP programmer Agile TDD Functional PRogramming Finance Kotlin Industry Blog: https://medium.com/@ ramtop Twitter: @ramtop #morphisms#VoxxedVienna @ramtop Map of this presentation Monoid Category Monad Functor Natural Transformation Yoneda Applicative Morphisms all the way down... #morphisms#VoxxedVienna @ramtop I don’t care about Monads, why should I? Neither do I what I care about is y el is to define system behaviour ec Pr #morphisms#VoxxedVienna @ramtop This presentation will be a success if most of you will not fall asleep #morphisms#VoxxedVienna @ramtop This presentation will be a success if You will consider that Functional Programming is about transformations and preserving properties. Not (only) lambdas and flatmap #morphisms#VoxxedVienna @ramtop What is this Category thingy? Invented in 1940s “with the goal of understanding the processes that preserve mathematical structure.” “Category Theory is about relation between things” “General abstract nonsense” #morphisms#VoxxedVienna @ramtop Once upon a time there was a Category of Stuffed Toys and a Category of Tigers... #morphisms#VoxxedVienna @ramtop A Category is defined in 5 steps: 1) A collection of Objects #morphisms#VoxxedVienna @ramtop A Category is defined in 5 steps: 2) A collection of Arrows #morphisms#VoxxedVienna @ramtop A Category is defined in 5 steps: 3) Each Arrow works on 2 Objects #morphisms#VoxxedVienna @ramtop A Category is defined in 5 steps: 4) Arrows can be combined #morphisms#VoxxedVienna
    [Show full text]
  • Mechanized Reasoning During Compilation in the Glasgow Haskell Compiler
    HERMIT: Mechanized Reasoning during Compilation in the Glasgow Haskell Compiler By Andrew Farmer Submitted to the graduate degree program in Electrical Engineering and Computer Science and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Chairperson Dr. Andy Gill Dr. Perry Alexander Dr. Prasad Kulkarni Dr. James Miller Dr. Christopher Depcik Date Defended: April 30, 2015 The Dissertation Committee for Andrew Farmer certifies that this is the approved version of the following dissertation: HERMIT: Mechanized Reasoning during Compilation in the Glasgow Haskell Compiler Chairperson Dr. Andy Gill Date approved: ii Abstract It is difficult to write programs which are both correct and fast. A promising approach, functional programming, is based on the idea of using pure, mathematical functions to construct programs. With effort, it is possible to establish a connection between a specification written in a functional language, which has been proven correct, and a fast implementation, via program transformation. When practiced in the functional programming community, this style of reasoning is still typ- ically performed by hand, by either modifying the source code or using pen-and-paper. Unfortu- nately, performing such semi-formal reasoning by directly modifying the source code often obfus- cates the program, and pen-and-paper reasoning becomes outdated as the program changes over time. Even so, this semi-formal reasoning prevails because formal reasoning is time-consuming, and requires considerable expertise. Formal reasoning tools often only work for a subset of the target language, or require programs to be implemented in a custom language for reasoning.
    [Show full text]
  • Download Article (PDF)
    Cent. Eur. J. Comp. Sci. • 4(3) • 2014 • 96-106 DOI: 10.2478/s13537-014-0220-7 Central European Journal of Computer Science Categorical structures as expressing tool for differential calculus Research Article William Steingartner1∗, Davorka Radaković2† 1 Department of Computers and Informatics, Faculty of El. Engineering and Informatics Technical University of Košice, Letná 9, 04200 Košice, Slovakia 2 Department of Mathematics and Informatics, Faculty of Sciences University of Novi Sad, Trg D. Obradovića 4, 21000 Novi Sad, Serbia Received 28 February 2014; accepted 01 September 2014 Abstract: Category is a mathematical structure consisting of objects and morphisms between objects with some specific properties. Categories examine in abstract way the properties of particular mathematical concepts by formalizing them as collections of objects and morphisms. Categorical structures are widely used in computer science for ex- act mathematical modeling. This paper highlights the most typical use of categories for constructing the model of part of differential calculus by using special category named arrow category; and codomain and domain functors. Keywords: arrow category• category theory • categorical model• codomain functor• derivative © Versita sp. z o.o. 1. Introduction Category theory is an area of study in mathematics that examines in abstract way the properties of particular math- ematical concepts by formalizing them as collections of objects and arrows (called morphisms, although this term also has a specific, non category-theoretical meaning), where these collections satisfy some basic conditions [1–3]. Category theory has been developed over the last fifty years, and it has concerned with the study of algebraic structures [4, 5]. Many significant areas of mathematics and informatics can be formalized by using categories.
    [Show full text]
  • Session Arrows: a Session-Type Based Framework for Parallel Code Generation
    MENG INDIVIDUAL PROJECT IMPERIAL COLLEGE LONDON DEPARTMENT OF COMPUTING Session Arrows: A Session-Type Based Framework For Parallel Code Generation Supervisor: Prof. Nobuko Yoshida Author: Dr. David Castro-Perez Shuhao Zhang Second Marker: Dr. Iain Phillips June 19, 2019 Abstract Parallel code is notorious for its difficulties in writing, verification and maintenance. However, it is of increasing importance, following the end of Moore’s law. Modern pro- grammers are expected to utilize the power of multi-core CPUs and face the challenges brought by parallel programs. This project builds an embedded framework in Haskell to generate parallel code. Combining the power of multiparty session types with parallel computation, we create a session typed monadic language as the middle layer and use Arrow, a general interface to computation as an abstraction layer on top of the language. With the help of the Arrow interface, we convert the data-flow of the computation to communication and generate parallel code according to the communication pattern between participants involved in the computation. Thanks to the addition of session types, not only the generated code is guaranteed to be deadlock-free, but also we gain a set of local types so that it is possible to reason about the communication structure of the parallel computation. In order to show that the framework is as expressive as usual programming lan- guages, we write several common parallel computation patterns and three algorithms to benchmark using our framework. They demonstrate that users can express computa- tion similar to traditional sequential code and gain, for free, high-performance parallel code in low-level target languages such as C.
    [Show full text]
  • An Ode to Arrows
    An Ode to Arrows Hai Liu Paul Hudak Department of Computer Science Yale University New Haven, CT 06520, U.S.A. {hai.liu,paul.hudak}@yale.edu Abstract. We study a number of embedded DSLs for autonomous or- dinary differential equations (autonomous ODEs) in Haskell. A naive implementation based on the lazy tower of derivatives is straightforward but has serious time and space leaks due to the loss of sharing when handling cyclic and infinite data structures. In seeking a solution to fix this problem, we explore a number of DSLs ranging from shallow to deep embeddings, and middle-grounds in between. We advocate a so- lution based on arrows, an abstract notion of computation that offers both a succinct representation and an effective implementation. Arrows are ubiquitous in their combinator style that happens to capture both sharing and recursion elegantly. We further relate our arrow-based DSL to a more constrained form of arrows called causal commutative arrows, the normalization of which leads to a staged compilation technique im- proving ODE performance by orders of magnitude. 1 Introduction Consider the following stream representation of the “lazy tower of derivatives” [9] in Haskell: data D a = D {val :: a, der :: D a } deriving (Eq, Show) 0 Mathematically it represents an infinite sequence of derivatives f(t0), f (t0), 00 (n) f (t0), ... , f (t0), ... for a function f that is continuously differentiable at some value t0. This representation has been used frequently in a technique called Functional Automatic Differentiation The usual trick in Haskell is to make D a an instance of the Num and Fractional type classes, and overload the mathemat- ical operators to simultaneously work on all values in the tower of derivatives: instance Num a ⇒ Num (D a) where D x x 0 + D y y0 = D (x + y)(x 0 + y0) u@(D x x 0) ∗ v@(D y y0) = D (x ∗ y)(x 0 ∗ v + u ∗ y0) negate (D x x 0) = D (−x)(−x 0) ..
    [Show full text]
  • Reversible Effects As Inverse Arrows
    MFPS 2018 Reversible effects as inverse arrows Chris Heunen1 School of Informatics University of Edinburgh United Kingdom Robin Kaarsgaard2 Datalogisk Institut University of Copenhagen Denmark Martti Karvonen3 School of Informatics University of Edinburgh United Kingdom Abstract Reversible computing models settings in which all processes can be reversed. Applications include low-power computing, quantum computing, and robotics. It is unclear how to represent side-effects in this setting, because conventional methods need not respect reversibility. We model reversible effects by adapting Hughes' arrows to dagger arrows and inverse arrows. This captures several fundamental reversible effects, including serialization and mutable store computations. Whereas arrows are monoids in the category of profunctors, dagger arrows are involutive monoids in the category of profunctors, and inverse arrows satisfy certain additional properties. These semantics inform the design of functional reversible programs supporting side-effects. Keywords: Reversible Effect; Arrow; Inverse Category; Involutive Monoid 1 Introduction Reversible computing studies settings in which all processes can be reversed: programs can be run backwards as well as forwards. Its history goes back at least as far as 1961, when Landauer formulated his physical prin- ciple that logically irreversible manipulation of information costs work. This sparked the interest in developing reversible models of computation as a means to making them more energy efficient. Reversible computing has since also found applications in high-performance computing [28], process calculi [8], probabilistic comput- ing [31], quantum computing [30], and robotics [29]. There are various theoretical models of reversible computations. The most well-known ones are perhaps Bennett's reversible Turing machines [4] and Toffoli’s reversible circuit model [32].
    [Show full text]