Эволюция Metazoa С Позиции Гипотезы Галлертоида Формирование (По Grasshoff, 1993) Системы Каналов

Total Page:16

File Type:pdf, Size:1020Kb

Эволюция Metazoa С Позиции Гипотезы Галлертоида Формирование (По Grasshoff, 1993) Системы Каналов Э в о л ю ц и я M e t a z o a https://www.scientificamerican.com/ Возраст жизни Возраст Земли - 4.5 - 4,6 млрд лет Древнейшие из известных пород - цирконы из Западной Австралии (Джек Хилз), их возраст не менее 4,4 млрд лет В Гренландии обнаружены оса- дочные породы возрастом 3,76 млрд лет (формация Исуа) с углеродом органического происхождения Жизнь на Земле появилась как минимум 3,76 млрд лет назад (4,2 млрд л.н. ?) ( из разных источников) Находки структурных остатков древнейших ископаемых микроорганизмов Бактерии. Квебек, Канада. Возраст Цианобактерии. Западная 4,3(?) - 3,7 млрд лет Австралия. Возраст 3,5 млрд лет) Dodd et al., 2017 Schopf et al. 2017 doi:10.1038/nature21377 10.1073/pnas.1718063115 Бактерии. Месторождение Варравуна, Западная Австралия. Возраст 3,5 млрд Соколов, Федонкин, 1996 лет); Last universal common ancestor (LUCA) Weiss et al, 2016 https://doi.org/10.1371/journal.pgen.1007518 https://astrobiology.nasa.gov/ Первые эукариоты Согласно палеонтологическим данным клетки с эукариотными параметрами появились 1,6 - 2 млрд. л.н. Knoll et al., 2006 Возможно, появление эукариот совпадает по времени с повышением концентрации O2. Ранние эукариоты Микрофоссилии из Roper Group (Северная Австралия) - 1,5 млрд. л.н. The scale bar in a is 35 m for a and c; 10 m for b; 100 m for d; 15 m for e; and 40 m for f. Javaux, Knoll, Walter, 2001 doi:10.1038/35083562 Obazoa Archaeplastida Holozoa Holomycota Stramenopiles Breviatea S A R Alveolata Apusomonadida Rhizaria Centroplasthelida Haptista Haptophyta Amoebozoa Cryptista Cryptophyta Metamonadida Fornicata Parabasalia “Excavata” Adl S. M. et al. Revisions to the classification, nomenclature, and diversity of eukaryotes //Journal Discoba of Eukaryotic Microbiology. – Euglenozoa 2019. – Т. 66. – №. 1. – С. 4-119. doi:10.1111/jeu.12691 Heterolobozea Макросистема эукариот 2019 Obazoa: Archaeplastida: Diaphoretickes Apusomonadida Glaucophyta S A R: Breviatea Rhodophyceae Opisthokonta Chloroplastida Stramenopiles Amorphea Holozoa Chlorophyta Bigyra (в.ч. Choanoflagellata Streptophyta (в.ч. Opalinata) Metazoa) (в.ч. Charophyceae Gyrista Amoebozoa: Nucletmycea Embryophyta) (в.ч. Oomycota Tubulinea в.ч. Fungi: Cryptista (?) Chrysophyceae Microsporidia (в.ч. Amoeba, Arcella, Phaeophyceae Chytridiomycota Difflugia) Xanthophyceae Dicaria Diatomista) Evosea Mucoromycota (в.ч. Eumycetozoa и др. Alveolata Archamoebida Colpodellida (в.ч. Pelomyxa, Perkinsidae Entamoeba)) Colponemida Discosea Dinoflagellata ? Apicomplexa Ciliophora Metamonada: ? Система Fornicata Rhiziaria (в.ч. Diplomonadida) Discoba: Cercozoa эукариот Parabasalia Jakobida Endomyxa (в.ч. Trichomonadida Tsukubamonadida Retaria (2019 г.) Spirotrichonymphida Heterolobosea (в.ч. Foraminifera Trichonymphida) Euglenozoa Radiolaria) Preaxostyla По Adl et al, 2019 (в.ч. Euglenida Aquavolonida doi:10.1111/jeu.12691 Группы неопределенного Kinetoplastea) положения Haptista (?) Переход к многоклеточности – одно из направлений эволюции эукариот Многократное возникновение многоклеточности у эукариот (филогенетическая схема упрощена) “In general, early-divergent persistent lineages are dominated by unicellular species (e.g., prasinophytes in the chlorobiontic clade), whereas later-divergent lineages contain a mixture of body plans (e.g., chlorophycean and charophycean algae). Species-rich, late-divergent persistent lineages tend to be exclusively multicellular (e.g., the land plants and metazoans)” doi:10.3732/ajb.1300314 Karl J. Niklas, 2014. American Journal of Botany 101(1): 6–25 Примеры многоклеточных протистов Volvox sp. Proterospongia sp. Dictyostelium sp. Колонии Псевдоплазмодий Многоклеточ- ные слоевища водорослей Corallina sp. Fucus sp. Первые многоклеточные эукариоты Около 1,5 млрд лет назад - начинается эпоха макроскопических многоклеточных организмов. Первые многоклеточные эукариоты Grypania – возможно, многоклеточная водоросль (древнейшие находки датированы 2,1 млрд л.) http://palaeos.com/proterozoic/paleoproterozoic/paleoproterozoic.html http://www.evrimagaci.org/makale/323 Первые многоклеточные эукариоты Bicellum brasieri – многоклеточный организм с дифференцированными клетками без клеточных стенок. Возможно, древнейший представитель Holozoa 5 мкм 5 мкм (1 млрд л.н.) 10 мкм Strother et al, 2021 https://doi.org/10.1016/j.cub.2021.03.051 Принципы организации Metazoa • Эукариотная клетка • Многоклеточное тело • Специализация, дифференцировка клеток • Ткани как качественно новый уровень специализации клеток • Особые механизмы интеграции Остатки Metazoa - следы их жизнедеятельности (норы и следовые дорожки на поверхности осадка) и структурные остатки - появились в палеонтологической летописи в позднем протерозое – около менее 1 млрд лет назад. Obazoa: Archaeplastida: Diaphoretickes Apusomonadida Glaucophyta S A R: Breviatea Rhodophyceae Opisthokonta Chloroplastida Stramenopiles Amorphea Holozoa Chlorophyta Bigyra (в.ч. Choanoflagellata Streptophyta (в.ч. Opalinata) Metazoa) (в.ч. Charophyceae Gyrista Amoebozoa: Nucletmycea Embryophyta) (в.ч. Oomycota Tubulinea в.ч. Fungi: Cryptista (?) Chrysophyceae Microsporidia (в.ч. Amoeba, Arcella, Phaeophyceae Chytridiomycota Difflugia) Xanthophyceae Dicaria Diatomista) Evosea Mucoromycota (в.ч. Eumycetozoa и др. Alveolata Archamoebida Colpodellida (в.ч. Pelomyxa, Perkinsidae Entamoeba)) Colponemida Discosea Dinoflagellata ? Apicomplexa Ciliophora Metamonada: ? Система Fornicata Rhiziaria (в.ч. Diplomonadida) Discoba: Cercozoa эукариот Parabasalia Jakobida Endomyxa (в.ч. Trichomonadida Tsukubamonadida Retaria (2019 г.) Spirotrichonymphida Heterolobosea (в.ч. Foraminifera Trichonymphida) Euglenozoa Radiolaria) Preaxostyla По Adl et al, 2019 (в.ч. Euglenida Aquavolonida doi:10.1111/jeu.12691 Группы неопределенного Kinetoplastea) положения Haptista (?) Воротничковые жгутиконосцы (Choanoflagellida) – ближайшие родственники Metazoa Sandeep Ravindran PNAS 2016;113:12889-12890 Жгутик Микровилле воротничка https://news.utexas.edu/2011/05/17/sodium_nervous_systems Клетка Monosiga brevicollis http://www.cell.com/trends/cell-biology/fulltext/S0962-8924(12)00167-5 Колония The King Lab kinglab.berkeley.edu Sphaeroeca sp. Howard Hughes Medical Institute and the Department of Molecular and Cell Biology at UC Berkeley Сравнение воротничковых клеток Choanoflagellida и губок Строение Choanoflagellida (A, Salpingoeca rosetta) и хоаноцитов губок (B, Sycon coactum). Отмечены жгутики (fL), микровилле воротничка (mv), ядро (nu), пищеварительные вакуоли (fv). Комплекс мастигонем присутствует и у воротничковых жгутиконосцев (C, Salpingoeca amphoridium) и у хоаноцитов (D, Spongilla lacustris). (E) Сравнение ультраструктуры клеток воротничкового жгутиконосца и хоаноцита. В некоторых исследованиях отмечено наличие филоподий и у хоаноцитов. Распроложение микротрубочек корешкового аппарата у Coanoflagellida (F) и хаоноцитов (G) Thibaut Brunet and Nicole King The Origin of Animal Multicellularity and Cell Differentiation. Developmental Cell. V. 43, Is. 2, 2017, Pages 124-140 https://doi.org/10.1016/j.devcel.2017.09.016 Spongia Choanoflagellida Сравнение воротничковых клеток губок (А) и Choanoflagellida (В) Строение кинетид хоаноцитов губок (А) и Choanoflagellida (В): ag- axial granule; bf – basal foot; bmt – band of microtubules; c – centriole; cfl - central filament; dz – electron-dense zone; fb – fibrillar bridge; fl – flagellum; fr – fibrillar root; Ga - Golgi apparatus; Similar characters: k - kinetosome; • developed transition fibers lfr – lateral fibrillar root; • centriole orthogonal and connected to kinetosome by a fibrillar bridge lmt - lateral microtubules; Different character: n – nucleus; A) choanoflagellates have, choanocytes have not: rM- ring of MTOCs; • central filament in transition zone (unique structure for eukaryotes) • transverse plate is always present tf - transition fiber • radial microtubular roots organized in bands • electron dense ring or foci as MTOCs • centriole produces fibrillar root to Golgi apparatus B) choanocytes have, choanoflagellates have not: Igor R. Pozdnyakov et al., 2017 • axial granule instead of transverse plate Kinetid structure of choanoflagellates and choanocytes • kinetosome with fibrillar root to the nucleus of sponges does not support their close relationship. • typical metazoan MTOCs (foot and satellites) Protistology, 11 (4) 2017, Pages 124-140 • dark region in flagellar transition zone doi:10.21685/1680-0826-2017-11-4-6 Monosiga sp. Жгутик Выросты клетки Внутриклеточная локализация кадгеринов Monosiga brevicollis (Choanoflagellida), Строение клетки выявленная методом Monosiga sp. иммунофлюоресценции Кадгерины - трансмембранные белки, характерные компоненты механических клеточных контактов Metazoa Abedin, King, 2008 (G and H) Choanoeca flexa colonies rapidly and reversibly invert their curvature while maintaining contacts among neighboring cells. (G) Flagella-in colony inverts to the flagella-out orientation (H) Flagella-out colony reverts to the flagella-in orientation (I) Summary of the inversion and relaxation processes. Brunet et al, 2019 DOI: 10.1126/science.aay2346 Данные палеоихнологии: трудности интерпретации Предполагаемые следы рытья или движения многоклеточных организмов Средний протерозой, Поздний эдиакарий. Stáhpogieddi формация Mackenzie Mountains, Formation. Scale bars - 1 cm Канада Narbonne, Aitken, 1990 Mcilroy, Brassier 2016 Первые многоклеточные эукариоты: трудности интерпретации Horodyskia williamsii, не позднее 1020 млн л. н. (другие виды - 1.5 млрд. лет н.) , Зап. Австралия. Конические зооиды колонии Maetazoa прикреплены к общему столону? Следы
Recommended publications
  • New Zealand's Genetic Diversity
    1.13 NEW ZEALAND’S GENETIC DIVERSITY NEW ZEALAND’S GENETIC DIVERSITY Dennis P. Gordon National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington 6022, New Zealand ABSTRACT: The known genetic diversity represented by the New Zealand biota is reviewed and summarised, largely based on a recently published New Zealand inventory of biodiversity. All kingdoms and eukaryote phyla are covered, updated to refl ect the latest phylogenetic view of Eukaryota. The total known biota comprises a nominal 57 406 species (c. 48 640 described). Subtraction of the 4889 naturalised-alien species gives a biota of 52 517 native species. A minimum (the status of a number of the unnamed species is uncertain) of 27 380 (52%) of these species are endemic (cf. 26% for Fungi, 38% for all marine species, 46% for marine Animalia, 68% for all Animalia, 78% for vascular plants and 91% for terrestrial Animalia). In passing, examples are given both of the roles of the major taxa in providing ecosystem services and of the use of genetic resources in the New Zealand economy. Key words: Animalia, Chromista, freshwater, Fungi, genetic diversity, marine, New Zealand, Prokaryota, Protozoa, terrestrial. INTRODUCTION Article 10b of the CBD calls for signatories to ‘Adopt The original brief for this chapter was to review New Zealand’s measures relating to the use of biological resources [i.e. genetic genetic resources. The OECD defi nition of genetic resources resources] to avoid or minimize adverse impacts on biological is ‘genetic material of plants, animals or micro-organisms of diversity [e.g. genetic diversity]’ (my parentheses).
    [Show full text]
  • University of Copenhagen, Zoological Museum, Review Universitetsparken 15, DK-2100 Copenhagen, Denmark CN, 0000-0001-6898-7655 Cite This Article: Nielsen C
    Early animal evolution a morphologist's view Nielsen, Claus Published in: Royal Society Open Science DOI: 10.1098/rsos.190638 Publication date: 2019 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Nielsen, C. (2019). Early animal evolution: a morphologist's view. Royal Society Open Science, 6(7), 1-10. [190638]. https://doi.org/10.1098/rsos.190638 Download date: 30. sep.. 2021 Early animal evolution: a morphologist’s view royalsocietypublishing.org/journal/rsos Claus Nielsen The Natural History Museum of Denmark, University of Copenhagen, Zoological Museum, Review Universitetsparken 15, DK-2100 Copenhagen, Denmark CN, 0000-0001-6898-7655 Cite this article: Nielsen C. 2019 Early animal evolution: a morphologist’s view. R. Soc. open sci. Two hypotheses for the early radiation of the metazoans are vividly discussed in recent phylogenomic studies, the ‘Porifera- 6: 190638. first’ hypothesis, which places the poriferans as the sister group http://dx.doi.org/10.1098/rsos.190638 of all other metazoans, and the ‘Ctenophora-first’ hypothesis, which places the ctenophores as the sister group to all other metazoans. It has been suggested that an analysis of morphological characters (including specific molecules) could Received: 5 April 2019 throw additional light on the controversy, and this is the aim of Accepted: 4 July 2019 this paper. Both hypotheses imply independent evolution of nervous systems in Planulozoa and Ctenophora. The Porifera- first hypothesis implies no homoplasies or losses of major characters. The Ctenophora-first hypothesis shows no important synapomorphies of Porifera, Planulozoa and Placozoa. It implies Subject Category: either independent evolution, in Planulozoa and Ctenophora, of Biology (whole organism) a new digestive system with a gut with extracellular digestion, which enables feeding on larger organisms, or the subsequent Subject Areas: loss of this new gut in the Poriferans (and the re-evolution of the evolution collar complex).
    [Show full text]
  • Paleobiology & Paleontology
    Geos 315W Course Syllabus Paleobiology & Lectures: MWF 9:15 AM –10:15 AM 233 Reichardt Paleontology Labs: M 2:15-5:15 PM M 6:00-9:00 PM 4 Credits 229 Reichardt Prerequisites: Geos 112 or Biol 103 or Biol 115 Engl 111 and Engl 211 or Engl 213 Professor: Sarah J. Fowell TA: Alec Rizzo E-mail: [email protected] E-mail: [email protected] Office: 326 Reichardt Office: 305 Reichardt Phone: 474-7810 Hours: By appointment Hours: T 11:00–12:30 W 1:00-2:30 Required Items: • i >clicker: i>clickers will be checked out to students for a $30 deposit (cash only). You will get your deposit back when you return the clicker at the end of the semester. If you lose your clicker or fail to return it, the department will retain your deposit and put it toward the purchase of a replacement. Go to the Geology Department office (308 Reichardt) check out your clicker. Scored clicking will begin on Wednesday, September 11. Recommended Textbook: • Benton & Harper, 2009. Introduction to Paleobiology and the Fossil Record. Wiley-Blackwell, ISBN: 978-1405141574. Go to amazon.com to purchase, rent, or download the Kindle Edition of this textbook. P aleontological investigations seek to describe temporal and spatial changes in Earth's flora and fauna within the context of geological processes, stratigraphy, and evolution. Consequently, the study of paleontology requires a working knowledge of more than one discipline. One of the principal goals of this course is to demonstrate the interdependence of scientific disciplines in any investigation of large- scale patterns and events in the natural world.
    [Show full text]
  • Nanostructure of Biogenic Versus Abiogenic Calcium Carbonate Crystals
    Nanostructure of biogenic versus abiogenic calcium carbonate crystals JAROSŁAW STOLARSKI and MACIEJ MAZUR Stolarski, J. and Mazur, M. 2005. Nanostructure of biogenic versus abiogenic calcium carbonate crystals. Acta Palae− ontologica Polonica 50 (4): 847–865. The mineral phase of the aragonite skeletal fibers of extant scleractinians (Favia, Goniastrea) examined with Atomic Force Microscope (AFM) consists entirely of grains ca. 50–100 nm in diameter separated from each other by spaces of a few nanometers. A similar pattern of nanograin arrangement was observed in basal calcite skeleton of extant calcareous sponges (Petrobiona) and aragonitic extant stylasterid coralla (Adelopora). Aragonite fibers of the fossil scleractinians: Neogene Paracyathus (Korytnica, Poland), Cretaceous Rennensismilia (Gosau, Austria), Trochocyathus (Black Hills, South Dakota, USA), Jurassic Isastraea (Ostromice, Poland), and unidentified Triassic tropiastraeid (Alpe di Specie, It− aly) are also nanogranular, though boundaries between individual grains occasionally are not well resolved. On the other hand, in diagenetically altered coralla (fibrous skeleton beside aragonite bears distinct calcite signals) of the Triassic cor− als from Alakir Cay, Turkey (Pachysolenia), a typical nanogranular pattern is not recognizable. Also aragonite crystals produced synthetically in sterile environment did not exhibit a nanogranular pattern. Unexpectedly, nanograins were rec− ognized in some crystals of sparry calcite regarded as abiotically precipitated. Our findings support the idea that nanogranular organization of calcium carbonate fibers is not, per se, evidence of their biogenic versus abiogenic origin or their aragonitic versus calcitic composition but rather, a feature of CaCO3 formed in an aqueous solution in the presence of organic molecules that control nanograin formation. Consistent orientation of crystalographic axes of polycrystalline skeletal fibers in extant or fossil coralla, suggests that nanograins are monocrystalline and crystallographically ordered (at least after deposition).
    [Show full text]
  • Placozoans Are Eumetazoans Related to Cnidaria
    bioRxiv preprint doi: https://doi.org/10.1101/200972; this version posted October 11, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Placozoans are eumetazoans related to Cnidaria Christopher E. Laumer1,2, Harald Gruber-Vodicka3, Michael G. Hadfield4, Vicki B. Pearse5, Ana Riesgo6, 4 John C. Marioni1,2,7, and Gonzalo Giribet8 1. Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, United Kingdom 2. European Molecular Biology Laboratories-European Bioinformatics Institute, Hinxton, CB10 1SD, United Kingdom 8 3. Max Planck Institute for Marine Microbiology, Celsiusstraβe 1, D-28359 Bremen, Germany 4. Kewalo Marine Laboratory, Pacific Biosciences Research Center/University of Hawaiʻi at Mānoa, 41 Ahui Street, Honolulu, HI 96813, United States of America 5. University of California, Santa Cruz, Institute of Marine Sciences, 1156 High Street, Santa 12 Cruz, CA 95064, United States of America 6. The Natural History Museum, Life Sciences, Invertebrate Division Cromwell Road, London SW7 5BD, United Kingdom 7. Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, 16 Robinson Way, Cambridge CB2 0RE, United Kingdom 8. Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, United States of America 20 bioRxiv preprint doi: https://doi.org/10.1101/200972; this version posted October 11, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Paleontology and the History of Life
    36954_u01.qxd 7/11/08 2:01 PM Page 80 Paleontology and the History of Life Michael Benton And out of the ground the Lord God formed every beast of the field, and every fowl of the air; and brought them unto Adam to see what he would call them: and whatsoever Adam called every living creature, that was the name thereof. Genesis 2:19 People have always been astounded by the diversity of life, although perhaps in different ways. In prescientific times farmers saw how their crops and live- stock were merely part of a much larger richness of life, and people have al- ways striven to understand the complexity and arrangement of living things. From Aristotle to Linnaeus, scientists attempted to catalog life and to under- stand where it had come from. During the eighteenth century it became clear to all savants that the earth had been populated formerly by strange and mar- velous creatures that had since become extinct. By 1820 some rough picture of the succession of floras and faunas through geological time was beginning to emerge. Charles Darwin, during the voyage of HMS Beagle in the early 1830s, became increasingly convinced that life was more diverse than he had imagined—every island he visited sported a new crop of plants and animals. He saw the lateral (geographic) and vertical (historic) links between species and realized by 1837 that species were all linked by a great tree. The tree con- cept made it clear why species that in his time were geographically close should also be genealogically close.
    [Show full text]
  • Body-Shape Diversity in Triassic–Early Cretaceous Neopterygian fishes: Sustained Holostean Disparity and Predominantly Gradual Increases in Teleost Phenotypic Variety
    Body-shape diversity in Triassic–Early Cretaceous neopterygian fishes: sustained holostean disparity and predominantly gradual increases in teleost phenotypic variety John T. Clarke and Matt Friedman Comprising Holostei and Teleostei, the ~32,000 species of neopterygian fishes are anatomically disparate and represent the dominant group of aquatic vertebrates today. However, the pattern by which teleosts rose to represent almost all of this diversity, while their holostean sister-group dwindled to eight extant species and two broad morphologies, is poorly constrained. A geometric morphometric approach was taken to generate a morphospace from more than 400 fossil taxa, representing almost all articulated neopterygian taxa known from the first 150 million years— roughly 60%—of their history (Triassic‒Early Cretaceous). Patterns of morphospace occupancy and disparity are examined to: (1) assess evidence for a phenotypically “dominant” holostean phase; (2) evaluate whether expansions in teleost phenotypic variety are predominantly abrupt or gradual, including assessment of whether early apomorphy-defined teleosts are as morphologically conservative as typically assumed; and (3) compare diversification in crown and stem teleosts. The systematic affinities of dapediiforms and pycnodontiforms, two extinct neopterygian clades of uncertain phylogenetic placement, significantly impact patterns of morphological diversification. For instance, alternative placements dictate whether or not holosteans possessed statistically higher disparity than teleosts in the Late Triassic and Jurassic. Despite this ambiguity, all scenarios agree that holosteans do not exhibit a decline in disparity during the Early Triassic‒Early Cretaceous interval, but instead maintain their Toarcian‒Callovian variety until the end of the Early Cretaceous without substantial further expansions. After a conservative Induan‒Carnian phase, teleosts colonize (and persistently occupy) novel regions of morphospace in a predominantly gradual manner until the Hauterivian, after which expansions are rare.
    [Show full text]
  • The Evolution of Animal Genomes
    Available online at www.sciencedirect.com ScienceDirect The evolution of animal genomes 1 2,3 Casey W Dunn and Joseph F Ryan Genome sequences are now available for hundreds of species We are still at a very early stage of the genomic revolution, sampled across the animal phylogeny, bringing key features of not unlike the state of computing in the late nineties [1]. animal genome evolution into sharper focus. The field of animal Genome sequences of various levels of quality are now evolutionary genomics has focused on identifying and available for a few hundred animal species thanks to the classifying the diversity genomic features, reconstructing the concerted efforts of large collaborative projects [2–4], more history of evolutionary changes in animal genomes, and testing recent efforts by smaller groups [5–7], and even genome hypotheses about the evolutionary relationships of animals. projects undertaken largely by independent laboratories The grand challenges moving forward are to connect [8,9]. At least 212 animal genomes have been published evolutionary changes in genomes with particular evolutionary (Figure 1) and many others are publicly available in various changes in phenotypes, and to determine which changes are stages of assembly and annotation. This sampling is still driven by selection. This will require far greater genome very biased towards animals with small genomes that can sampling both across and within species, extensive phenotype be bred in the laboratory and those from a small set of data, a well resolved animal phylogeny, and advances in phylogenetic clades. 83% of published genomes belong to comparative methods. vertebrates and arthropods (Figure 1).
    [Show full text]
  • Trace Fossils and Extended Organisms: a Physiological Perspective
    Palaeogeography, Palaeoclimatology, Palaeoecology 192 (2003) 15^31 www.elsevier.com/locate/palaeo Trace fossils and extended organisms: a physiological perspective J. Scott Turner à Department of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA Received 7 January 2002; accepted 6 December 2002 Abstract Organism-built structures have long been useful artifacts for students of evolution and systematics, because they represent a permanent record of a set of behaviors. These structures also represent an investment of energy by an organism, and to persist in the fossil record, the energetic investment in the structure must pay off for the organisms that build it, in either improved survivorship, increased physiological efficiency or enhanced fecundity. A useful way to think about this aspect of organism-built structures is to treat them as external organs of physiology, channeling or tapping into energy sources for doing physiological work. This paper reviews briefly how burrows and nests can act as external organs of physiology at various levels of organization, and introduces the notion of organism-built structures as adaptive structures, in which feedback controls confer adaptability to organisms’ external constructions, and which promote homeostasis of the organism and its local environment. Miller’s concept of trace fossils as behavioral tokens reflects this aspect of animal-built structures, and may illuminate many unanswered questions concerning their origins and persistence in the fossil record. ß 2002 Elsevier Science B.V. All rights reserved. Keywords: biogenic structures; extended physiology; extended organism; boundary layer; induced £ow; natural convection; kelp; termite; £uid mechanics; soil water 1.
    [Show full text]
  • An Ordovician Lobopodian from the Soom Shale Lagerstätte, South Africa
    [Palaeontology, Vol. 52, Part 3, 2009, pp. 561–567] AN ORDOVICIAN LOBOPODIAN FROM THE SOOM SHALE LAGERSTA¨ TTE, SOUTH AFRICA by ROWAN J. WHITTLE*,à, SARAH E. GABBOTT*, RICHARD J. ALDRIDGE* and JOHANNES THERON *Department of Geology, University of Leicester, Leicester LE1 7RH, UK; e-mails: [email protected]; [email protected] Department of Geology, University of Stellenbosch, Private Bag XI, Stellenbosch 7602, South Africa; e-mail: [email protected] àPresent address: British Antarctic Survey, Madingley Road, Cambridge, CB3 0ET, UK; e-mail: [email protected] Typescript received 18 July 2008; accepted in revised form 27 January 2009 Abstract: The first lobopodian known from the Ordovician and Carboniferous. The new fossil preserves an annulated is described from the Soom Shale Lagersta¨tte, South Africa. trunk, lobopods with clear annulations, and curved claws. It The organism shows features homologous to Palaeozoic mar- represents a rare record of a benthic organism from the ine lobopodians described from the Middle Cambrian Bur- Soom Shale, and demonstrates intermittent water oxygena- gess Shale, the Lower Cambrian Chengjiang biota, the Lower tion during the deposition of the unit. Cambrian Sirius Passet Lagersta¨tte and the Lower Cambrian of the Baltic. The discovery provides a link between marine Key words: Lagersta¨tte, lobopodian, Ordovician, Soom Cambrian lobopodians and younger forms from the Silurian Shale. Cambrian lobopodians are a diverse group showing a in an intracratonic basin with water depths of approxi- great variety of body shape, size and ornamentation. mately 100 m (Gabbott 1999). Dominantly quiet water However, they share a segmented onychophoran-like conditions are indicated by a lack of flow-induced sedi- body, paired soft-skinned annulated lobopods, and in mentary structures and the taphonomy of the fossils.
    [Show full text]
  • Smithsonian Contributions to Paleobiology • Number
    The ECPHORA The Newsletter of the Calvert Marine Museum Fossil Club Volume 33 Number 4 December 2018 Smithsonian Contributions to Paleobiology • Number 100 Features Paleo of Calvert Cliffs The Geology and Vertebrate Paleontology of Calvert Cliffs, President’s Column Maryland, USA Lester Park Stromatolites Inside Fossilized Hinge Tissue Megalodon Life-Model Ward Megalodon Tooth Dinosaur Research in the National Capital Region Pathological Ecphora Crocodile Fern Ponderous Parotodus Galeocerdo mayumbensis Pathological Eagle Ray Tooth Plate U of Michigan Museum CMMFC Events Croc along Calvert Cliffs Dinosaur Prints in Gettysburg, PA Pathological Horseshoe Crab Dinosaur in the U.S. Botanic Garden Membership Renewal Time Next Club Meeting. The Open SI publishing portal/archive now features the book Saturday, April 27th, 2019. (https://opensi.si.edu/index.php/smithsonian/catalog/book/107), as does Dr. Ralph Eshelman will the SISP website (https://scholarlypress.si.edu/store/new- present a public lecture releases/geology-and-vertebrate-paleontology-calvert-cliffs/). Each of entitled: “Terrestrial these websites has links to access and download the searchable PDF at no Mammal Fossils from the cost. Images from Dr. Daryl Domning’s review of the Miocene sea cows. Miocene Chesapeake Life restoration by Tim Scheirer. Line drawing by S. Godfrey. Images Group.” courtesy of Smithsonian Scholarly Press. ☼ CALVERT MARINE MUSEUM www.calvertmarinemuseum.com 2 The Ecphora December 2018 President's Column Our society has become so embraced with technology that it detaches us from one another and from nature. The simple act of gathering at our meetings and on Greetings CMM Fossil Club members! My field trips allows us to connect, experience hands-on name is Paul R.
    [Show full text]
  • The Comparative Embryology of Sponges Alexander V
    The Comparative Embryology of Sponges Alexander V. Ereskovsky The Comparative Embryology of Sponges Alexander V. Ereskovsky Department of Embryology Biological Faculty Saint-Petersburg State University Saint-Petersburg Russia [email protected] Originally published in Russian by Saint-Petersburg University Press ISBN 978-90-481-8574-0 e-ISBN 978-90-481-8575-7 DOI 10.1007/978-90-481-8575-7 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2010922450 © Springer Science+Business Media B.V. 2010 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface It is generally assumed that sponges (phylum Porifera) are the most basal metazoans (Kobayashi et al. 1993; Li et al. 1998; Mehl et al. 1998; Kim et al. 1999; Philippe et al. 2009). In this connection sponges are of a great interest for EvoDevo biolo- gists. None of the problems of early evolution of multicellular animals and recon- struction of a natural system of their main phylogenetic clades can be discussed without considering the sponges. These animals possess the extremely low level of tissues organization, and demonstrate extremely low level of processes of gameto- genesis, embryogenesis, and metamorphosis. They show also various ways of advancement of these basic mechanisms that allow us to understand processes of establishment of the latter in the early Metazoan evolution.
    [Show full text]