Population, Phylogenetic, and Coalescent Analyses of Character Evolution in Gossamer- Winged (: )

Item Type text; Electronic Dissertation

Authors Oliver, Jeffrey Catlin

Publisher The University of Arizona.

Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Download date 29/09/2021 17:22:36

Link to Item http://hdl.handle.net/10150/194227 POPULATION, PHYLOGENETIC, AND COALESCENT ANALYSES OF CHARACTER EVOLUTION IN GOSSAMER-WINGED BUTTERFLIES (LEPIDOPTERA: LYCAENIDAE) by JeffreyCatlinOliver ______ ADissertationSubmittedtotheFacultyofthe GRADUATEINTERDISCIPLINARYPROGRAMINSCIENCE InPartialFulfillmentoftheRequirements FortheDegreeof DOCTOROFPHILOSOPHY IntheGraduateCollege THEUNIVERSITYOFARIZONA 2007 2

THEUNIVERSITYOFARIZONA GRADUATECOLLEGE AsmembersoftheDissertationCommittee,wecertifythatwehavereadthedissertation preparedbyJeffreyCatlinOliverentitledPopulation,phylogenetic,andcoalescent analysesofcharacterevolutioningossamerwingedbutterflies(Lepidoptera:Lycaenidae) andrecommendthatitbeacceptedasfulfillingthedissertationrequirementforthe DegreeofDoctorofPhilosophy ______ Date:November5,2007 DavidR.Maddison ______ Date:November5,2007 DanielR.Papaj ______ Date:November5,2007 YvesCarrière ______ Date:November5,2007 MichaelW.Nachman ______ Date:November5,2007 MichaelJ.Sanderson Finalapprovalandacceptanceofthisdissertationiscontingentuponthecandidate’s submissionofthefinalcopiesofthedissertationtotheGraduateCollege. IherebycertifythatIhavereadthisdissertationpreparedundermydirectionand recommendthatitbeacceptedasfulfillingthedissertationrequirement. ______Date:November5,2007 DissertationDirector:DavidR.Maddison 3

STATEMENTBYAUTHOR Thisthesishasbeensubmittedinpartialfulfillmentofrequirementsforan advanceddegreeatTheUniversityofArizonaandisdepositedintheUniversityLibrary tobemadeavailabletoborrowersunderrulesoftheLibrary. Briefquotationsfromthisthesisareallowablewithoutspecialpermission, providedthataccurateacknowledgmentofsourcesismade.Requestsforpermissionfor extendedquotationfromorreproductionofthismanuscriptinwholeorinpartmaybe gratedbytheheadofthemajordepartmentortheDeanoftheGraduateCollegewhenin hisorherjudgmenttheproposeduseofthematerialisintheinterestsofscholarship.In allotherinstances,however,permissionmustbeobtainedfromtheauthor. SIGNED:JeffreyCatlinOliver 4

ACKNOWLEDGEMENTS Iwouldliketothankallofmycommitteemembersfortheirfeedbackandsupport duringmygraduatework.DavidMaddisonprovidedthoroughinstructionin evolutionaryanalysesandcomputationalbiology;becauseofhismentorship,Iwouldlike tothinkIhavearicherunderstandingofphylogeneticbiologyandthephilosophyof science.InadditiontobeinginstrumentalinmydecisiontoattendtheUniversityof Arizona,DanPapajofferedaperspectiveonbehavioralecologyandevolutionthat influencedmyunderstandingofinteractions.YvesCarrièreprovidedthoughtful critiquesandencouragementduringmyeducation.MichaelNachmanaffordedmethe backgroundinpopulationgeneticsnecessarytopursueanswerstomyquestions.Michael Sanderson,inadditiontoteachingmeaboutmacroevolutionadecadeago,hasimproved myfundamentalunderstandingofreconstructingandinterpretingphylogenetictrees. Mytwoundergraduatementors,BradShafferandArtShapiro,wereinstrumental inmyearlydevelopmentasascientist.Ithankthembothfortheinvaluableopportunities theyprovidedduringmyundergraduateeducation. ThescientificcommunityoftheUniversityofArizonahashelpedininnumerable waysduringmygraduateeducation.Iwouldliketothankpastandpresentmembersof theMaddisonandPapajlabsforconstructiveandthoughtfulfeedbackonvariousstudies Ihavepresented.MembersoftheNachmanlab,especiallyBretPayseur,werealways helpfulinmattersofpopulationgenetics. IwouldespeciallyliketothankJeffGoodandKevinOhforprovidingscientific andmoralsupportduringmytimeattheUniversityofArizona.Theirengaging discussionsandappreciationfor H.lupulus werealwaysrefreshing.Finally,KatyPrudic hasbeeninstrumentalasafieldassistant,manuscriptreviewer,cheerleader,and,most importantly,colleagueduringmygraduateeducation. TheadministrativestaffofthedepartmentsofEntomologyandEcologyand EvolutionaryBiologyandtheCenterforInsectSciencehavealwaysbeenhelpfulin mattersconcerninggrants,employment,andcoursework.SharonRichardshasbeen extraordinarilyhelpful,oftengoingbeyondthecallofdutytoaidstudentsinneedof help. Thisworkwouldnothavebeenpossiblewithoutthegraciousfinancialassistance fromtheNationalScienceFoundation,theEnvironmentalProtectionAgency,SigmaXi, theCenterforInsectSciences,theGraduateCollegeoftheUniversityofArizona,andthe XercesSociety. 5

DEDICATION Thisworkisdedicatedtomyparents,SueandDanOliver.TheroadtothisPh.D. ispavedwiththeirendlesssupportformyeducation.Myappreciationforthenatural worldwasundoubtedlynurturedbythenumerouscampingtripstoWolfCreek,Grover’s, andOwensValley.Theirencouragementandwillingnesstofostermycuriosityformthe basisofmydesiretopursueacareerofanswering,andperhapsmoreimportantly,asking questions. 6

TABLE OF CONTENTS

ABSTRACT ...... 9

INTRODUCTION ...... 11

An explanation of the problem and a review of the literature ...... 11

An explanation of the dissertation format ...... 12

PRESENT STUDY ...... 13

REFERENCES ...... 17

APPENDIX A GENETIC ISOLATION AND CRYPTIC VARIATION WITHIN

THE XANTHOIDES SPECIES GROUP (LEPIDOPTERA:

LYCAENIDAE) ...... 19

Abstract ...... 21

Introduction ...... 22

Materials and Methods ...... 25

MolecularMethods ...... 26

Phylogenetics ...... 26

PopulationGenetics ...... 27

Morphometrics ...... 29

Results ...... 31

Phylogenetics ...... 31

PopulationGenetics ...... 32

Morphometrics ...... 33

Discussion ...... 34 7

TaxonomicImplications ...... 38

BarrierstoGeneFlowandCrypticVariation ...... 39

Conclusions ...... 42

Acknowledgements ...... 43

References ...... 44

Tables, figures, and appendices ...... 50

APPENDIX B INFERRING SPECIES TREES FROM DEEP COALESCENCES

WHILE ACCOMMODATING GENE TREE UNCERTAINTY ...... 63

Abstract ...... 65

Introduction ...... 66

The Method ...... 68

The Data ...... 70

SimulatedData ...... 70

EmpiricalData ...... 73

Results & Discussion ...... 76

Simulateddata ...... 76

EmpiricalData ...... 77

Conditionsleadingtopositivelymisleadinginferencesunderthedeepcoalescence

criterion ...... 79

ImplicationsandExtensions ...... 81

Acknowledgments ...... 85

References ...... 87 8

Figures ...... 90

APPENDIX C EVOLUTION OF EXPLOITATION: ILLICIT SIGNALING IN A

LYCAENID-ANT INTERACTION ...... 101

Abstract ...... 103

Introduction ...... 104

Materials & Methods ...... 106

Studysystem ...... 106

Laboratorytestforillicitsignaling ...... 107

Evolutionofassociation ...... 108

Results & Discussion ...... 112

Laboratorytestforillicitsignaling ...... 112

Evolutionofassociation ...... 114

Illicitsignalingandtheevolutionofexploitation ...... 116

Acknowledgments ...... 118

References ...... 119

Tables and figures ...... 123

APPENDIX D PERMISSION TO REUSE BLACKWELL CONTENT FOR THIS

DISSERTATION ...... 132

9

ABSTRACT

Tounderstandtheprocessesresponsibleforthediversityoflife,onemust considerevolutionaryhistory.Byincorporatingaphylogeneticapproachtostudiesof characterevolutionandspeciesinteractions,wemaybetterunderstandthemechanisms governingthistangledbank.Thisworkaddressesfundamentalquestionsregarding morphologicalandbehavioralevolution,usinggossamerwingedbutterflies(Lepidoptera:

Lycaenidae)asmodelsystems.

Byinvestigatingthepatternofgeneticvariationinagroupofcloselyrelated speciesofcopperbutterflies( Lycaena ),Ishowmorphologicaldivergenceoccurredinthe absenceofgeneflowbetween Lycaena xanthoides and L.editha .Additionally,genetic divergencebetweenpopulationsofL.xanthoides hasoccurredwithoutconsiderable morphologicaldivergence.Thesefindingshighlighttheutilityofgeneticdatafor inferringspeciesboundariesandidentificationofcrypticlineages.

Inferringevolutionaryrelationshipsamongcloselyrelatedspeciesshouldbenefit frommultiplesourcesofinformation,e.g.,unlinkedgeneticmarkers.HereIextenda methodofreconstructingspeciesrelationshipsbasedonmultiplereconstructedgene trees,usingthenumberofincompletelineagesortingevents(‘deepcoalescences’)asthe objectivefunction.Thisapproachprovidesamorecompleteunderstandingofspecies’ historiesbyaccommodatingpopulationlevelprocesseswhichmayleadtodiscordance betweengenegenealogiesandspeciesphylogenies.Theapproachisevaluatedwith simulatedandempiricaldata,andIdiscussconditionswhichmayresultinmisleading inferences. 10

Finally,incorporatingdatafrommultiplegenetrees,Iinvestigatetheevolutionof associationinalycaenidantinteraction.Lycaenidareoften involvedinmutualismswithanthosts:theselarvaeusevolatilesignalsandprovide carbohydraterewardsfromthedorsalnectaryorgan(DNO)toassociatedantstogain protectionfromnaturalenemies.However,larvaeofsomelycaenidspecies,suchas L. xanthoides ,donotpossesstherewardproducingorgan,yetarestillfoundinassociation withants.Evaluatingtherelationshipinaphylogeneticframework,IshowthatL. xanthoides likelyevolvedfromanonantassociatedancestor.Thissuggeststhat L. xanthoides has‘crackedthecode’thatother,honestsignalinglycaenidlarvaeuseto communicatetoants.Evolutionofmutualismsbetweenhonestsignalinglarvaeandants willlikelybeaffectedbytheimpactofillicitsignalinglarvae.

11

INTRODUCTION “Ifthelivingworldhasnotarisenfromcommonancestorsbymeansofanevolutionary process,thenthefundamentalunityoflivingthingsisahoaxandtheirdiversityisa joke.” TheodosiusDobzhansky,1964

An explanation of the problem and a review of the literature

Speciesexistasbiologicalentitieswithpatternsofdiscontinuousphenotypic variation(Mayr,1963;CoyneandOrr,2004).However,thedistinctnessoftaxaiscalled intoquestionwhenmorphologicalintermediatesexistinareasofsympatry,reflecting eithergeneflowamongvariantsofaspeciesorhybridizationwithoutintrogression betweendifferentspecies.Studyingthepartitioningofgeneticvariationprovidesa potentialmeanstodiscernbetweenthetwopossibilities.

Investigatingtheevolutionofcloselyrelatedtaxahighlightstheutilityofmultiple geneticmarkersinphylogeneticinference.Singlegenehistoriesmaynotaccurately reflecttheevolutionaryhistoryofspeciesbeinginvestigated(PamiloandNei,1988;

Maddison,1997).Populationlevelprocessesunderlyingthetransmissionofgenes throughtimecanoftenresultindiscordanceamonggenehistoriesandspecies phylogenies(Tajima,1983;FunkandOmland,2003).Byincorporatingmultiplelociand consideringpopulationgeneticprocesses,wemaygainabetterunderstandingof evolutionaryrelationshipsofcloselyrelatedtaxa.

Equippedwithinformedestimatesofevolutionaryhistory,wecaninvestigatethe evolutionofinteractionsbetweenorganisms.Signalspassedbetweenmembersof mutualisticrelationshipmaybetakenadvantageofbyillicitsignalersorillicitreceivers

(Otte,1974;HaynesandYeargan,1999).Mutualismsbetweenantsandlycaenid 12 butterfliesmaybevulnerabletoinvasionbyillicitsignalers,gainingprotectionfrom naturalenemiesbyants,withoutprovidinganutritionalreward.Myrmecophilous lycaenidspeciesinacladecharacterizedprimarilybymyrmecoxenoustaxaofferthe opportunitytostudythebehaviorandevolutionofnonrewardingparticipantsin lycaenidantinteractions.

An explanation of the dissertation format

Thisworkinvestigatesmorphologicalandbehavioralevolutionoflycaenid butterfliesinaphylogeneticframework.Throughgeneticandbehavioralanalyses,Ihave shownhowdifferencesinwingcharactersevolveandhowsomelycaenidcaterpillars mayexploit‘honest’mutualisticinteractionsbetweenotherlycaenidcaterpillarsandtheir antprotectors.Threemanuscriptsareincludedasappendices.

AppendixA,“Geneticisolationandcrypticvariationwithinthe Lycaena xanthoides speciesgroup(Lepidoptera:Lycaenidae)”examinesthepatternsofgenetic variationtoevaluatemorphologicalevolutioninagroupofcloselyrelatedNorth

Americanbutterflytaxa.AppendixB,“Inferringspeciestreesfromdeepcoalescences whileaccommodatinggenetreeuncertainty”extendsmethodsofphylogeneticinference andprovidesaworkedexampleevaluatingtheevolutionofawingcharacterinblue butterflies.AppendixC,“Evolutionofexploitation:illicitsignalinginalycaenidant interaction”investigatesthebehavioralinteractionsbetweenanantandanonrewarding lycaenidlarvaeandevaluatestheevolutionofantassociationinagroupoflargely myrmecoxenoustaxa. 13

PRESENT STUDY

Themethods,data,analyses,andconclusionsofsignificantresearchareincluded inappendicesinthisdocument.Belowisasummaryoffindingsfromeachstudy,aswell assummariesofresultsnotincludedinappendices.

AppendixAusedgeneticandmorphometricapproachestoinvestigatethedegree ofisolationamongthethreemembersofthe Lycaenaxanthoides speciesgroup. Lycaena xanthoides , L.editha ,and L.dione arepredominantlyallopatricandhavebeentreated bothasthreeseparatespeciesandasasinglepolytypicspecies.Using618bpofthe mitochondrialgeneCOII,wefoundlittlephylogeneticresolution,butsignificantamong taxageneticvariancepartitioning.Divergenceamongthesetaxahasbeenrelatively recent,asevidencedbyrelativelylowpairwisesequencedivergence.Also,theexistence oftwowellsupportedcladeswithin L.xanthoidessensustricto ,concordantwiththe

TransverseRangesofsouthernCalifornia,indicatesdivergencewithinthistaxon,anda possiblecrypticspecies.Significantmorphologicaldifferentiationbetween L.editha and

L.xanthoides supportsthehypothesisthatthesetaxarepresentseparategenepools.

Populationsoccurringinanarrowzonewherethetwospecies’rangesapproachare characterizedbyintermediatemorphology,suggestingincompletemorphological divergenceorrecenthybridization.Thesefindingshighlighttheutilityofgeneticdatain inferringspeciesboundariesandtheidentificationofcrypticlineages.

Morphologicalandelectrophoreticdatasuggestahybridzoneexistsbetween

Lycaenaxanthoides and L.editha innorthernCaliforniaandsouthernOregon.Thegoal ofthisprojectwastodetermineifhybridizationisoccurringorhasoccurredrecently 14 betweenthesetwocloselyrelatedbutterflytaxa,and,ifso,towhatdegreeallelesare introgressingbeyondthehybridzone.SequencingofnuclearDNAmarkersrevealed insufficientvariationtoaddressthequestionofhybridization( elongationfactor1alpha ,

28S , wingless , RNApolymeraseII , argininekinase ),soIattemptedanAmplified

FragmentLengthPolymorphism(AFLP)approach.Afteralengthyoptimizationprocess,

IdeterminedthatIcouldnotreliablyscorethemarkers.Ifnuclearsequencemarkers withsufficientvariabilityarefound,orifAFLPmarkerscanbereliablyscored,this researchshouldbepursued.

Lycaenaxanthoides isarelativehostspecialist,feedingonapproximately5 speciesof,inthe .Manypopulationsfeedonthenativehost,

Rumexsalicifolius ;however,inthecentralvalleyofCalifornia,populationsfeedon R. crispus ,anintroducedMediterranean.Thesepopulationsdonothaveotherhost speciesavailable,andthegoalofthisprojectwastodetermineiflocaladaptationtothe nonnativehosthasoccurred.Iperformedstandardfemaleovipositionpreferencetrials andlarvalperformanceassaysonnativeandnonnativehosts,butIhadinsufficient samplesfrompopulationsfeedingonnonnativehosts.Althoughfemalesfromall populationsappeartoprefertoovipositonthenativehostoverthenonnativehost, additionaldataareneeded.Furthermore,Iwasunabletoacquireenoughnativehost toperformanadequatenumberoflarvalperformancetrials.Thepreliminary findingssuggestthatfemalepreferenceforthenativehostisconserved,andlarvaefrom allpopulationsperformbetteronnativehosts;additionaltrialsarenecessarytoconfirm thesefindings. 15

Morphologicalandmitochondrialinvestigationsofthe Lycaenaxanthoides speciesgroupsuggestacrypticlineagewithin Lycaenaxanthoidessensustricto (see

AppendixA).Iperformedlaboratorycrossestodeterminetheextent,ifany,of reproductiveisolationbetweenthenorthernandsouthernlineagesof L.xanthoides .I collectedlarvaefrom3southernand2northernpopulations,andrearedthemto adulthoodinthelaboratory.Iperformedcrossesbyincludinganunmatedfemalewith twomales(bothmalesfromthesamesourcepopulation)inanenclosure,providedwitha nectarsourceandovipositionsubstrate(sprigsof Rumexsalicifolius leaves).One direction(southernfemaleXnorthernmales)failedtoproduceeggsinanyof12trials, whiletheconversecrosses(northernfemaleXsouthernmales)resultedineggsin10of

17trials.Duetosmallsamplesizesandrelativelylowsuccessincontrols(only20%

40%ofcontrolsproducedfemaleoffspring),resultsfromthesecrossesremain preliminary.Backcross/F2viabilityandfertilitycouldnotbemeasuredduetolow samplesizesandalackofavailablehostplants.Additionalcrossesarenecessaryto determineifthereisreproductiveisolationbetweenthenorthernandsouthernlineageof

L.xanthoides .

AppendixBextendsamethodofreconstructingspeciesrelationshipsbasedon multiplereconstructedgenetrees,usingthenumberofincompletelineagesortingevents

(‘deepcoalescences’)astheobjectivefunction.Thismethodprovidestwoimportant advancestophylogeneticinferencebasedonmultipleloci:(1)genetreeuncertaintyis accommodatedbydrawinggenetreesfromadistributionoftreesbasedonBayesian

MCMCsamplingand(2)speciestreeuncertaintyisaccommodatedbyprovidingsupport 16 valuesforrelationships,basedonmultipleiterationsofthetreesearchingprocedure.

MostoftheseanalysesareperformedintheMesquitesoftwaresystem;newsoftware developedforMesquitewillbeavailableinanupcomingreleaseofMesquite.To evaluatethemethod,IusesimulatedDNAsequencedatareflectingthetypeofdata commonlyavailabletoresearchers,andcomparetheresultstoothermethodsofspecies treeinference.Ialsoprovideaworkedexampleofimplementationofthemethodona pairofcloselyrelatedgeneraoflycaenidbutterflies, Everes and Cupido .Iprovidea descriptionoftheconditionsresultinginmisleadinginferences,anddiscussimplications andextensionsofthisnewapproach.

AppendixCstudiesthebehaviorandevolutionofantassociatedlycaenidlarvae whichprovidenorewardstotheirantprotectors.Herewetestthehypothesisthat L. xanthoides larvaefunctionasillicitsignalers,manipulatingantbehaviorwhenfacedwith asimulatedpredatorattack,whileprovidingnorewardtoantassociates.Weevaluatethe relationshipinaphylogeneticframeworkandshowthat L.xanthoides likelyevolved fromanonantassociatedancestor.Thissuggeststhat L.xanthoides has‘crackedthe code’thatother,honestsignalinglycaenidlarvaeusetocommunicatetoants.Evolution ofmutualismsbetweenhonestsignalinglarvaeandantswilllikelybeaffectedbythe impactofillicitsignalinglarvae.

17

REFERENCES CoyneJA,OrrHA.2004.Speciation.Sunderland,Massachusetts:Sinauer&Associates. FunkDJ,OmlandKE.2003.Specieslevelparaphylyandpolyphyly:frequency,causes andconsequences,withinsightsfrommitochondrialDNA.AnnuRevEcolEvol Syst34:397423. HaynesKF,YearganKV.1999.Exploitationofintraspecificcommunicationsystems: illicitsignalersandreceivers.AnnEntomolSocAm92:960970. MaddisonWP.1997.Genetreesinspeciestrees.SystBiol46:523536. MayrE.1963.AnimalSpeciesandEvolution.Cambridge,Massachusetts:Harvard UniversityPress. OtteD.1974.Effectsandfunctionsintheevolutionofsignalingsystems.AnnRevEcol Syst5:385417. PamiloP,NeiM.1988.Relationshipsbetweengenetreesandspeciestrees.MolBiol Evol5:568583. TajimaF.1983.EvolutionaryrelationshipofDNAsequencesinfinitepopulations. Genetics105:437460. 18 19

APPENDIX A

GENETIC ISOLATION AND CRYPTIC VARIATION WITHIN THE SPECIES GROUP (LEPIDOPTERA: LYCAENIDAE) 20

Geneticisolationandcrypticvariationwithinthe Lycaena xanthoides speciesgroup (Lepidoptera:Lycaenidae) JeffreyC.Oliver 1andArthurM.Shapiro 2 1InterdisciplinaryPrograminInsectScienceandDepartmentofEntomology,University ofArizona,Tucson,AZ85721,USA. 2SectionofEvolutionandEcology,UniversityofCalifornia,Davis,CA95616,USA. 21

Abstract

Speciesexistasbiologicalentitieswithpatternsofdiscontinuousphenotypic variation.However,thedistinctnessoftaxaiscalledintoquestionwhenmorphological intermediatesexistinareasofsympatry,reflectingeithergeneflowamongvariantsofa speciesorhybridizationbetweendifferentspecies.Studyingthepartitioningofgenetic variationprovidesameanstodiscernbetweenthetwopossibilities.Weusedgeneticand morphometricapproachestoinvestigatethedegreeofisolationamongthethreemembers ofthe Lycaenaxanthoides speciesgroup. Lycaenaxanthoides , L.editha ,and L.dione are predominantlyallopatricandhavebeentreatedbothasthreeseparatespeciesandasa singlepolytypicspecies.Using618bpofthemitochondrialgeneCOII,wefoundlittle phylogeneticresolution,butsignificantamongtaxageneticvariancepartitioning.

Divergenceamongthesetaxahasbeenrelativelyrecent,asevidencedbyrelativelylow pairwisesequencedivergence.Also,theexistenceoftwowellsupportedcladeswithin L. xanthoidessensustricto ,concordantwiththeTransverseRangesofsouthernCalifornia, indicatesdivergencewithinthistaxon,andapossiblecrypticspecies.Significant morphologicaldifferentiationbetween L.editha and L.xanthoides supportsthe hypothesisthatthesetaxarepresentseparategenepools.Populationsoccurringina narrowzonewherethetwospecies’rangesapproacharecharacterizedbyintermediate morphology,suggestingincompletemorphologicaldivergenceorrecenthybridization.

Thesefindingshighlighttheutilityofgeneticdataininferringspeciesboundariesandthe identificationofcrypticlineages. 22

Introduction

Thepatternofdiscontinuityinpopulationvariationindicatesthatspeciesare relevantbiologicalentities,ratherthantypologicalanthropogenicconstructs(Mayr

1963).Manyspeciesshowvariationinmorphologicalcharacters,butoccupydiscrete clustersinmorphologicalspace,withlittletonooverlapamongspecies(CoyneandOrr

2004).Themaintenanceofthisgapinareasofsympatryisoftenusedtoinfer reproductiveisolationamongthemorphologicallydistincttaxa(Mayr1963).Subtle differencesinmorphologyamongtaxaorthepresenceofintermediatesinareasof sympatrymayconfoundthespeciesproblem,preventingtherecognitionofdiscrete clustersofvariation.These“problemindividuals”maybehybridsbetweendifferent speciesorintermediatesbetweenformsofasinglepolytypicspecies.

Reconcilingthesetwocompetinghypothesesisnotsimplyataxonomicexercise, butratherisanecessarystepinunderstandingtheprocessesofmorphological divergence.Amoreexplicitphrasingofthequestionofmultipleversussinglespeciesis

“hasmorphologicaldivergenceaccompaniedreproductiveisolation,orhas morphologicaldivergenceoccurredwithoutisolationofgenepools?”Toresolvethis issue,assayinggeneticvariationiscrucial,asreproductiveisolationproducesapatternof discontinuousgeneticvariation,whileconspecificityshouldresultinagradeofgenetic variation(Mallet1995).Ifintermediatesrepresenthybridsbetweentaxawithsubstantial reproductiveisolation,therewillbelittletonogeneflowamongthetaxa,anddiscrete geneticclusterswillbeevident.However,iftheintermediatesrepresenttransitional formsamongvariantswithinapolytypicspecies,therewouldbelittleevidenceofgenetic 23 dissimilarityamongthemorphologicalclusters,althoughgeneticisolationbydistance maybeevident(Wright1943).Thecharacterizationofgeneticdiversityprovidesa usefultestofthetwocompetinghypothesesexplainingtheexistenceofmorphological intermediates:hybridizationorintraspecificgeographicvariation.

Wetestedthesetwohypothesesinagroupofmorphologicallysimilarbutterflies ofwesternNorthAmerica.The Lycaenaxanthoides complexisrecognizedasthree closelyrelatedspeciesbysome(Prattetal.1991)andasinglepolytypicspeciesbyothers

(Scott1986). Lycaenaxanthoides (Boisduval), L.editha (Mead),and L.dione (Scudder) aredistributedprimarilyacrossthewesternUnitedStates,withpredominantlyallopatric ranges(Figure1;OplerandWright1999).Allthreenominalspeciesfeedonplantsin thebuckwheatfamily(Polygonaceae),althoughthereislittleoverlapinthespecifichost dietsamongthethreespecies(Scott1986,BallmerandPratt1988). Lycaenaxanthoides occursfromnorthernBajaCalifornia,MexicotosouthcentralOregon,althoughdisjunct populationsalsooccurintheWillametteValleyinOregon(Pyle2002). Lycaena editha inhabitsthehigherelevationsofnortheastCaliforniaandthemountainsalongthe northernedgeoftheGreatBasinandintothenorthernRockyMountains.Thethird memberofthecomplex, L.dione ,isaspeciesofthenorthernGreatPlains,occurringat middleelevationseastoftheRockyMountains.

Althoughpredominantlyallopatric,insomeregionstherangesoftwomembersof the L.xanthoides groupmeetoroverlap. Lycaena xanthoides and L.editha appearto meetalongtheCaliforniaOregonborder,aregioncharacterizedbyindividuals morphologicallyintermediatebetweenthetwospecies(Scott1986,Shapiro1986). 24

Morphologicalanalyseshavebeenusedtosupportboththepolytypicspecieshypothesis

(Scott1979)andthethreespecieshypothesis(Prattetal.1991).Scott(1979)positedthat

L.xanthoides and L.editha areconspecific,connectedbyclinesofintermediatewing morphology.Basedonlarvalandadultwingmorphologicalcharacters,Prattetal.(1991) concludedthatthegrouprepresentedthreemorphologicallydistinctspecies,although somecontemporaryhybridizationmayoccurincontactzonesbetween L.xanthoides and

L.editha .

Inthisstudy,weusedmitochondrialDNAsequencesandmorphometricanalyses totestthehypothesisthatthe L.xanthoides complexisasinglepolytypicspecies.

AlthoughtheutilityofmitochondrialDNAhasrecentlybeenquestioned(Ballardand

Whitlock2004),itremainsausefulmarkerforphylogeneticandtaxonomicinference,as longasthelimitationsareunderstood(RubinoffandHolland2005).Weuseda phylogeneticapproachtoassesssupportforspeciesstatusofeachofthethreespeciesand resolvethephylogeneticrelationshipsamongthemembersofthe L.xanthoides species group.Additionally,weusedapopulationgeneticapproach(AMOVA,Excoffieretal.

1992),toinvestigatevariancepartitioningwithinandamongthethreetaxaoftheL. xanthoides speciesgroup.Thisapproachallowedustotesthypothesesaboutgenetic isolationallowingfornonmonophylyofgenetrees,asexpectedifdivergencesamong taxaarerecent(NeigelandAvise1986).

Isolationbydistancemayoccurwithinasinglespecies,resultingingenetic differentiationbetweenportionsofaspecies’range(Wright1943).Asthemembersof the L.xanthoides complexarepredominantlyallopatric,apatternofgenetic 25 differentiationmayariseduetoisolationbydistancealone,intheabsenceofother reproductiveisolatingmechanisms(e.g.onaverage, L.editha populationsare geographicallyclosertoother L.editha populationsthantoeither L.xanthoides or L. dione populations).WeperformedManteltests(Manly2005)totestforisolationby distance,andpartialMantelteststotestforgeneticdifferentiationwhilecontrollingfor isolationbydistance.Significantgeneticdifferentiationaboveandbeyondisolationby distancewouldnotbeexpectedunderthepolytypicspecieshypothesis.

Finally,wereinvestigatedthemorphologicalvariationwithinandbetween L. xanthoides and L.editha .Wingpatternsinbutterfliesnotonlyprovidecharactersfor diagnosingspecies,butmayalsoplayanimportantroleinmaterecognition(Fordyceet al.2002).Totestformorphologicaldifferencesbetween L.xanthoides and L.editha ,we performedmultivariateanalysesonwingcharacters.Theseanalysesallowedusto quantifythemorphologicalvariation,testformorphologicaldivergencecoincidentwith geneticdivergence,andassesstheutilityofmitochondrialDNAinidentifying evolutionarilydistinctlineages.

Materials and Methods

Wecollectedspecimensof Lycaena xanthoides , L.editha ,and L.dione from62 differentlocalities(Figure1,AppendixI),andidentifiedthembasedontraditionalwing morphologycharacters(OplerandWright1999).Individualsfromfivelocalities(5862,

AppendixI)weremorphologicallyintermediatebetween L.xanthoides and L.editha ,and werenotassignedtoaparticulartaxon.Oursamplingof474specimenscoveredthe 26 majorityof L.xanthoides ’range,andportionsof L.editha ’sand L.dione ’srespective ranges(Figure1).Wealsocollectedeightspecimensrepresentingfiveoutgroupspecies

(L.rubidus , L.arota , L.cupreus , L.virgaureae ,and L.phlaeas )forphylogenetic analyses.Specimenswerecollectedaliveandpreservedat20°CordrieduntiltheDNA extractionprocedure.

MolecularMethods

TotalgenomicDNAwasextractedfromthoracicorlegtissuewithDNeasy

TissueKit(Qiagen,Inc.;Valencia,CA)followingthemanufacturer’sinstructions.We amplifiedaportionofthemitochondrialgenecytochromeoxidasesubunit2(COII)with theprimersPIERREandEVA(CaterinoandSperling1999),correspondingtopositions

31473767ofthe Drosophilayakuba COIIsequence(ClaryandWolstenholme1985).

Theamplificationprotocolwasaninitialdenaturationof1:30at94°C,followedby33 cyclesof94°Cfor40s,45°Cfor40s,72°C45s,withafinalextensionof72°Cfor7 min.Thisfragmentwassequencedinbothdirections,usingtheamplificationprimers

PIERREandEVA,onanAppliedBiosystems3730XLDNAAnalyzerbytheGenomic

AnalysisandTechnologyCore(UniversityofArizona,Tucson,AZ).Sequenceswere alignedbyeyewiththeaidoftheprogramBioEdit(Hall1999).Aminimumspanning networkoftheingrouphaplotypeswascreatedusingArlequin3.0(Excoffieretal.2005).

Phylogenetics 27

Toinferthephylogeneticrelationshipsamongthemembersofthe L.xanthoides speciesgroup,weperformedmaximumparsimonyandBayesiananalyses,usingPAUP*

(Swofford2001)andMrBayes3.1.1(HuelsenbeckandRonquist2001),respectively.

Thesequencematrixwasfirstprunedtoremoveredundantsequences,andthishaplotype sequencematrixwasusedforallsubsequentphylogeneticanalyses.Formaximum parsimonyanalyses,weperformedaheuristicsearch(swap=TBR,addseq=random)of

1000replicates.Parsimonycladesupportwasassessedbyperforminganonparametric bootstrapanalysisof1000replicates,whereeachbootstrapreplicateconsistedof10 heuristicsearchreplicates(swap=TBR,addseq=random).

FortheBayesiananalyses,weperformedtworunsoffourMCMCchainseachfor

10milliongenerations,samplingevery100generations.Usinglikelihoodratiotests

(SullivanandSwofford1997),weselectedanHKY+Imodelofsequenceevolution, allowingeachcodonpositiondifferentparameterestimatesfortheHKY+Imodel.We assessedconvergencebetweenthetworunsbyexaminingthestandarddeviationofsplit frequenciesandaplotofloglikelihoodscoresofthetworuns.Convergenceoccurred whenthestandarddeviationofthesplitfrequencieswasbelow0.01andthelog likelihoodscoresofthetreesdidnotincreaseinsubsequentgenerations(Huelsenbeck andRonquist2001).Convergenceoccurredafter5milliongenerations,soonlytrees sampledafter5milliongenerationswereusedtogenerateaconsensustreeandposterior probabilitiesofindividualcladesusingthe‘sumt’commandinMrBayes.

PopulationGenetics 28

Inadditiontophylogeneticanalyses,wealsoconductedAMOVA(Excoffieretal.

1992)onthe L.xanthoides complexusingtheprogramArlequin3.0(Excoffieretal.

2005).Weperformedtwoanalyses:(1)Threegroups,correspondingtoeachofthethree species, L.editha , L.dione ,and L.xanthoides ,basedonmorphologicalidentificationand

(2)fourgroups,correspondingto L.editha , L.dione ,andtwogroupsof L.xanthoides basedonourphylogeneticresults(seeResults).Usingpairwisesequencedifferences,we partitionedvarianceintoamonggroup,withingroupamongpopulation,andwithin populationamongindividualelements.ForallAMOVAanalyses,thefivepopulations ofintermediatemorphology(5862;AppendixI)wereexcludedbecausewecouldnot assignthem apriori toanygroup.Thisexclusionresultedin421specimensbeing includedintheAMOVAanalyses.

Todetermineifisolationbydistancealoneaccountsforanyobservedgenetic differentiationamongthespecies,weperformedManteltests(Manly2005)implemented inIBD(Bohonak2002)totestforassociationsbetweengeographicdistanceand populationpairwiseF ST valuescalculatedinArlequin3.0(Excoffieretal.2005).We logtransformedF ST valuesandusedthesmallestobservednonzerovalueforanyF ST ≤0 beforelogtransformation(Hellberg1994).Wecalculatedgeographicdistancesbetween populationsusingtheRsoftwarepackage(CasgrainandLegendre2001),andlog transformedthembeforeIBDanalyses.Inadditiontothegeographicdistancematrix,we includedanindicatormatrix,inwhichpopulationcomparisonswereconsideredwithin group(0)orbetweengroups(1),wherethefourgroupscorrespondedto L.editha , L. dione,andtwogroupsof L.xanthoides basedonourphylogeneticresults(seeResults). 29

WeperformedpartialManteltestswiththisindicatormatrix,allowingustotestfor geneticdifferentiation,controllingforisolationbydistance.InthefullandpartialMantel tests,weperformed10 4randomizationsandexcludedpopulationswithfewerthan10 individualssampled.Becausewecouldnotassignindividualstoagroupforthepartial

Manteltests,wealsoexcludedthefivepopulationsofintermediatemorphology

(populations5862).Thisreductionresultedinonlyone L.dione populationbeing analyzed,soweperformedtestsbothincludingandexcludingthispopulation(31and30 populations,respectively).Theexclusionofintermediatesfromtheseanalyseswillnot affectourprediction:ifisolationbydistancealoneaccountsforanyobservedgenetic differentiationamongthespecies,thepartialManteltestcontrollingforisolationby distancewillnotsupportarelationshipbetweentheindicatormatrixandgenetic differentiation.

Morphometrics

Wealsoinvestigatedthemorphologicalvariationwithinandbetween L. xanthoides and L.editha .Totestformorphologicaldifferencesbetween L.xanthoides and L.editha ,weperformedmultivariateanalysesonwingmorphologicalcharacters.

Wemeasuredatotalof11wingcharacters(Figure2),includingsomeusedinprevious analysesofthesetaxa(Scott1979,Prattetal.1991).Forallmeasurements,theunderside oftheleftforewingsandhindwingswerephotographedwithaNikonCoolpix990digital camerawithamillimeterscaleleveltotheplaneofthewings.Allmeasurementswere madeinImageJ1.35p(Rasband2006);onlyspecimensforwhomall11characterscould 30 bemeasuredwereincludedinanalyses.Wewereabletomeasureall11charactersfor thefollowingnumberoffemalesandmales,respectively: L.editha 35,114; L.xanthoides

65,191;Intermediate9,34. Allimagesusedinthisstudyhavebeendepositedin

Morphbank(imagerecords136842137363).Fordimensionalsimilarity,wesquare rootedareameasurementsbeforeanalyses.Malesandfemaleswereanalyzedseparately, andallanalyseswereconductedinSAS9.1(SASInstitute2004).

Wefirstperformedaprincipalcomponentsanalysis(PCA),usingacorrelation matrix,onall L.editha , L.xanthoides ,andintermediatespecimenstodescribethe variationinmorphology(Manly2005).Wethenusedthefirstsixprincipalcomponents toperformamultivariateanalysisofvariance(MANOVA)onspecimens,excluding specimensfromthefiveintermediatepopulations.Wetestedthehypothesisthat L. editha and L.xanthoides possessedsignificantlydifferentmorphology,basedonthe principalcomponentsscores.WeperformedtwoadditionalMANOVAs,alsousingthe firstsixprincipalcomponentsanalyses:(1)assigningspecimensfromintermediate populationsto L.editha ,and(2)assigningspecimensfromintermediatepopulationsto L. xanthoides .Finally,weperformeddiscriminantfunctionanalyses(DFA)todetermineif theintermediatepopulationsweremorphologicallymoresimilarto L.editha or L. xanthoides .Wefirstusedspecimensfromoutsidethezoneofintermediacytobuilda functiontodiscriminatebetween L.editha and L.xanthoides (trainingphase).Wethen usedthisfunctiontoclassifyspecimensfromintermediatepopulationsas L.editha or L. xanthoides (testingphase). 31

Inadditiontoinvestigatingthemorphologicalvariationbetween L.editha and L. xanthoides ,wealsotestedfordifferencesbetweenmembersofthetwocladesof L. xanthoides recoveredinourphylogeneticresults.Wefirstperformedanotherprincipal componentsanalysis,excludingdatafromintermediatepopulations,followedbya

MANOVAofthefirstsixprincipalcomponents.Wethenperformedthetrainingphase ofaDFAonalldata,excludingtheintermediates,asanadditionaltestformorphological differentiationamongmembersofthetwoclades.Thatis,weusedtheDFAtodetermine iftherewereconsistentmorphologicaldifferencesbetweenspecimensof L.xanthoides fromclade‘A’andspecimensfromclade‘B’.

Results

Fromthe474ingroupindividualssampled,therewere28distincthaplotypesand

30polymorphicsites.Allingroupsequenceswere618baseslong,whileasingle outgrouptaxon, L.virgaureae ,possesseda3bpdeletion.Withtheexceptionofone population(see“Phylogenetics”,below),nohaplotypesweresharedamongthethree species(Figure3;AppendixI).Representativesequencesforallhaplotypeshavebeen depositedinGenBank(accessionnumbersEF175476EF175510).

Phylogenetics

ThemaximumparsimonyandBayesiananalysesproducedtopologically congruentresults(Fig4).Bothanalysessupporteda L.xanthoides speciesgroup+ L. rubidus clade(83MaximumParsimonybootstrapcladesupportand0.96Bayesian 32 posteriorprobability).Monophylyofthe L.xanthoides speciesgroupwasnotwell supportedbyeitheranalysis(65MPbootstrapsupportand0.31posteriorprobability).

Relationshipsamongthemembersofthe L.xanthoides speciesgroupwerealso unresolved;neitheranalysissupportedmonophylyof L.xanthoides (6MPsupport,0.12 posteriorprobability), L.editha (16MPsupport,0.23posteriorprobability),or L.dione

(23MPsupport,0.16posteriorprobability).Interestingly,bothanalysesrecoveredtwo wellsupportedcladeswithin L.xanthoides (cladeslabeled‘A’and‘B’inFig4).

Populationsof L.xanthoides nevercontainedhaplotypesfrombothclades:populations1

20possessedhaplotypesfromclade‘A’,whilepopulations2230possessedhaplotypes fromclade‘B’.Thefive L.xanthoides individualssampledfromthedisjunctpopulation intheWillametteValley(population21)possessedhaplotypesfoundonlyin L.editha populations(HaplotypesPandU;Figure3).Thefivepopulationsmorphologically intermediatebetween L.xanthoides and L.editha (populations5862)possessedonly haplotypesQandS(Figure3),whichwerealsofoundinnumerous L.editha populations.

PopulationGenetics

Althoughthephylogeneticanalysesdidnotshowevidenceofmonophylyofany ofthespeciesofthe L.xanthoides speciesgroup,asignificantportionofthegenetic variationwaspartitionedamongspeciesinAMOVA(Table1).Whenpopulationswere assignedtothreegroups,correspondingtothethreespecies,amonggroupvariation accountedforapproximately57%ofthetotalvariation(Φ CT =0.57,P<0.001).Thefour groupanalysisassignedpopulationstospeciesasinthethreegroupanalysis,but 33 populationsof L.xanthoides weresplitintotwogroups,tocorrespondwiththetwo cladesrecoveredinthephylogeneticanalyses(group1: L.xanthoides clade‘A’+

WillametteValley L.xanthoides ,group2: L.xanthoides clade‘B’;Fig3).Inthis

AMOVA,theamonggroupcomponentofvariationincreasedto89%(Φ CT =0.89,

P<0.001),withacorrespondingdecreaseintheamongpopulationcomponentof variation.

InourIBDanalyses,thesmallestpositivepairwiseF ST was0.00268,sowe replacedallvaluesofF ST ≤0by0.00268beforelogtransformation.InourManteltests forisolationbydistance,wefoundasignificantcorrelationbetweengeographicdistance andgeneticdistance(including L.dione :r=0.3874,p<0.0001;excluding L.dione : r=0.3799,p<0.0001).InthepartialManteltests,wefoundasignificantrelationship betweentypeofcomparison(withinorbetweengroup)andgeneticdistance,when controllingforisolationbydistance(including L.dione :r=0.5742,p<0.0001;excluding

L.dione :r=0.5734,p<0.0001).

Morphometrics

Theresultsoftheprincipalcomponentsanalysesillustratethemorphological variationbetween L.editha and L.xanthoides (Table2).Thefirsttwoprincipal componentsscoresreveallittleoverlapbetween L.editha and L.xanthoides (Figure5).

Mostindividualssampledfromtheintermediatepopulationsdoindeedpossess morphologyintermediatebetween L.editha and L.xanthoides .IntheMANOVA analysesexcludingintermediatepopulations, L.editha and L.xanthoides aresignificantly 34

different,basedonthefirstsixprincipalcomponents(Females:Wilks’Λ=0.232,F 6,93 =

51.448,P<0.0001;Males:Wilks’Λ=0.296,F 6,298 =118.250,P<0.0001).Forthe

MANOVAincludingintermediatepopulations,thedifferencesbetween L.editha and L. xanthoides remainedsignificantregardlessofwhetherspecimensfromintermediate populationswereassignedto L.editha (Females:Wilks’Λ=0.286,F 6,102 =42.541,P<

0.0001;Males:Wilks’Λ=0.335,F 6,332 =110.049,P<0.0001)orassignedto L. xanthoides (Females:Wilks’Λ=0.309,F 6,102 =37.979,P<0.0001;Males:Wilks’Λ=

0.422,F 6,332 =75.725,P<0.0001).Inthetrainingphase,theDFAcorrectlyidentified

96%and97%offemaleandmalespecimens,respectively.Inthetestingphase,fiveof ninefemalesfromintermediatepopulationswereclassifiedas L.editha ,whiletheother fourwereclassifiedas L.xanthoides .Twentyof34intermediatemaleswereclassifiedas

L.editha ,and14classifiedas L.xanthoides .

Inanalysessplitting L.xanthoides intotwogroups,thefirstsixprincipal componentsdemonstratedsignificantmorphologicaldifferentiationamong L.editha , L. xanthoides clade‘A’,and L.xanthoides clade‘B’(Females:Wilks’Λ=0.130,F 12,184 =

27.171,P<0.0001;Males:Wilks’Λ=0.208,F 12,594 =59.122,P<0.0001).Inthe discriminantfunctionanalysis,specimenswerecorrectlyassignedtooneofthreegroups, basedonhaplotypeidentity,for75%ofthefemalespecimensandfor86%ofthemale specimens(Figure6).

Discussion 35

Therearetwoclearimplicationsfromthiswork:(1)thethreetaxapreviously definedonmorphologicalcharactersrepresentisolatedgenepoolsand(2)theisolation amongthesegenepoolshasbeenrelativelyrecent.Thethreespecieswerecharacterized bydistinctgeneticclusters(Figure3),nopopulationscontainedhaplotypesfrommore thanoneoftheseclusters,andtherewasalmostnohaplotypesharingamongthethree species.AMOVAanalysesrevealedsignificantamonggrouppartitioningofgenetic variationwhenindividualswereclassifiedintogroupsbasedonmorphologicalcharacters

(model1inTable1).Therewassignificantgeneticdifferentiationamongthetaxa,even whencontrollingforisolationbydistance.Finally,analysesofthemorphological charactersof L.xanthoides and L.editha showsignificantmorphologicaldifferences betweenthetwotaxa.Morphologicaldifferentiationof L.xanthoides and L.editha is shownbysignificantMANOVAresults,aswellasahighsuccessrateinDFA assignments(96%offemaleand97%ofmalespecimenscorrectlyidentified).

Theisolationamongthesethreetaxamusthaveoccurredrecently.Mitochondrial sequencedivergencewasrelativelylow,rangingfrom0.4%between L.xanthoides and L. editha to1.5%betweenclades‘A’and‘B’of L.xanthoides .Theobservedlevelsof sequencedivergencefallwithinthedistributionobservedbetweenotherlycaenidsister taxa,althoughthedivergencesamongthe L.xanthoides speciesgroupmembersoccupy thelowerendofthedistribution.Briefly,sisterspeciesofthegenus Agrodiaetus differ by03%sequencedivergenceincytochromeoxidaseII(Kanduletal.2004),andsister taxa M.teleius and M.nausithous differby1.22.8%sequencedivergence(Alsetal.

2004).Therewasalsolittlephylogeneticresolutionamongthethreespecies,asexpected 36 forrecentlydivergedtaxa(NeigelandAvise1986,HudsonandCoyne2002,Funkand

Omland2003).Thisaddstothegrowingbodyofevidenceillustratingrapidspeciation capabilitiesofLepidoptera,especiallyLycaenidae(NiceandShapiro1999,Aagaardetal.

2002,EastwoodandHughes2003,Lukhtanovetal.2005).Twolinesofevidence suggestthatreproductiveisolationmaynotbecomplete,orbarriershaveonlyrecently beenestablishedbetween L.editha and L.xanthoides :thepresenceofcommon L.editha haplotypesintheWillametteValleypopulationof L.xanthoides ,andthemorphological intermediacyofpopulationsoccupyingageographicregionbetween‘typical’ L.editha and L.xanthoides populations.

Thepopulationof L.xanthoides intheWillametteValleyofOregonis approximately200kmnorthofthenextnearestpopulationof L.xanthoides .The interveningareaiscomprisedoftheKlamathandSiskiyouMountainRanges,inhabited by L.editha .Thepresenceof L.editha haplotypesinWillametteValleyindividuals suggestsgeneflowbetween L.editha andtheWillametteValleypopulationmayhave occurred.TheWillametteValley L.xanthoides ’populationsizehashistoricallybeenlow

(SevernsandVillegas2005),andhybridizationwithnearby L.editha populationsmay haveallowedthosehaplotypestointrogressintotheWillametteValleyandbecomefixed.

Introgressivehybridizationisnotuncommoninlepidopteranhybridzones(e.g.

Dasmahapatraetal.2002,Cianchietal.2003,Kronforstetal.2006),andintrogressionof mitochondrialmarkersmaysometimesobscurethegenetichistoryofpopulations

(Gompertetal.2006).Alternatively,the L.editha haplotypesintheWillametteValley L. xanthoides maybeduetoincompletelineagesorting.Thecurrentdataaremore 37 consistentwiththehypothesisofintrogressivehybridization,giventheabsenceofany novelhaplotypesinWillametteValley L.xanthoides (‘neotypy’ofOmlandetal.2006).

Discerningbetweenthetwohypotheses,hybridizationandintrogressionversus incompletelineagesorting,wouldbenefitfromfutureanalysesonmultipleunlinked nuclearloci.

Thepopulationswithintermediatemorphology,occupyingregionsofnorthern

CaliforniaandsouthernOregon,betweenpopulationsof L.editha and L.xanthoides ,also suggestthatisolationamonggenepoolsisrecentorincomplete.Recentisolationamong taxamayresultinapatternofincompletemorphologicaldivergence,andthe intermediatepopulationsmaybepartofthe L.editha genepool,asallindividuals sampledfromintermediatepopulationspossessedthecommon L.editha haplotypesQ andS.Alternatively,theintermediatepopulationsmaybeevidenceofrecent hybridizationbetween L.xanthoides and L.editha .Thishypothesisissupportedby unpublishedallozymesurveysofindividualsfromanintermediatepopulation(population

61inthisstudy)(H.J.GeigerandA.M.Shapiro,unpublisheddata).Briefly,fortwoloci diagnosticforthetwospecies,allelesofbothspecieswerefoundinroughlyequal frequencies,andgenotypefrequenciesdidnotdifferfromHardyWeinbergexpectations.

Ifintermediatepopulationsdidhavehybridorigins,thelackof L.xanthoides haplotypes inthesepopulationscouldbeattributedtohigherimmigrationfrom L.editha populations, oranasymmetryinhybridfitness(Muller1942).Thehybridoriginhypothesisisalso supportedbyhostuse:theintermediatepopulationsalmostexclusivelyusenonnative hosts(EmmelandPratt1998),andthisnovelresourcemayhaveallowedexpansioninto 38 previouslyunoccupiedregions(BernaysandChapman1994;Oliver2006).Theorigin andcurrentdynamicsoftheseintermediatepopulationshavethepotentialtoprovide valuableinsightonthenatureofreproductiveisolationandmorphologicaldivergence.

TaxonomicImplications

Bothgeneticandmorphologicalanalysespresentedherefailtosupportthe polytypicspecieshypothesis:isolationamongthethreenamedtaxaisevident.Withthe exceptionoftheWillametteValleypopulationof L.xanthoides ,therewerenoshared haplotypesamongspecimensmorphologicallyclassified apriori as L.xanthoides , L. editha ,and L.dione ,eveninareaswheregeographicrangesabut.AMOVAandIBDalso supportthehypothesisthatthereisisolationamongthegenepoolsofthethreetaxa.The morphologicaldistinctnessbetween L.editha and L.xanthoides revealedbymultivariate analysessupportsthepositionthattheyrepresentseparatespecies.Themaintenanceof speciesintegrity,despitehybridization,isknownfromotherbutterflytaxaaswell

(SperlingandHarrison1994,Sperling2003).

Theintermediatepopulationsrequirefurthermolecularstudytoascertaintheir evolutionaryhistoryandtaxonomicstatus.EmmelandPratt(1998)recognizedtwo subspeciesfromtheregioncharacterizedbyintermediatepopulations, L.xanthoides nigromaculata and L.edithapseudonexa ,andmaintainedthespeciesstatusof L. xanthoides and L.editha .Inthemorphologicaldescriptions, L.xanthoides nigromaculata isdistinguishedfromthenominatesubspeciesby,amongothercharacters, largerventralblackspotswhile L.edithapseudonexa isdistinguishedfrom L.editha 39 editha bylargersizeandsmallerventralblackspots.Thesedescriptionsofthetwo subspeciessuggestconvergenceonasimilarformandtheydonotexplicitlydifferentiate

L.xanthoidesnigromaculata and L.edithapseudonexa .Theinterpretationthat L. xanthoides and L.editha bothexistinthisareaanddonotinterbreedisnotsupported.

Only L.editha haplotypeswerefoundintheseintermediatepopulations,soeither L. xanthoidesnigromaculata isactuallyavariantof L.editha ,oratleastsomerecent hybridizationhasoccurredbetweenthetwotaxa.Thelatterhypothesiswouldlikelybe duetohistorical,notcurrent,contact,asthereareno“pure”parentalpopulationsnearthis zoneofintermediacy.Thebiologicalrelevanceof L.edithapseudonexa isalso questionable,astheauthorsdescribedisjunctpopulationswiththe pseudonexa phenotype occurringinthecentralSierraNevadaMountains,approximately480kilometerstothe south,withinterveningareasoccupiedbynominotypical L.editha populations.

Additionalsourcesofdatashouldbeconsideredtoverifythehypothesisthatthese intermediatepopulationsrepresenthybridizationbetween L.xanthoides and L.editha .

BarrierstoGeneFlowandCrypticVariation

Geneticandmorphologicalvariancepartitioningsupportthehypothesisthatat leastthreeisolatedgenepoolsexistwithinthe L.xanthoides group.Thethreenamed taxa, L.xanthoides , L.editha ,and L.dione ,showgeneticandmorphological differentiation,andhavepredominantlyallopatricranges.Giventhecurrentgeographic ranges,andthedegreeofgeneticdivergenceinthisgroup,wecanprovidepreliminary inferencesontheprobablebarrierstogeneflowinthisgroup.Consideringa 40 mitochondrialmolecularclockof2.3%sequencedivergencepermillionyears(Brower

1994,butseeBallardandWhitlock2004),thedivergenceamongthemembersofthe L. xanthoides speciesgroupoccurredontheorderof0.20.7millionyearsago.We hypothesizethatgeneticandmorphologicaldivergencesoccurredinglacialrefugia

(Hewitt2000),correspondingtocurrentgeographicranges: L.xanthoides inlowland

California, L.editha inthenorthernGreatBasin,and L.dione intheGreatPlains.

GeologicalbarrierswouldthenincludetheRockyMountains(between L.editha and L. dione )andtheSierraNevadaandCascadeRanges(between L.editha and L.xanthoides ).

Themoststrikingpatterntoemergefromtheseanalysesisthepatternofgenetic andmorphologicalvariancepartitioningwithin L.xanthoides .Allindividualsofclade

‘A’(populations120)weresamplednorthoftheTransverseRangesofCalifornia,while allindividualsofclade‘B’(populations2230)weresampledinorsouthofthe

TransverseRanges(seeFigures1and4).Theserangesformamajorphylogeographic barrierinwesternNorthAmericaforavarietyofplantandanimaltaxa(Calsbeeketal.

2003).Haplotypesofclade‘A’andclade‘B’differbyanaverage1.81%sequence divergenceinCOII.Twootherlepidopterantaxa, Tegeticulamaculata (Segravesand

Pellmyr2001)and Hesperiacomma (Foristeretal.2004),alsoshowsimilarphylogenetic breaksacrossthesemountainranges. Tegeticulamaculata showsanaverage1.37% sequencedivergenceincytochromeoxidaseIbetweennorthernandsouthernpopulations, whilethecorrespondingphylogeographicalsplitin H.comma showsanaverageof1.37% sequencedivergenceinCOII.AlthoughtheTransverseRangescannotbeacurrent barriertogeneflowwithin L.xanthoides ( L.xanthoides clade‘B’occursatthehigher 41 elevationsoftheTransverseRanges),geneticdifferentiationofthetwoclades demonstratesthatthesemountainrangeswerehistoricallyabarriertogeneflow.

Thisgeneticdifferentiationwithin L.xanthoides begsthequestion:arethere crypticspeciesinthisgroup?Underagenealogicalspeciesconcept(BaumandShaw

1995)thewellsupportedcladeswouldsuggesttheexistenceoftwogeneticallydistinct specieswithin L.xanthoides .Amonggroupvarianceincreasedina posthoc AMOVA, where L.xanthoides wassplitintotwogroups,correspondingtoclades‘A’and‘B’

(models1and2inTable1).Additionally, posthoc MANOVAresultsdemonstrated significantmorphologicaldifferencesbetweenmembersofclade‘A’andmembersof clade‘B’;thismorphologicaldivergencewassupportedbyaconsiderablesuccessratein discriminantfunctionanalysesforbothfemaleandmalespecimens.Thegeneticand morphologicaldivergence,inthepresenceofaknowngeologicalbarrier,suggeststhat thedifferentiationisnotspurious(Irwin2002)andstronglyarguesforadistinction betweenthetwolineagesof L.xanthoides .

Crypticlineagesarebeingdiscoveredwithincreasingfrequency,andmaybe informativeinfuturestudiesofbiologicaldiversification(Bickfordetal.2006).The L. xanthoides speciesgroupwillbeespeciallyusefulforcomparisonsoftheprocesses leadingtogeneticdivergenceandmorphologicaldivergence.Itisintriguingthatthe greatestgeneticdivergence(1.81%)wasobservedbetweennorthernandsouthern populationsof L.xanthoides ,demonstratingthatmoleculardivergenceand morphologicaldivergencedonotnecessarilyoccurconcurrently,althoughour posthoc analysesindicatesomemorphologicaldifferentiationwithin L.xanthoides .Additionally, 42 thedivergencebetweenthepredominantlyallopatricnorthernandsouthern L.xanthoides populationswillallowtestsofspeciationviaphylogeneticnicheconservatism(Peterson etal.1999,Wiens2004).Futureecologicalnichemodeling(Hugalletal.2002)studies on L.xanthoides willinfluenceourunderstandingoftheprocessesresponsiblefor biologicaldiversification(WiensandDonoghue2004).

Conclusions

Weconcludethatthemorphologicaldivergenceamongthemembersofthe L. xanthoides speciesgroupoccurredprimarilyintheabsenceofgeneflow,althoughthe isolationamongthetaxahasbeenrecent.MitochondrialDNAremainsausefultoolfor detectingisolationamonggenepools,giventhatmtDNAgeneflowcanoccurevenat lowlevelsofimmigration(TakahataandSlatkin1984).Thedegreeofisolationdoes requirefurtherstudy,asfemalesaretheheterogameticsexinLepidoptera.Lepidoptera showstrongadherencetoHaldane’sRule(Haldane1922,Presgraves2002)and maternallyinheritedmarkersmaydemonstrateadifferentpatternofgeneflowthan nuclearmarkersiftherearesexbaseddifferencesinhybridfitness.Thegeneticand morphologicaldifferentiationwithin L.xanthoides suggestssignificantreproductive isolation,althoughwerefrainfromdrawinganytaxonomicconclusionsatthistime.

Finally,mtDNAmarkersremainusefulforidentifyingunitscriticalforconservation purposes(Shafferetal.2004)andpreviouslyunknown,evolutionarilydistinctlineages

(Bickfordetal.2006).

43

Acknowledgements

InvaluablefieldassistancewasprovidedbyE.R.Bjerre,J.D.Oliver,S.C.Oliver,G.B.

Pauly,andespeciallyK.L.Prudic.Wealsothankthenumerouspeoplewhoprovided localityinformationand/oradditionalspecimens:G.T.Austin,G.R.Ballmer,B.Bouton,

J.P.Brock,K.E.Davenport,J.A.Fordyce,M.A.Forister,B.Gendron,C.Harp,G.

Kareofelas,T.W.Kral,C.C.Nice,P.A.Opler,J.G.Pasko,G.F.Pratt,K.J.Ribardo,E.B.

Runquist,P.M.Severns,E.C.SnellRood,A.D.Warren,andE.Weingartner.R.P.

Guralnickprovidedlaboratoryspaceduringtheearlyportionofthiswork.F.A.H.

Sperling,G.B.Pauly,D.R.Maddison,C.C.Nice,J.A.Fordyce,Z.Gompert,andthree anonymousreviewersprovidedusefulcommentsanddiscussiononpreviousdraftsofthis work.ThisworkwasfundedbyanEPASTARFellowship,aXercesSocietyDeWind

Award,andaNationalScienceFoundationDDIGtoJCO 44

References AagaardK,HindarK,PullinAS,etal.(2002)Phylogeneticrelationshipsinbrownargus butterflies(Lepidoptera:Lycaenidae: Aricia )fromnorthwesternEurope. Biological JournaloftheLinneanSociety , 75 ,2737. AlsTD,VilaR,KandulNP,NashDR,YenSH,HsuYF,MignaultAA,BoomsmaJJ, PierceNE(2004)Theevolutionofalternativeparasiticlifehistoriesinlargeblue butterflies. Nature 432 ,386390. BallardJWO,WhitlockMC(2004)Theincompletenaturalhistoryofmitochondria. MolecularEcology, 13 ,729744. BallmerGR,PrattGF(1988)AsurveyofthelastinstarlarvaeoftheLycaenidae (Lepidoptera)ofCalifornia. JournalofResearchontheLepidoptera , 27 ,181. BaumDA,ShawKL(1995)Genealogicalperspectivesonthespeciesproblem.In: ExperimentalandMolecularApproachestoPlantBiosystematics (edsHochPC, StephensonAC),pp.289–303.MissouriBotanicalGarden,St.Louis,MO. BernaysEA,ChapmanRF(1994) HostPlantSelectionbyPhytophagous . ChapmanandHall,NewYork. BickfordD,LohmanDJ,SodhiNS,NgPKL,MeierR,WinkerK,IngramKK,DasI (2006)Crypticspeciesasawindowondiversityandconservation. TrendsinEcologyand Evolution , 22 ,148155. BohonakAJ(2002)IBD(Isolationbydistance):Aprogramforanalysesofisolationby distance. JournalofHeredity , 93 ,153154. BrowerAVZ(1994)Rapidmorphologicalradiationandconvergenceamongracesofthe butterfly Heliconiuserato inferredfrompatternsofmitochondrialDNAevolution ProceedingsoftheNationalAcademyofSciences , 91 ,64916495. CalsbeekR,ThompsonJN,RichardsonJE(2003)Patternsofmolecularevolutionand diversificationinabiodiversityhotspot:theCaliforniaFloristicProvince. MolecularEcology , 12 ,10211029 CasgrainP,LegendreP(2001)TheRPackageforMultivariateandSpatialAnalysis, version4.0d6.User’sManual.Départementdesciencesbiologiques,Universitéde Montréal.Availableat: http://www.bio.umontreal.ca/Casgrain/en/labo/R/v4/telecharger.html . 45

CaterinoMS,SperlingFAH(1999) Papilio phylogenybasedonmitochondrial cytochromeoxidaseIandIIgenes. MolecularPhylogeneticsandEvolution , 11 ,122137. CianchiR,UngaroA,MariniM,BulliniL(2003)Differentialpatternsofhybridization andintrogressionbetweentheswallowtails Papilomachaon and P.hospiton from SardiniaandCorsicaislands(Lepidoptera,Papilionidae). MolecularEcology , 12 ,1461 1471. ClaryDO,WolstenholmeDR(1985)ThemitochondrialDNAmoleculeof Drosophila yakuba nucleotidesequence,geneorganization,andgeneticcode. JournalofMolecular Evolution , 22 ,252271. CoyneJA,OrrHA(2004) Speciation .SinauerAssociates,Sunderland,MA. DasmahapatraKK,BlumMJ,AielloA,HackwellS,DaviesN,BerminghamEP,MalletJ (2002)Inferencesfromarapidlymovinghybridzone. Evolution , 56 ,741753. EastwoodR,HughesJM(2003)Molecularphylogenyandevolutionarybiologyof Acrodipsas (Lepidoptera:Lycaenidae). MolecularPhylogeneticsandEvolution , 27 ,93 102. EmmelJF,PrattGF(1998)NewsubspeciesoffromCaliforniaandatype localityrestrictionfor Chrysophanuscupreus W.H.Edwards(Lepidoptera:Lycaenidae). In: SystematicsofWesternNorthAmericanButterflies (edEmmelTC),pp.661680. MariposaPress,Gainesville,FL. ExcoffierL,SmousePE,QuattroJM(1992)Analysisofmolecularvarianceinferred frommetricdistancesamongDNAhaplotypes:applicationtohumanmitochondrialDNA restrictiondata. Genetics , 131 ,479491. ExcoffierL,LavalG,SchneiderS(2005)Arlequinver.3.0:Anintegratedsoftware packageforpopulationgeneticsdataanalysis. EvolutionaryBioinformaticsOnline , 1,47 50. FordyceJA,NiceCC,ForisterML,ShapiroAM(2002)Thesignificanceofwingpattern diversityintheLycaenidae:matediscriminationbytworecentlydivergedspecies. JournalofEvolutionaryBiology , 15 ,871879. ForisterML,FordyceJA,ShapiroAM(2004)Geologicalbarriersandrestrictedgene flowintheholarcticskipper Hesperiacomma (Hesperiidae). MolecularEcology , 13 , 34893499. 46

FunkDJ,OmlandKE(2003)Specieslevelparaphylyandpolyphyly:Frequency,causes, andconsequences,withinsightsfromanimalmitochondrialDNA. AnnualReviewof Ecology,Evolution,andSystematics , 34 ,397423. GompertZ,NiceCC,FordyceJA,ForisterML,ShapiroAM(2006)Identifyingunitsfor conservationusingmolecularsystematics:thecautionarytaleoftheKarnerblue butterfly. MolecularEcology , 15 ,17591768. HaldaneJBS(1922)Sexratioandunisexualsterilityinhybrid. Journalof Genetics , 12 ,101109. HallTA(1999)BioEdit:auserfriendlybiologicalsequencealignmenteditorand analysisprogramforWindows95/98/NT. NucleicAcidsSymposiumSeries , 41 ,9598. HellbergME(1994)Relationshipsbetweeninferredlevelsofgeneflowandgeographic distanceinaphilopatriccoral, Balanophylliaelegans . Evolution , 48 ,18291854. HewittG(2000)ThegeneticlegacyoftheQuaternaryiceages. Nature , 405 ,907913. HudsonRR,CoyneJA(2002)Mathematicalconsequencesofthegenealogicalspecies concept. Evolution , 56 ,15571565. HuelsenbeckJP,RonquistF,(2001)MRBAYES:Bayesianinferenceofphylogeny. Bioinformatics , 17 ,754755. HugallA,MoritzC,MoussalliA,StanisicJ(2002)Reconcilingpaleodistributionmodels andcomparativephylogeographyintheWetTropicsrainforestlandsnail Gnarosophia bellendenkerensis (Brazier1875). ProceedingsoftheNationalAcademyofSciences , 99 , 61126117. IrwinDE(2002)Phylogeographicbreakswithoutgeographicbarrierstogeneflow. Evolution , 56 ,23832394. KandulNP,LukhtanovVA,DantchenkoAV,ColemanJW,SekerciogluCH,HaigD, PierceNE(2004)PhylogenyofAgrodiaetusHubner1822(Lepidoptera:Lycaenidae) inferredfrommtDNAsequencesofCOIandCOIIandnuclearsequencesofEF1alpha: karyotypediversificationandspeciesradiation. SystematicBiolo gy, 53 ,278298. KronforstMR,YoungLG,BlumeLM,GilbertLE(2006)Multilocusanalysesof admixtureandintrogressionamonghybridizingHeliconiusbutterflies. Evolution , 60 , 12541268. 47

LukhtanovVA,KandulNP,PlotkinJB,DantchenkoAV,HaigD,PierceNE(2005) Reinforcementofprezygoticisolationandkaryotypeevolutionin Agrodiaetus butterflies.Nature , 436 ,385389. MalletJ(1995)AspeciesdefinitionfortheModernSynthesis. TrendsinEcologyand Evolution , 10 ,294299. ManlyBFJ,(2005) MultivariateStatisticalMethods ,3 rd edn.ChapmanandHall/CRC, BocaRaton,FL. MayrE(1963) AnimalSpeciesandEvolution .HarvardUniversityPress,Cambridge, MA. MullerHJ(1942)Isolatingmechanisms,evolutionandtemperature. BiologicalSymposia , 6,71125. NeigelJE,AviseJC(1986)PhylogeneticrelationshipsofmitochondrialDNAunder variousdemographicmodelsofspeciation.In: EvolutionaryProcessesandTheory .(eds KarlinS,NevoE),pp.515534.AcademicPress,Orlando,FL.

NiceCC,ShapiroAM(1999)Molecularandmorphologicaldivergenceinthebutterfly genus Lycaeides (Lepidoptera:Lycaenidae)inNorthAmerica:evidenceofrecent speciation. JournalofEvolutionaryBiology , 12 ,936950. OliverJC(2006)Populationgeneticeffectsofhumanmediatedplantrangeexpansions onnativephytophagousinsects. Oikos , 112 ,456463. OmlandKE,BakerJM,PetersJL(2006)Geneticsignaturesofintermediatedivergence: populationhistoryofOldandNewWorldHolarcticravens( Corvuscorax ). Molecular Ecology , 15 ,795808. OplerPA,WrightAB(1999) AFieldGuidetoWesternButterflies .HoughtonMifflin, NewYork. PetersonAT,SoberónJ,SánchezCorderoV(1999)ConservatismofEcologicalniches inevolutionarytime. Science , 285 ,12651267. PrattGF,WrightDM,BallmerGR(1991)Multivariateandphylogeneticanalysesof larvalandadultcharactersoftheEdithacomplexofthegenus Lycaena (Lepidoptera: Lycaenidae). JournalofResearchontheLepidoptera , 30 ,175195. PresgravesDC(2002)PatternsofpostzygoticisolationinLepidoptera. Evolution , 56 , 11681183. 48

PyleRM(2002) TheButterfliesofCascadia .SeattleAudubonSociety,Seattle,WA. RasbandWS(2006)ImageJ1.35p.U.S.NationalInstitutesofHealth,Bethesda, Maryland,USA.Availableat: http://rsb.info.nih.gov/ij/ . RubinoffD,HollandBS(2005)Betweentwoextremes:MitochondrialDNAisneither thepanaceanorthenemesisofphylogeneticandtaxonomicinference. Systematic Biology , 54 ,952961. SASInstitute(2004)SASversion9.1SASInstitute,Cary,NorthCarolina,USA. ScottJA(1979)Geographicvariationin Lycaenaxanthoides . JournalofResearchonthe Lepidoptera , 18 ,5059. ScottJA(1986) TheButterfliesofNorthAmerica:ANaturalHistoryandFieldGuide . StanfordUniversityPress,Stanford,CA. SegravesKA,PellmyrO(2001)Phylogeographyoftheyuccamoth Tegeticulamaculata : theroleofhistoricalbiogeographyinreconcilinghighgeneticstructurewithlimited speciation. MolecularEcology , 10 ,12471253. SevernsPM,VillegasS(2005)ButterflieshangingontoexistenceintheWillamette Valley:arelictpopulationofthegreatcopper( Lycaenaxanthoides Boisduval). NorthwestScience , 79 ,7780. ShafferHB,FellersGM,VossSR,OliverJC,PaulyGB(2004)Speciesboundaries, phylogeographyandconservationgeneticsoftheredleggedfrog( Rana aurora /draytonii )complex. MolecularEcology , 13 ,26672677. ShapiroAM(1986)Montaneinsularbutterflybiogeography:faunaofBallMountain, SiskiyouCounty,California. GreatBasinNaturalist , 46 ,336347. Sperling,FAH(2003)Butterflymolecularsystematics:fromspeciesdefinitionsto higherlevelsystematics.In: Butterflies:EcologyandEvolutionTakingFlight .(eds BoggsCL,WattWB,EhrlichPR),pp.431458.UniversityofChicagoPress,Chicago,IL. Sperling,FAH,HarrisonRG(1994)MitochondrialDNAvariationwithinandbetween speciesofthePapiliomachaongroupofswallowtailbutterflies. Evolution , 48 ,408422. SullivanJ,SwoffordDL(1997)Areguineapigsrodents?Theimportanceofadequate modelsinmolecularphylogenetics.JournalofMammalianEvolution , 4,7786. SwoffordDL(2001) PAUP*:PhylogeneticAnalysesUnderParsimony(*andother methods) ,version4.0b10.SinauerAssociates,Sunderland,MA. 49

TakahataN,SlatkinM(1984)Mitochondrialgeneflow. ProceedingsoftheNational AcademyofSciences , 81 ,17641767. WiensJJ(2004)Speciationandecologyrevisited:Phylogeneticnicheconservatismand theoriginofspecies. Evolution , 58 ,193197. WiensJJ,DonoghueMJ(2004)Historicalbiogeography,ecologyandspeciesrichness. TrendsinEcologyandEvolution , 19 ,639644. WrightS(1943)Isolationbydistance. Genetics , 28 ,114138. 50

Tables, figures, and appendices

Figure Legends

Figure1.Geographicrangesandsamplinglocationsof L.xanthoides (white), L.editha

(lightgrey), L.dione (darkgrey).SeeAppendixIforlocalityinformation.Species’ rangesafterScott(1986)andPyle(2002).Symbolsrefertohaplotypesfoundin population:AG( ),HO( ),PW( ),andXCC( ).SeetextandFigure3for haplotypedescriptions.

Figure2.Schematicoftheundersideleftwingsof Lycaena showingmorphological charactersusedinthisstudy.1,LengthofCu 2veininhindwing;2,LengthofR 4+5 vein inforewing;3,MaximumwidthofventralhindwingM 3submarginalwhiteband, measuredparalleltoCu 1vein;4,Maximumwidthofventralhindwingblackscaling betweenwhitebandandorangelunuleincellCu 1,measuredparalleltoCu 1vein;5,Area ofdiscalbasalmaculeinventralhindwing;6,AreaofM 1discalmaculeinventral hindwing;7,AreaofM 2discalmaculeinventralhindwing;8,AreaofCu 1discalmacule inventralhindwing;9,AreaofSc+R 1medialmaculeinventralhindwing;10,Areaof

Cu 1blackaurorainventralhindwing;11,AreaofR 4+5 subapicalmaculeinventral forewing.

Figure3.MinimumspanningnetworkoftheingroupCOIIhaplotypesfoundinthis study.Lettersrefertoindividualhaplotypesandnumbersonbranchesrepresentnumber ofnucleotidedifferencesbetweenhaplotypes.Whitehaplotypeswerefoundin L. 51

xanthoides ,greyhaplotypesfoundin L.editha ,andblackhaplotypesfoundin L.dione .

HaplotypesPandUwerefoundin L.editha ,aswellastheWillametteValleypopulation of L.xanthoides .

Figure4.ConsensusofBayesianandmaximumparsimonyanalyses,withBayesian consensusbranchlengthsshown.Numbersalongbranchesshownodalsupportas

Bayesianposteriorprobability/maximumparsimonybootstrapsupport.

IIndividualsfromintermediatepopulationspossessedeitherhaplotypeQorhaplotypeS.

XLycaenaxanthoides individualscollectedfromtheWillametteValleypossessedeither haplotypePorhaplotypeU.

Figure5.Firsttwoprincipalcomponentsscoresplottedforspecimensof L.editha ( ),

L.xanthoides ( ),WillametteValley L.xanthoides ( ),andintermediatepopulations

();(a)females(b)males.

Figure6.Graphoftwocanonicalvariablesusedindiscriminantfunctionanalyses splitting L.xanthoides intotwogroupsandexcludingspecimensfromintermediate populations. Lycaena editha ( ), L.xanthoides clade‘A’( ), L.xanthoides clade‘B’

(),WillametteValley L.xanthoides ( );(a)females(b)males.

52

Tables Table1.AMOVAResults(Excoffieretal.1992)forpopulationlevelanalysesofthe L. xanthoides speciesgroup.

SourceofVariation Model AmongGroups AmongPopulations, AmongIndividuals, WithinGroups WithinPopulations (1)3Groups,basedon d.f.=2 d.f.=54 d.f.=364 species %var.=57.21 %var.=36.81 %var.=5.98 ΦCT =0.57** ΦSC =0.86** ΦST =0.94** (2)4Groups,splitting L. d.f.=3 d.f.=53 d.f.=364 xanthoides %var.=88.58 %var.=5.66 %var.=5.75 ΦCT =0.89** ΦSC =0.50** ΦST =0.94**

**P<0.001 53

Table2.Loadingsforthefirstsixprincipalcomponentsandthepercentagevariation describedbyeach;(a)females,(b)males. (a) PrincipalComponent Character 1 2 3 4 5 6 1 0.2000 0.5530 0.0607 0.1117 0.2862 0.1397 2 0.1499 0.5626 0.1596 0.1070 0.3292 0.2800 3 0.0476 0.3890 0.3569 0.5659 0.5600 0.0686 4 0.2204 0.0665 0.5810 0.4905 0.1075 0.4014 5 0.3804 0.0248 0.0378 0.0840 0.2532 0.6089 6 0.4324 0.0372 0.0937 0.0224 0.0907 0.0606 7 0.4210 0.0078 0.1005 0.1171 0.1850 0.0792 8 0.4003 0.1058 0.1351 0.0168 0.0078 0.1973 9 0.3838 0.0489 0.2356 0.1746 0.2034 0.1230 10 0.1167 0.3079 0.4395 0.5608 0.5690 0.1464 11 0.2382 0.3338 0.4676 0.2209 0.1131 0.5292 %variation described 41.66% 19.38% 10.35% 8.89% 5.08% 4.28%

(b) PrincipalComponent Character 1 2 3 4 5 6 1 0.1980 0.5810 0.0605 0.2429 0.1463 0.1125 2 0.1533 0.6072 0.0215 0.1399 0.2668 0.1482 3 0.0593 0.4149 0.0550 0.8074 0.3847 0.0085 4 0.2260 0.0295 0.5535 0.2048 0.5100 0.5377 5 0.3694 0.0375 0.0634 0.0323 0.0162 0.2710 6 0.4321 0.0143 0.0997 0.0688 0.0413 0.0364 7 0.4521 0.0256 0.0123 0.0007 0.0414 0.1083 8 0.3896 0.1402 0.1663 0.0927 0.1933 0.2690 9 0.3511 0.1042 0.3111 0.0965 0.0495 0.1563 10 0.1446 0.0901 0.6305 0.3496 0.612 0.0777 11 0.2432 0.2826 0.3878 0.2859 0.2851 0.6978 %variation described 39.75% 16.41% 11.78% 7.36% 6.27% 5.00% 54

Figure1 55

Figure2 56

Figure3 57

Figure4 58

Figure5 59

Figure6 60

AppendixI.Samplinglocalities,sizes,andhaplotypedistribution.N 1=numberof specimensincludedinmolecularanalyses,N 2=numberofspecimensincludedin morphometricanalyses; L.dione specimenswerenotincludedinmorphometricanalyses. Species # Locality N1 N2 Haplotypes (Count) L.xanthoides 1 LagoonValleyRegionalPark,SolanoCo.CA. 10 7 A(8),B(2) 38.3361°N,122.0156°W. 2 NorthSacramento,SacramentoCo.CA.38.5996 10 13 A(10) °N,121.4718°W. 3 Colfax,PlacerCo.CA.39.0954°N,120.9488°W. 10 8 A(4),B(6) 4 LilyPond,ColusaCo.CA.39.3134°N,122.7104 11 16 A(10), °W. C(1) 5 MendocinoPass,GlennCo.CA.39.7943°N, 10 17 A(10) 122.935°W. 6 PineGrove,LakeCo.CA.38.8282°N,122.7311 3 3 A(3) °W. 7 ChilesValley,NapaCo.CA.38.5568°N,122.365 10 6 A(6),B(4) °W. 8 CarmelValley,MontereyCo.CA.36.4001°N, 10 8 A(6),D(4) 121.5773°W. 9 PinnaclesCampground,SanBenitoCo.CA. 10 3 A(10) 36.4896°N,121.1511°W. 10 TehachapiMountains,KernCo.CA.35.0718°N, 10 20 A(3),B(5), 118.4836°W. E(2) 11 Caliente,KernCo.CA.35.291°N,118.627°W. 2 2 B(1),E(1) 12 CuyamaRiver,SantaBarbaraCo.CA.34.8931°N, 10 13 A(5),B(4), 119.534°W. G(1) 13 GreenhornMountains,KernCo.CA.35.6684°N, 10 18 B(8),E(2) 118.5297°W. 14 MitchellCanyon,ContraCostaCo.CA.37.9204 5 4 A(4),F(1) °N,121.9418°W. 15 SherwinGrade,TulareCo.CA.35.9776°N, 3 2 B(2),E(1) 118.4672°W. 16 FreemanCreek,TulareCo.CA.36.135°N, 3 3 B(3) 118.4739°W. 17 SilverCanyon,InyoCo.CA.37.4031°N, 11 12 A(11) 118.2353°W. 18 RockCreek,MonoCo.CA.37.5282°N,118.6382 10 15 A(10) °W. 19 SnowMountain,ColusaCo.CA.39.3457°N, 1 3 B(1) 122.7569°W. 20 KennedyMeadows,TulareCo.CA.36.0459°N, 1 0 B(1) 118.1332°W. 21 Eugene,LaneCo.OR.44.0497°N,123.1791°W. 5 3 P(4),U(1) 22 LakeoftheWoods,KernCo.CA.34.8123°N, 9 7 I(9) 119.0108°W. 23 BuckmanSpringsRoad,SanDiegoCo.CA. 7 5 H(1),I(6) 32.7169°N,116.5012°W. 24 LakeHemet,RiversideCo.CA.33.6702°N, 10 16 H(1),I(8), 116.6993°W. J(1) 25 BlueJayCamp,OrangeCo.CA.33.6531°N, 6 6 H(2),I(4) 117.4517°W. 61

26 PineCreek,SanDiegoCo.CA.32.8548°N, 10 7 I(10) 116.5228°W. 27 LakeHenshaw,SanDiegoCo.CA.33.2337°N, 10 15 H(5),I(4), 116.7574°W. J(1) 28 LakeSilverwood,SanBernardinoCo.CA. 10 15 I(7),O(3) 34.2717°N,117.2883°W. 29 Lebec,KernCo.CA.34.8243°N,118.8796°W. 10 9 K(9),L(1) 30 MojaveRiverWash,SanBernardinoCo.CA. 2 0 I(1),M(1) 34.3078°N,117.332°W. L.dione 31 RedDeerRiver,Alberta,Can..51.8333°N,113 10 X(2),Y(2), °W. Z(4), BB(1), CC(1) 32 Manchester,CascadeCo.MT.47.6°N,111.4389 2 X(2) °W. 33 BeartoothCreek,Lewis&ClarkCo.MT.46.8655 1 AA(1) °N,112.006°W. 34 Power,TetonCo.MT.47.7333°N,111.5089°W. 1 Z(1) 35 OklahomaCity,OklahomaCo.OK.35.6433°N, 1 Y(1) 97.2125°W. L.editha 36 WarnerMountains,ModocCo.CA.41.1666°N, 10 10 Q(9),R(1) 120.2963°W. 37 OchocoMountains,CrookCo.OR.44.4502°N, 6 0 Q(4),W(2) 120.7492°W. 38 NorthForkPayetteRiver,ValleyCo.ID.44.3028 10 13 P(5),Q(1), °N,116.0813°W. T(2),U(1), V(1) 39 LongGulchRoad,ElmoreCo.ID.43.559°N, 10 9 P(4),Q(4), 115.6075°W. T(2) 40 Quincy,PlumasCo.CA.39.9397°N,120.9525 14 16 Q(14) °W. 41 DonnerSummit,NevadaCo.CA.39.3266°N, 10 14 P(6),Q(1), 120.393°W. S(3) 42 Clio,PlumasCo.CA.39.7432°N,120.5802°W. 9 6 Q(8),S(1) 43 OlympicVillage,PlacerCo.CA.39.198°N, 5 5 P(3),Q(1), 120.2329°W. S(1) 44 SpringGarden,PlumasCo.CA.39.8949°N, 9 11 Q(9) 120.7861°W. 45 LittleTruckeeRiverHeadwaters,NevadaCo.CA. 2 1 Q(1),S(1) 39.4939°N,120.4202°W. 46 Sumpter,BakerCo.OR.44.7485°N,118.2034 10 9 Q(9),S(1) °W. 47 LittleCamasReservoir,ElmoreCo.ID.43.3285 2 2 P(1),Q(1) °N,115.392°W. 48 MaggieSummit,ElkoCo.NV.41.6844°N, 10 9 Q(5),S(5) 116.0415°W. 49 CamasCreek,LakeCo.OR.42.2139°N,120.2269 10 0 Q(9),S(1) °W. 50 WestCascadeMountains,LaneCo.OR.43.5501 10 0 Q(10) °N,122.3842°W. 51 EastCascadeMountains,KlamathCo.OR. 10 0 Q(10) 42.8976°N,121.8298°W. 62

52 WallowaMountains,WallowaCo.OR.45.6218 11 0 Q(11) °N,117.7233°W. 53 TiogaPass,TuolumneCo.CA.37.911°N, 9 9 P(8),U(1) 119.2579°W. 54 CrookedCreek,InyoCo.CA.37.4987°N,118.173 3 4 P(3) °W. 55 Franktown,WashoeCo.NV.39.2415°N, 10 16 P(1),S(9) 119.8466°W. 56 LangCrossing,NevadaCo.CA.39.3192°N, 4 10 P(3),S(1) 120.6586°W. 57 PiutePass,MonoCo.CA.38.241°N,119.5107 3 4 P(2),S(1) °W. Intermediate 58 TrinityAlps,TrinityCo.CA.41.1215°N, 6 5 Q(1),S(5) 122.8164°W. 59 MeissLake,SiskiyouCo.CA.41.9026°N, 10 10 Q(8),S(2) 122.0724°W. 60 SouthCascadeMountains,JacksonCo.OR. 8 0 S(8) 42.287°N,122.373°W. 61 Gazelle,SiskiyouCo.CA.41.5207°N,122.5203 19 28 S(19) °W. 62 SiskiyouMountains,JacksonCo.OR.42.0915°N, 10 0 S(10) 122.4908°W.

63

APPENDIX B

INFERRING SPECIES TREES FROM DEEP COALESCENCES WHILE ACCOMMODATING GENE TREE UNCERTAINTY 64

Title:Inferringspeciestreesfromdeepcoalescenceswhileaccommodatinggenetree uncertainty. JeffreyC.Oliver InterdisciplinaryPrograminInsectScienceandDepartmentofEntomology,University ofArizona,Tucson,AZ85721,USA.

65

Abstract

Inferringevolutionaryrelationshipsamongcloselyrelatedspeciesshouldbenefit frommultiplesourcesofinformation,e.g.unlinkedgeneticmarkers.Existingmethodsof inferringspeciestreesfromgenetreesareavailable;however,mostsufferfromoneor moreliabilities,suchasunrealisticconstraintsorfailuretoaccommodateincomplete lineagesorting.HereIextendamethodofreconstructingspeciesrelationshipsbasedon multiplereconstructedgenetrees,usingthenumberofincompletelineagesortingevents

(‘deepcoalescences’)astheobjectivefunction.Thismethodprovidestwoimportant advancestophylogeneticinferencebasedonmultipleloci:(1)genetreeuncertaintyis accommodatedbydrawinggenetreesfromadistributionoftreesbasedonBayesian

MCMCsamplingand(2)speciestreeuncertaintyisaccommodatedbyprovidingsupport valuesforrelationships,basedonmultipleiterationsofthetreesearchingprocedure.

MostoftheseanalysesareperformedintheMesquitesoftwaresystem;newsoftware developedforMesquitewillbeavailableinanupcomingreleaseofMesquite.To evaluatethemethod,IusesimulatedDNAsequencedatareflectingthetypeofdata commonlyavailabletoresearchers,andcomparetheresultstoothermethodsofspecies treeinference.Ialsoprovideaworkedexampleofimplementationofthemethodona pairofcloselyrelatedgeneraoflycaenidbutterflies, Everes and Cupido .Iprovidea descriptionoftheconditionsresultinginmisleadinginferences,anddiscussimplications andextensionsofthisnewapproach.

66

Introduction

Asgenesequencedataformorelocibecomeavailable,itisbecoming increasinglypopulartobaseestimatesofphylogenyonmultiplegenegenealogies.

Becauseasinglegenetreedoesnotnecessarilyreflecttheevolutionaryrelationshipsof thespeciesbeinginvestigated(PamiloandNei,1988;Maddison,1997),itisessentialto basephylogeneticinferencesonmultiple,unlinkedloci.Incorporatingdatafrom multiplelocihasbeenimplementedinavarietyofmethods.Onewidelyusedapproach concatenatesthesequencesfromthedifferentloci,toformasingle,‘super’sequencefor phylogeneticanalyses;however,recentsimulationssuggestthatthisconcatenation approachmayleadtoerroneousinferences(KubatkoandDegnan,2007).Additionally, theconcatenationapproachassumesalllocisharethesamehistory:thisconstraintof identicalbranchlengthsandtreetopologyamonggenegenealogiesmaybeunreasonable, especiallyamongrecentlydivergedtaxa(PamiloandNei,1988).

Thereareincreasinglymoremethodstoincorporateindependentlociin phylogeneticinference,allowingeachlocusauniqueevolutionaryhistory.Oneapproach istoanalyzeeachlocusseparately,thengenerateaconsensustreeasabestestimate; however,theutilityofapproachislimited,giventhelowprobabilityofreciprocal monophylyingenegenealogiesforrecentlydivergedtaxa(HudsonandCoyne,2002;

Rosenberg,2003).Thelackofreciprocalmonophylyisaveryrealphenomenon:Funk andOmland(2003)found23%ofanimalspeciessurveyedwerereconstructedas paraphyleticorpolyphyleticbasedonmitochondrialDNAsequences.Thatgene genealogiesdonotalwaysreflectspecies’historiesisaproductofthepopulationgenetic 67 processesunderlyingthetransmissionofgenesthroughtime(Tajima,1983).Methods accommodatingthosepopulationgeneticprocessesresponsibleforthediscordance betweengenetreesandspeciestreeswouldallowmoreinformedinferencesofspecies phylogenies.Onesuchsourceofdiscordance,incompletelineagesorting,often confoundsourabilitytoinferspeciesphylogenies(HudsonandCoyne,2002;Funkand

Omland,2003),soitwouldbedesirableforinferencemethodstoincorporatethe processesleadingtothisphenomenon.

Toallowforthepossibilityofincompletelineagesorting,onecanusethenumber of‘deepcoalescences’asanobjectivefunction,andfindthesetofspeciestreeswhich minimizesthenumberofdeepcoalescencesforasampleofgenetrees(Maddison,1997).

Deepcoalescencesoccurwhenallelesfromalineagecoalescedeeperintimethanthe splittingofthatlineagefromanotherlineage(Figure1).Thenumberofdeep coalescencescanbecountedbyfittinggenegenealogieswithinaspeciestreeand countingthenumberof‘extra’genelineagespresentateachdivergenceevent.

Incorporatingthepopulationgeneticprocessoflineagesorting,byusingtheparsimony baseddeepcoalescencecriterion,providesamoreinclusivemeansofestimatingspecies’ histories.

Inathoroughexplorationofparameterspace,MaddisonandKnowles(2006) demonstratedthatthetrueevolutionaryhistoryofspecies’maybeinferredminimizing deepcoalescenceswithmoderatenumbersoflociandcopiessampled.However,this approachcouldbegreatlyimprovedintwoways.First,thereisalmostalwayssome degreeofuncertaintyininferredgenegenealogies.Amethodwhichcouldaccommodate 68 theuncertaintyingenetreeswouldbetterreflectourconfidenceinspeciestree relationships.Thisaccommodationofuncertaintyleadseasilytothesecond improvement,whichwouldprovidesomemeansofsupportforrelationshipsinthe inferredspeciestrees.Thissecondimprovementwouldresamplethegenegenealogiesto providemeasuresofsupportforrelationshipsinthespeciestree.

Inthispaper,Iexplicitlydescribethemethodofinferringspeciestrees minimizingthenumberofdeepcoalescencescriterionbyresamplingdistributionsof genegenealogies.Followingthedescription,Ievaluatethemethodwithsimulateddata andcomparetheresultstoothermethodsofspeciestreeinference.Finally,Iprovidea workedexampleontwocloselyrelatedgeneralycaenidbutterflies, Cupido (Schrank)and

Everes (Hübner).Iusethemethodtodetermineifrecenttaxonomictreatments

(Gorbunov,2001;Warren,2005),synonymizing Everes with Cupido ,aresupportedby evolutionaryrelationships.

The Method

Thegoalofthismethodistoinferspeciesrelationshipsbasedongene genealogieswhileaccommodating(1)genetreeuncertaintyand(2)speciestree uncertainty.Ifirstpresentaninformaldescriptionofthemethod,followedbytheexplicit descriptionofthecurrentimplementation.Multiplelociaresampledtogenerategene sequencedataforspecimens;datafromeachlocusareanalyzedseparatelytocreatea distributionofgenetrees.Thisdistributionofgenetreeswillideallyreflectthe confidenceinindividualpartitionsbyfrequencyoftheiroccurrenceinthedistribution. 69

Toestimateaspeciestree,asinglegenegenealogyforeachlocusisdrawn,atrandom withreplacement,andusedtoinferthespeciestreebasedonanoptimalitycriterion,in thiscase,theminimumnumberofdeepcoalescences.Topologicalvariationamonggene genealogiesrepresentsuncertaintyinthegenetree,andisincorporatedintoanalysesby resamplingthesegenegenealogiestogenerateadistributionof species trees.The distributionofspeciestreescanbesummarized,forexample,asaconsensusofall

‘optimal’speciestreesrecoveredintheresamplingprocedure.Theconsensusshould reflectthefrequencyatwhichpartitionsinthespeciestreewereencounteredduringthe resamplingprocedure,andthustheuncertaintyofspeciestreetopology.Figure2 providesaschematicillustrationofthemethod.

Inthestudypresentedhere,Isampledmultipleloci,andgeneratedadistribution ofgenegenealogiesusingBayesianMCMCanalyses(see‘Data’belowforspecific conditionsofBayesiananalyses)foreachlocusseparately.Treessampledbeforelog likelihoodscoresstabilizedandrunsconvergedwerediscarded.Asinglegenegenealogy wasselectedfromthedistributionofgenealogiesforeachlocus,andaspeciestreewas inferredusingtheTreeSearchprocedureinMesquite(W.P.MaddisonandD.R.

Maddison,2007),minimizingthenumberofdeepcoalescencesformultipleloci.The speciestreeinferencestepwasrepeated100times,drawinganewgenegenealogyfor eachlocusduringeachspeciestreesearch.Allinferredspeciestreesweresavedtoafile andsummarizedinasingletree,usingthemajorityruleconsensustreefunctioninPAUP

(Swofford,2001);thefrequencyofapartitionrecoveredinthespeciestreeinferencestep isusedasameasureofuncertaintyforrelationshipsintheinferredspeciestree.Two 70 additionalmoduleswerewrittenfortheMesquitesoftwarepackagetoaccomplishthe resamplingofgenegenealogies;theyareavailableonrequestfromtheauthor,alongwith instructionsforuse.

The Data

SimulatedData

AlldataweresimulatedintheMesquitesoftwareversion2.0beta(W.P.

MaddisonandD.R.Maddison,2007),usingtheGenesispackage(Maddisonand

Maddison,2005)forcharacterdatasimulation.Foreachof10replicates,Isimulateda speciestreewith12terminaltaxaunderUniformSpeciation,withatotaltreedepthof

40N e,whereN e=100,000.Foreachspeciestree,Isimulatedthreegenegenealogies,one correspondingtoahaploid,mitochondrialmarker(N e=25,000)andtwocorrespondingto diploid,nuclearmarkers(N e=100,000),samplingtwoallelesfromeachspeciesforeach locus(24allelestotalperlocus).Eachgenegenealogywasusedtosimulateasingle

DNAcharactermatrixof1000characters.AlllociusedanHKY+Gmodelofevolution, withatransition/transversionratio=3.0andadiscrete,4categorygammawithshape parameter=0.8.Theequilibriumcharacterstatesvalueswere:A=0.3,C=0.2,G=0.2,

T=0.3.Toreflectdifferencesinmutationratesbetweenmitochondrialandnuclearloci,I usedascalingfactor=1.15 ×10 8forthefirst(mitochondrial)locus,andascaling factor=2.875 ×10 9forthefirstandsecond(nuclear)loci.(SeeMaddisonandKnowles

[2006]foradiscussionofparametervaluesandscalingrates). 71

Eachcharactermatrixwasthenusedtogenerateadistributionofgene genealogiesbysamplingtreesfromtwoMCMCrunsoffourchainseachinMrBayes

3.1.1(HuelsenbeckandRonquist,2001).TheMCMCsamplingwasrunfor2,000,000 generations,samplingtreesevery1,000generations,withanHKY+Gmodelof evolution,andonlythosetreessampledaftertheburninphasewereusedforsubsequent analyses.Theburninphasewasdeterminedtoendwhenthetworunshadconvergedand theloglikelihoodscoresdidnotincreaseinsubsequentgenerations.Inall10replicates, likelihoodscoresforeachrunplateauedby1.5milliongenerations,andthemeasureof convergence,thestandarddeviationofthesplitfrequencies(HuelsenbeckandRonquist,

2001),droppedbelow0.05.Thisresultedinthefinal5milliongenerations,or5000 trees,foreachlocusbeingincludedinsubsequentanalysesforeachreplicate.The standarddeviationofsplitfrequenciesafter2milliongenerationsrangedfrom0.006to

0.027.

Tosamplegenetreesforspeciestreeinference,Icreatednewtreeblocks,one correspondingtoeachlocus,frompostburnintreesfrombothruns.Iperformedtwo speciestreeinferences;thefirstsampledthemitochondriallocusandonlyoneofthe nuclearloci(twolocitotal),whilethesecondsampledthemitochondriallocusandboth nuclearloci(threelocitotal).Forspeciestreeinference,asinglegenetreewasdrawn fromeachtreeblock,andthespeciestreewasinferredusingtheMinimizeDeep

Coalescences(multipleloci)criterioninMesquite,employingtheNNIbranchswapping algorithm.Thiswasrepeated100times,andtheresultsfromthe100searcheswere summarizedusingtheconsensustreefunctioninPAUP4.0b10(Swofford,2001).The 72 frequencyofeachpartitioninthespeciestreeisusedasmeasureofuncertaintyinspecies treeinference.Forspeciestreeinferenceprocedure,Isavedthe10besttrees

(MAXTREES=10)duringNNIbranchswappingforeachreplicate.Additionally,for eachreplicateIperformedinferencesbasedononlytwoloci(onenuclearandone mitochondrial),savingonlyasingletree(MAXTREES=1)duringbranchswapping.For eachofthethreeanalyses,Iperformedonetailedttests,todetermineifthecorrect partitionssupportedbythespeciestreeinferenceprocedure(observedatafrequencyof

0.5orhigher)werecharacterizedbylongerbranchesinthetruespeciestreethanthose unsupportedpartitions(observedatafrequencylessthan0.5).Thecategorizationofthe partitionfrequency(acontinuousvariable)forttestsisrelevantbecausethosepartitions encounteredatafrequencylessthan0.5willnotberepresentedinastandardmajority ruleconsensustree.

Icomparethismethodtotwoadditionalapproachestospeciestreeinference, basedontheconsensusgenegenealogies.Foreachlocus,Icomputedaconsensus genealogyusingthe‘SUMT’commandinMrBayes,includingonlytreessampledafter theburninphase.Usingtheseconsensusgenegenalogies,I(1)inferredthespeciestree asthemajorityruleconsensustreeoftheBayesianconsensusgenegenealogiesand(2) usedamodifiedversionofthemethodpresentedbyMaddisonandKnowles(2006).

Briefly,theconsensusgenegenealogieswereusedtoinferaspeciestreeusingMinimize

DeepCoalescencescriterioninMesquite,performingSPRbranchswapping,keeping onlyasinglebesttree(MAXTREES=1).Iperformedthesetwoanalysesonasetoftwo loci(onemitochondrialandonenuclear)andonasetofallthreeloci. 73

EmpiricalData

Asaworkedexample,Iinvestigatedtherelationshipsamongthemembersoftwo generaoflycaenidbutterflies. Everes (thetailedblues)and Cupido (thecupids)have historicallybeendistinguishedfromoneanotheronthebasisofasinglecharacter: Everes specieshaveahairlike‘tail’projectingfromtheposteriorendofthehindwing,whileall

Cupido lackthischaracter.Recenttreatmentsofthesetaxa(Gorbunov,2001;Warren,

2005)questionthedistinctionbasedonasinglecharacter,andhavereclassifiedall

Everes speciesunderthegenus Cupido .Iusethemethodpresentedheretodetermineif thereissignificantevidencefororagainstmonophylyofbothgenera.Sixspeciesof

Everesandfivespeciesof Cupido weresampled,withmostspeciesrepresentedbyat leasttwospecimens;thecloselyrelatedspecies, fischeri ,wasincludedasthe outgrouptaxon.

Togeneratedistributionsofgenetrees,Isampledonemitochondriallocusand onenuclearlocus.Forthemitochondriallocus,Isequencedaportionofcytochrome oxidasesubunitsIandII(COIandCOII,respectively),usingtheprimersRon,Nancy,

Tonya,andHobbesforCOI,andPierreandEvaforCOII(CaterinoandSperling,1999;

MonteiroandPierce,2001).Althoughthislocusrepresentstwocodinggenes,itisnot appropriatetoconsiderthegenesasseparate,independentunlinkedmarkers.Because

COIandCOIIarephysicallyadjacentonthemitochondrialgenome,theyalmost certainlyshareanevolutionarypastwithlittletonorecombinationbetweenthetwo subunits.Forthenuclearmarker,Isequencedelongationfactor1alpha(EF1a),using 74 theprimersef44fandefrcM4r(MonteiroandPierce,2001).Bothlociweresequencedin bothdirectionsonanAppliedBiosystems3730XLDNAAnalyzerbytheGenomic

AnalysisandTechnologyCore(UniversityofArizona,Tucson,AZ),consensus sequencesgeneratedwiththeaidofphred/phrap(Green,1999;GreenandEwing,2002) andtheChromaseqpackageforMesquite(D.R.MaddisonandW.P.Maddison,2007), andalignmentsweremadebyeyewiththeaidofMesquite.

Ianalyzedeachgeneseparately,running,foreachlocus,twoindependentMCMC replicatesof4chainseach.Inhierarchicallikelihoodratiotests(SullivanandSwofford,

1997),bothlocifitamodelofGTR+I,whichwasusedinMrBayesMCMCof

10,000,000generations,samplingtreesevery1000generations.Treessampledbefore theloglikelihoodscoresstabilizedandthestandarddeviationofsplitfrequencies

(HuelsebeckandRonquist,2001)droppedbelow0.005(burninphase)werediscarded.

Thestandarddeviationofthesplitfrequenciesdroppedbelow0.005after1.5million generations,soonlytreessampledinthelatter8.5milliongenerationswereusedin subsequentanalyses.Toinferthespeciestreefromthetwodistributionsofthesampled loci,Icreatedanewtreeblockwithpostburnintreesforeachlocus,andsampledthese distributionsfor100searchreplicatesusingtheMinimizeDeepCoalescences(multiple loci)criterioninMesquite.Foreachsearch,IusedtheNNIbranchswappingalgorithm, andsummarizedthetreesusingtheconsensustreefunctioninPAUP4.0b10(Swofford,

2001)toinferaspeciesphylogeny.Thisprocesswasperformedtwice,savingeitherone besttree(MAXTREES=1)ortenbesttrees(MAXTREES=10)persearchreplicate. 75

Inadditiontotheinferenceproceduredescribedabove,Iassessedsupportfor monophylyin Everes and Cupido byperformingconstraintsearchpermutations.Inthis process,asetofgenegenealogiesissampledandusedtoperformtwotreeinferences:(1) anunconstrainedsearch,asdescribedaboveand(2)aconstrainedsearch,wherethe inferredspeciestreeisconstrainedbysomepredefinedtopology.Ifthedataare consistentwithmonophylyofthetaxabeinginvestigated,theconstraintsearchshould notproduceworseoptimaltrees(i.e.treeswithhigherdeepcoalescencecost)thanthe unconstrainedsearch.Ifirstperformed20pairedsearchestogenerateanobserved distributionof δ,thedifferenceinthenumberofdeepcoalescencesbetweentreesfrom unconstrainedsearchesandtreesfromsearcheswhere Everes and Cupido areboth constrainedtobemonophyletic.

Toevaluateconditionswhichcouldleadtotheobserveddistributionof δ,Iused coalescentsimulationsofgenetrees.Onamodelspeciestreeofthesix Everes species, five Cupido species,andoneoutgroupspecies,IsimulatedgenetreesusingMesquite’s

ContainedCoalescencemodule;onegenetreecorrespondedtoanucleargene(effective populationsize=N e),andonegenecorrespondedtoamitochondrialgene(effective populationsize=¼N e).Inthemodelspeciestree, Everes and Cupido areboth monophyletic,andthenumberofallelessampledinsimulatedgenetreesmatchedthe actualnumbersampledinempiricaldata.Itestedthreemodelsofevolution,which differedonlyinTD,orthetimebetweendivergenceoftheancestorsoftwogeneraand thediversificationwithineachgenus(Figure3).ThethreemodelscorrespondedtoT D valuesof10N e,1N e,and0.1N e;inallmodels,thetotaltreedepthwas20N e.Simulated 76 distributionsof δweregeneratedwith20replicatepairedsearches,andmodelswere rejectedifthe95%confidenceintervalsoftheobservedandsimulateddistributionsdid notoverlap.Forallpairedsearches,amaximumof10treesweresavedduringeachSPR branchswappingreplicate.

Results & Discussion

Simulateddata

Themethodpresentedheresuccessfullyreconstructedamajorityofthetrue partitionsinaspeciestree(74%for2loci,MAXTREES=1;78%for2loci,

MAXTREES=10;and83%for3loci,MAXTREES=10).Thosepartitionswhichwere recoveredinlessthan50%ofthespeciestrees(andthusnotpresentintheconsensus speciestree),werecharacterizedbyshorterbranchesinthetruespeciestree(ttest:2loci,

MAXTREES=1:t 88 =6.89,p<0.001;2loci,MAXTREES=10:t 88 =7.23,p<0.001;3loci,

MAXTREES=10,t 88 =7.08,p<0.001).Thisresultisnotunexpected,asshortinternodes aremorelikelytoproducegenegenealogiesthatarenotrepresentativeofspecies’history thanarelonginternodes(PamiloandNei,1988).Figure4showstherelationship betweenthelengthofabranchforapartition,andthefrequencyatwhichthatpartition wasrecoveredinthespeciestreeinferencestep.

Weencounteredtwotypesoferrorsinspeciestreeinferencesinthisstudy: missedpartitionsandfalsepositives.Missedpartitionsarethosepartitionsinthetrue speciestreethatoccurinlessthan50%oftreesrecoveredduringthespeciestree inferenceprocedure.Falsepositivesarethosepartitionsthatdidnotexistinthetrue 77 speciestree,butoccurinatleast50%ofthetreesrecoveredinspeciestreeinference.

Figure5showstheerrorcountforthethreemethodspresentedhere.Speciestreesbased onamajorityruleconsensusencounterednofalsepositives,buthadthehighest occurrenceofmissedpartitions.ThemethodpresentedbyMaddisonandKnowles

(2006)hadthelowestmissedpartitionrate,butthehighestfalsepositiverate(onaverage,

1.45falsepartitionsperspeciestree).Thenewmethodpresentedinthisstudyhada lowerfalsepositiveerrorratethantheMaddisonandKnowlesapproach,andamissed partitionerrorrateintermediatebetweentheconsensusgenetreeandMaddison&

Knowles(2006)approach.Themethodpresentedhereprovidesareasonable compromisebetweentheothertwomethods:therecoveryratefortruepartitionsishigher thanforspeciestreesinferredasconsensustreesofgenegenealogyconsensustrees, whilethenumberofpositivelymisleadinginferencesislowerthanwhenasinglespecies treeisinferredusingthedeepcoalescencecriterionbasedonconsensusgenegenealogies.

Amoredetaileddiscussionofconditionsresultinginpositivelymisleadinginferences underthismethodcanbefoundbelow.

EmpiricalData

Figure6showsconsensusgenegenealogiesandinferredspeciestrees.The placementoftwotaxa, Evereslacturnus and Cupidoprosecusa ,suggestthat Everes and

Cupido arenotreciprocallymonophyletic.Inthemitochondrialtree(Figure6a),neither isplacedwithinthecladecontainingtheremainingmembersoftheirrespectivegenus: E. lacturnus isreconstructedassistertoacladecontainingallremaining Everes and Cupido , 78 while C.prosecusa isnestedwithinthecladeofremaining Everes species.Inthe inferredspeciestrees,thereislittleevidencefororagainstthemonophylyofeither genus.Oneweaklysupportedclade,containingall Cupido species,ofthespeciestree frominferredfromMAXTREES=1treesearchesislikelyafalsepositive.Twolinesof evidencecastdoubtonthisinference:first,themitochondrialtreeisindirectconflict

(nonmonophyletic Cupido iswellsupported)andsecond,thespeciestreesinferredfrom amorethoroughsamplingofgenegenealogies(Figure6d)doesnotsupportthis relationship.Infact, Cupido wasonlyrecoveredasmonophyleticatafrequencyof0.14 intheMAXTREES=10speciestreesearches.Thespeciestreeinferencesalonedonot providesignificantsupportfororagainstmonophylyof Everes and Cupido .

Inpairedsearchpermutations,searchesconstrainingbothEveres and Cupido to bemonophyleticconsistentlyproducedworsetreesthanunconstrainedsearches.On average,speciestreesconstrainedtorecovermonophyletic Everes and Cupido had12.2 moredeepcoalescencesthanspeciestreesfromunconstrainedsearches(δobs =12.2±

3.9).Intwoofthesimulatedmodels(T D=10N eandT D=1N e),constraintsearchesdid notconsistentlyproduceworsetreesthanunconstrainedsearches(Figure7)andarenot consistentwithobserveddata.However,onemodel,inwhichtherewasrelativelylittle timebetweendivergenceofthegeneraandwithingenusdiversification(TD=0.1N e), constrainedsearchesconsistentlyproducedtreeswithhigherdeepcoalescencecostthan unconstrainedsearches( δ0.1Ne =4.6±3.3),albeittoalesserdegreethantheempirical data.Theseresultsindicatetheconditionsunderwhichthetwogeneramayhaveevolved iftheyaremonophyletic:arelativelyshortintervalbetweenthedivergenceofthe Everes 79 and Cupido lineagesandthediversificationwithineachgenusmayhaveledtothe observedlowlevelofsupportformonophyly.Estimatesofwithinandbetweenlineage divergencetimesarenecessarytoassesssupportforthereclassificationof Everes species underthegenus Cupido (Gorbunov,2001;Warren,2005)andunderstandtheevolutionof the‘tails’distinguishing Everes from Cupido .

Conditionsresultinginpositivelymisleadinginferencesunderthedeepcoalescence criterion

Itisessentialtounderstandthereasonsfor,andifpossible,reducethechancesof, misleadinginferencesinphylogeneticbiology.Thereareatleastthreescenarioswhich canleadtofalsepositiveswheninferringspeciestreesfromdeepcoalescences.Thefirst conditionoccurswhenamajorityoftheresolvedgenegenealogiesareindirectconflict withthetruespeciestree;thisoftenoccurswhentimebetweendivergenceeventsistoo shorttoallowforlineagesortingtooccur(PamiloandNei,1988).Thisproblemis commontoallmethodsofphylogeneticinferencebasedongenegenealogies,notjust thosebasedondeepcoalescences,andthechanceofsuchmisleadinginferencesmay decreaseasthenumberoflocisampledincreases(PamiloandNei,1988;butseeDegnan andRosenberg,2006).Thistypeoferrorwasthemostcommonlyencounteredinour simulateddatasets.Forthesearchesbasedon2loci,thesefalsepositivesoccurredfour andsixtimesforMAXTREES=1andMAXTREES=10,respectively.Forthesearches basedon3loci,allfourfalsepositivesencounteredwereofthistype. 80

Falsepositivesmayalsoariseduetosamplingeffects:iftheconsensusspecies treeisbasedontoofewinferredspeciestrees,itmaysupportpartitionsthatdonotreflect thetruespeciestree.Thisismostlikelytooccurwhenthereisuncertaintyinthegene genealogyandtoofewspeciestreeshavebeensampled.Therateofthesefalsepositives canbedecreasedbyamorethoroughsamplingoftreespace:threeoftheeightfalse positivesintheMAXTREES=1searchesofsimulateddatareflectedthistypeoferror, whilesettingMAXTREES=10resultedinnoerrorsofthistypebeingencountered,for both2lociand3locisearches.

Thethirdconditionresultinginpositivelymisleadinginferencesisinherentin methodsusingthenumberofdeepcoalescencesastheoptimalitycriterion.Theproblem ariseswhengenegenealogiesareindirectconflictwitheachother,andoneofthegene genealogiesreconstructsaspeciesasparaphyletic(Figure8).Inthiscase,althoughthe evidenceisequivocal,oneresolutionofthespeciestreewillbechosenoveranother,due totheoptimalitycriterion.IntheexamplepresentedinFigure8,SpeciesTree1hasa higherdeepcoalescecostthananalternativeresolution,SpeciesTree2.IfSpeciesTree

1reflectsthetruehistory,itwillberecoveredatalowerfrequencythanSpeciesTree2, whichhasa“better”deepcoalescencescore.Iflocus2wasmonophyleticinspecies1, bothspeciestreeresolutionswouldhaveadeepcoalescencecostof1,andwouldbe recoveredatequalfrequencyinspeciestreesearches.Theuncertaintyinspeciestree inferencethatwouldresultisdesired–ifevidencefromdifferentlociconflicts, inferencesshouldreflectthatuncertainty.Admittedly,fortwoloci,theincorrectspecies treewillonlybechosenifthegenegenealogydisplayingtheparaphyleticspeciesisthe 81 incorrectspeciestree.IntheexampleshowninFigure8,ifSpeciesTree2actuallydid reflectthetruehistory,itwouldberepresentedatahigherfrequencyintreesearchesthan

SpeciesTree1,andtheconsensusspeciestreewouldnotbemisleadingforthispartition.

Thiserroronlyoccurredonceineachofthetwo2locisearches(ca.1%errorrate)and neverinthe3locisearches;inthetwo2locicases,thesamefalsepartitionwaswell supported(recoveredin95%and90%oftheMAXTREES=1andMAXTREES=10 searches,respectively).Theavoidanceofthisfalsepositiveinsearchesbasedon3loci demonstratesthepotentialutilityofadditionalmarkers,butadditionalgenealogiesmay alsoconflictwiththetruehistoryandcontributetomisleadinginferences(Degnanand

Rosenberg,2006).

ImplicationsandExtensions

Themethodpresentedhereprovidesameanstoinferspeciestreesfrommultiple loci,withoutconcatenationofdatasets.Additionally,itofferstheflexibilityofsampling multipleallelesfromasinglespecies,andallowsinferencesevenincaseswhendifferent numbersofallelesaresampledamongloci.Themethodpresentedhere,aswellasother recentlydevelopedinferenceprocedures(Edwardsetal.,2007;CarstensandKnowles,

2007;LiuandPearl,2007)allowspecies’relationshipstobeestimatedwithout constraininggenegenealogiestobereciprocallymonophyletic.Asevidencedinthe lowerrecoveryrateoftruepartitionsusingaconsensusofgenegenealogiestoestimate thespeciestree(61%and73%for2lociand3lociconsensuses,respectively),reciprocal 82 monophylyisnotexpectedformostlociforrecentlydivergedtaxa(HudsonandCoyne,

2002).

Otherinferenceproceduresusingmultiplegenegenealogiestoinferaspeciestree includeBayesianestimationofspeciestrees(“BEST”,Edwardsetal.,2007;Liuand

Pearl,2007)andestimationofspeciesphylogenybasedongenetreecoalescence probability(“ESP”,CarstensandKnowles,2007).Althoughthelatterdoesnot incorporategenetreeuncertainty(CarstensandKnowles,2007),bothprovideameansof assessingthelikelihoodofaspeciestreeforagivensetofgenegenealogies.Thesetwo methodsdonotconstraingenetreestobeperfectlyconcordantwithspeciestrees,andby usingthecoalescentprobabilityastheobjectivefunction,incorporatethepopulation geneticframeworkessentialtoinferringspeciesphylogeniesfrommultipleloci.

Inferenceofspeciestreesfromgenetreesfacetwoimportantchallenges,based primarilyontheoptimalitycriterionusedforevaluatingalternativespeciestrees.For approachesbasedonthedegreeofdiscordancebetweenspeciestreesandgenetrees

(Maddison,1997;MaddisonandKnowles,2006;thisstudy),conditionsleadingto

“anomalousgenetrees”maypreventaccuratespeciestreeinference(Degnanand

Rosenberg,2006).Shortinternodesinthetruespeciesphylogenycanleadtodiscordance betweenthetruespeciestreeandgenetrees,andincreasetheprobabilityofincorrect inferences(PamiloandNei,1988).Moreimportantly,forspeciestreeswithfiveormore taxa,thisdoesnotsimplyresultinphylogenetic“noise”,becausediscordantgenetrees areactuallymorelikelythangenetreesthatarecongruentwiththetruespecies phylogeny(DegnanandRosenberg,2006).Thus,anyspeciestreeinferenceapproach 83 basedonspeciestreegenetreediscordancemayleadtothe“wickedforest”ofDegnan andRosenberg(2006),whereincreasedgenetreesamplingleadstoincreasingsupport foranincorrectspeciestree.Theparallelsbetweenthesepositivelymisleading inferencesandthephenomenonoflongbranchattraction(Felsenstein,1978)meritfuture attention.

Thesecondchallengeisfacedbyspeciestreeinferencesbasedoncoalescent likelihoodsofgenetrees(RannalaandYang,2003;Edwardsetal.,2007;Carstensand

Knowles,2007).Thepopulationsizeparameter, θ,iscriticalincalculatinggene genealogycoalescenceprobabilities(Rosenberg,2002;RannalaandYang,2003); however,estimatesofthisparameterareoftenaccompaniedbywideconfidenceintervals

(BeerliandFelsenstein,2001;RannalaandYang2003;Edwardsetal.,2007),andit remainstobeseenhowuncertaintyin θaffectsspeciestreeinferenceswhichrelyonthis parameterforlikelihoodcalculations.Thedependenceonparameterestimatesisa challengetoallmodelbasedinferences,andadditionalevaluationofthesensitivityof speciestreeinferencestovariationin θarenecessarytodetermineappropriateconditions forgenetreelikelihoodapproaches.

Thereareampleopportunitiesforimprovementofthismethod.Theinferenceof thespeciestreetopologyinthismethoddoesnotresultinestimatesofdivergencetimes onthespeciestree.Divergencetimescouldbeestimatedinthemannercurrentlyusedto datedivergencetimesofsupertrees:moleculardivergencesamongtaxaareusedto estimaterelativebranchlengthsofthetree,andabsolutedatesareassignedusingthose relativebranchlengthsandnodescalibratedwithfossildata(Purvis,1995;Bininda 84

Emondsetal.,2007).Additionally,moreextensivebranchswappingalgorithms,suchas subtreepruningandregrafting(SPR)andtreebisectionandreconnection(TBR)couldbe employed.Asthenumberofspeciesincreases,thenumberofpossibletreearrangements increasesrapidly,soamorethoroughexaminationoftreespacewouldbenecessaryto improvetheprobabilityoffindingthemostoptimaltree(s).Finally,thesearchprocedure usedtoinferspeciestreesinMesquitecanuserootedgenetrees,ifataxoncanbereliably consideredasanoutgroup.Bytreatinggenetreesasrooted,thenumberofpossible rootedspeciestreesisgreatlyreduced,andsearchescanbecompletedonaconsiderably shortertimescale.Thisapproachmeritscautionhowever,andshouldonlybeemployed ifthegenetreescanbereliablyrooted.

Phylogenyestimationbasedonmultiplelociisexperiencingaperiodofexciting discovery.Thedevelopmentofmethodstoaccommodatemultiplelocihasacceleratedin recentyearsasgeneticdatabecomemoreavailableandcomputingpowercontinuesto increase.Futuremethoddevelopmentshouldconsidersomeimportantassumptionsof currentmethods,andifpossible,accommodateviolationsofsuchassumptions.For example,migrationisassumedtobelowornonexistentinmostmodels,andthedegree towhichthisassumptionisviolated,andtheeffectithasoninferences,hasbeenlittle studied.Additionally,inferenceswhichassignindividualstospecies apriori maysuffer whencrypticlineagesaresampled,ormisidentificationofspecimenshasoccurred.

Estimationprocedureswhichmakeno apriori judgments,orallowflexibilityinspecies assignment,mayprovideameanstoaccommodateuncertaintyinspecimenassignment. 85

Recognizingtheuncertaintyassociatedwithdatausedforphylogeneticestimationwill onlyincreaseourconfidencewhenmakingsuchinferences.

Currentgenetreespeciestreeestimatesofphylogenyarehierarchical,involving somedegreeofseparationbetweengenetreeinferencesandspeciestreeinferences

(CarstensandKnowles,2007;LiuandPearl,2007;thisstudy).Anidealapproachwould integrategenetreeandspeciestreeinferencesinaBayesianimportancesampling procedure,incorporatingallparametersinvolvedingenetreeestimationintothe combinedmodel,asoutlined,butnotimplemented,inLiuandPearl(2007).Genetrees evolvewithinspeciestrees,sosomeconsiderationofthenonindependenceofthetwo shouldbeincorporatedintosuchmodels.Additionally,asmoregeneticdatabecome available,andgenomescaleanalysesbecomepossible,thenonindependenceoflinked locishouldbetakenintoaccount,andideallyincluded,inestimationsofspecies’ histories.Withtheseconsiderationsinmind,currentspeciestreeinferenceapproaches arealternativepartialsolutionstothechallengeofphylogeneticestimation.These currentalternativesshouldbeeclipsedbyfutureanalyticalmethodsexplicitlydealing withchallengesinherentingenetreespeciestreeinferences,withthegoalofamore completeunderstandingofevolutionaryrelationshipsamonglineages.

Acknowledgments

ThisworkbenefitedgreatlyfromdiscussionswithD.R.Maddison,M.J.

Sanderson,andM.W.Nachman,allofwhomprovidedinvaluableinsightandadvice.

SpecimensweregenerouslyprovidedbyE.Balleto,G.C.Bozano,andA.M.Shapiro; 86

L.R.SteinassistedinDNAsequencing.ThisworkwasfundedinpartbytheCenterfor

InsectScienceattheUniversityofArizonaandanNSFDDIG(#0412447).

87

References Beerli,P.andJ.Felsenstein.2001.Maximumlikelihoodestimationofamigrationmatrix andeffectivepopulationsizesinnsubpopulationsbyusingacoalescentapproach.Proc. Nat.Acad.Sci.98:45634568. BinindaEmonds,O.R.P.,M.Cardillo,K.E.Jones,R.D.E.MacPhee,R.M.D.Beck, R.Grenyer,S.A.Price,R.A.Vos,J.L.Gittleman,andA.Purvis.2007.Thedelayedrise ofpresentdaymammals.Nature446:507512. Carstens,B.C.andL.L.Knowles.2007.Estimatingspeciesphylogenyfromgenetree probabilitiesdespiteincompletelineagesorting:anexamplefrom Melanoplus grasshoppers.Syst.Biol.56:400411. Caterino,M.S.andF.A.H.Sperling.1999. Papilio phylogenybasedonmitochondrial cytochromeoxidaseIandIIgenes.Mol.Phylogent.Evol.11:122137. Degnan,J.H.andN.A.Rosenberg.2006.Discordanceofspeciestreeswiththeirmost likelygenetrees.PLoSGenetics2:762768. Edwards,S.V.,L.Liu,andD.K.Pearl2007.Highresolutionspeciestreeswithout concatenation.Proc.Nat.Acad.Sci.104:59365941. Felsenstein,J.1978.Casesinwhichparsimonyandcompatibilitymethodswillbe positivelymisleading.Syst.Zool.27:401410. Funk,D.J.andK.E.Omland2003.Specieslevelparaphylyandpolyphyly:Frequency, causes,andconsequences,withinsightsfromanimalmitochondrialDNA.Ann.Rev. Ecol.Evol.Syst.34:397423. Gorbunov,P.Y.2001.ThebutterfliesofRussia:Classification,Genitalia,Keysfor Identification.RussianAcademyofSciences.Ekaterinburg,Russia. Green,P.1999. Phrap .http://phrap.org. Green,P.andEwing,B.2002. Phred .http://phrap.org Hudson,R.R.andJ.A.Coyne2002.Mathematicalconsequencesofthegenealogical speciesconcept.Evolution56:15571565. Huelsenbeck,J.P.andF.Ronquist.2001.MrBayes:Bayesianinferenceofphylogeny. Bioinformatics.17:754755. 88

Kubatko,L.S.andJ.H.Degnan.2007.Inconsistencyofphylogeneticestimatesfrom concatenateddataundercoalescence.Syst.Biol.56:1724. Liu,L.andD.K.Pearl.2007.Speciestreesfromgenetrees:reconstructingBayesian posteriordistributionofaspeciesphylogenyusingestimatedgenetreedistributions.Syst. Biol.56:504514. Maddison,D.R.andW.P.Maddison.2005.Genesis:Modelsofcharacter evolution.ApackageofmodulesforMesquite.Version1.01. http://mesquiteproject.org. Maddison,D.R.andW.P.Maddison.2007.Chromaseq:aMesquitemodulefor analyzingsequencechromatograms.Version0.91. http://mesquiteproject.org/packages/chromaseq. Maddison,W.P.1997.Genetreesinspeciestrees.Syst.Biol.46:523536. Maddison,W.P.andL.L.Knowles.2006.Inferringphylogenydespiteincomplete lineagesorting.Syst.Biol.55:2130. Maddison,W.P.andD.R.Maddison.2007.Mesquite:amodularsystemfor evolutionaryanalysis.Version2.0bi44. http://mesquiteproject.org . Monteiro,A.andN.E.Pierce.2001Phylogenyof Bicyclus (Lepidoptera:Nymphalidae) inferredfromCOI,COIIandEF1alphagenesequences.Mol.Phylogenet.Evol.18,264 281. Pamilo,P.andM.Nei.1988.Relationshipsbetweengenetreesandspeciestrees.Mol. Biol.Evol.5:568583. Purvis,A.1995.Acompositeestimateofprimatephylogeny.Phil.Trans.R.Soc.Lond. B.348:405421. Rannala,B.andZ.Yang.2003.Bayesestimationofspeciesdivergencetimesand ancestralpopulationsizesusingDNAsequencesfrommultipleloci.Genetics164:1645 1656. Rosenberg,N.A.2002.Theprobabilityoftopologicalconcordanceofgenetreesand speciestrees.Theor.Pop.Biol.61:225247. Rosenberg,N.A.2003.Theshapesofneutralgenegenealogiesintwospecies: Probabilitiesofmonophyly,paraphyly,andpolyphylyinacoalescentmodel.Evolution 57:14651477. 89

Sullivan,J.andD.L.Swofford.1997.Areguineapigsrodents?Theimportanceof adequatemodelsinmolecularphylogenetics.J.Mam.Evol.4:7786. Swofford,D.L.2001. PAUP*:PhylogeneticAnalysesUnderParsimony(*andother methods) ,version4.0b10.SinauerAssociates,Sunderland,MA. Tajima,F.1983.EvolutionaryrelationshipofDNAsequencesinfinitepopulations. Genetics105:437460. Warren,A.D.2005.ButterfliesofOregon:Their,DistributionandBiology. ContributionsoftheC.P.GilletteMuseumofDiversity,ColoradoState University,FortCollins,CO. 90

Figures

Figure Legends

Figure1:Exampleofdeepcoalescences.Twogenegenealogies(locus1andlocus2)are shownresolvedinthespeciestree(grey).Deepcoalescencesarecountedasthenumber of‘extra’genelineages(i.e.thosebeyondthefirst)perlocusthataspeciescontributesto itsimmediateancestrallineage.Inthisexample,therearenoextralineagesatthetime species2andspecies3diverge( t2,3 )–allelessampledfromeachspeciescoalescefor bothlocimorerecentlythan t2,3 .However,atthedivergenceofspecies1fromthe immediateancestorofspecies2andspecies3( t1,(2,3) ),therearetwoextralineages,one fromeachlocus(circles).

Figure2:Illustrationofspeciestreeinferencemethod.Genegenealogydistributionsfor nlociweregeneratedbyMrBayes.Asinglegenegenealogywassampledfromthese distributionsforeachlocus,andthesetofngenealogiesthenusedtoinferspeciestree(s) minimizingthenumberofdeepcoalescences.Thisprocesswasrepeatedmtimes,and summarizedinaconsensusspeciestree,showninblack,withnodevaluesreflecting frequencyatwhichapartitionwasrecovered.Seetextfordetailsofgenegenealogy distributiongenerationandspeciestreeinferenceconditions.

Figure3:Modelspeciestreeusedforgenetreecoalescentsimulations.T Disthetime betweendivergenceofEveres and Cupido anddiversificationwithinineachgenus.

91

Figure4:Branchlengthsintruespeciestreeforsimulateddataandfrequencyatwhich partitionwasrecoveredinspeciestreeinference.Whitecirclesrepresentfrequenciesfor searchesbasedontwolociwithMAXTREES=1,closedcirclesrepresentfrequencies encounteredforsearchesbasedontwolociwithMAXTREES=10,andcrossesrepresent frequenciesforsearchesbasedonthreelociwithMAXTREES=10.Branchlengthsare scaledtoeffectivepopulationsize(N e=100,000).NoteXaxishasalogarithmicscale.

Figure5:Comparisonsinerrorsofdifferentspeciestreeinferencemethods.Circlesshow averagenumberofmissedpartitions(outofninepossible);Crossesshowaveragenumber offalsepositives(partitionsthatdidnotexistinthetruespeciestree).Errorbarsare±1 standarderror.(a)InferencebasedonmajorityruleconsensusofBayesianconsensus genetrees.(b)MethodpresentedbyMaddison&Knowles(2006),savingonetree

(MAXTREES=1)duringSPRbranchswapping.Thismethodproducesfullyresolved speciestrees,sothenumberoffalsepositives=numberofmissedpartitions.(c)New methodpresentedinthisstudy,usingNNIbranchswappingduringtreesearchinference.

Figure6:Genetreesandinferredspeciestreesfor Everes & Cupido .(a)Genegenealogy forCOIandCOII.(b)GenegenealogyforEF1a.Bayesianconsensusbranchlengths shownforeachgenegenealogy;branchesarelabeledwithBayesianposteriorprobability

(*=1.00).(c)Consensusspeciestree,keepingasinglebesttreepersearchreplicate.(d)

Consensusspeciestree,keepingatmost10besttreespersearchreplicate.Forspecies 92 trees,branchlabelsindicatefrequencyatwhichcladeoccurredinthedistributionof speciestrees.

Figure7:Resultsofconstrainttestpermutationscomparingobservedresultstovalues basedongenetreessimulatedonmodelspeciestrees(Figure3). δisthedifferenceinthe numberofdeepcoalescencesbetweenspeciestreesfromunconstrainedandspeciestrees fromconstrainedsearches.T Disthetimefromdivergencebetweenthegenerato diversificationwithineachgenus.SeetextandFigure3fortestdetails.

Figure8:Exampleofdeepcoalescenceinferencesbeingpositivelymisleading.(a)Gene genealogiesoftwolociconflictinrelationshipsamongthreespecies.(b)Thetwogene genealogiesresolvedwithinthetruespeciestree(grey).Therearethreedeepcoalescent eventsinthisresolutionofthespeciestree.(c)Thetwogenegenealogiesresolvedwithin analternativespeciestree,withonlytwodeepcoalescentevents.Inthiscase,the‘best’ treeunderthedeepcoalescencecriterion(treeshowninc),isnotthetruespeciestree. 93

Figure1 Species 1 Species 2 Species 3

t2,3

t1,(2,3)

Locus 1 Locus 2 94

Figure2

Species Tree 1 Gene 1 Gene Tree Inference Matrix Inference

Gene 1 Gene Tree Distribution Species Tree 2 Inference Gene 2 Gene Tree 0.67 Matrix Inference

Gene 2 Gene Tree Distribution Species Tree with Support Values

Gene n Gene Tree Species Matrix Inference Tree m Gene n Inference Gene Tree Distribution 95

Figure3

Everes Cupido fischeri T.

20 N e

TD

96

Figure4

1 0.9 0.8 0.7 0.6 0.5 0.4 Frequency 0.3 0.2 0.1 0 0.01 0.1 1 10 100 Branch Length (scaled to Ne)

97

Figure5

4 a b c

3.5

3

2.5

2

1.5 Average Occurrance Average

1

0.5

0 2 Loci 3 Loci 2 Loci 3 Loci 2 Loci, 2 Loci, 3 Loci, MAXTREES=1 MAXTREES=10 MAXTREES=10 Gene Tree Consensus Maddison & Knowles Present Study

98

Figure6 a b Tongeia fischeri * * Tongeia fischeri Tongeia fischeri Everes lacturnus * Everes alcetas

Everes lacturnus Everes alcetas Everes argiades * Everes amyntula Everes argiades argiades Everes amyntula Everes amyntula * * Everes comyntas Everes amyntula Everes comyntas Everes comyntas * Everes decoloratus 0.78 Everes comyntas Everes decoloratus 0.51 Everes alcetas 0.57 Everes alcetas 0.98 Everes argiades * 0.79 Everes decoloratus Everes argiades argiades * Everes decoloratus Everes lacturnus 0.93 * Cupido prosecusa * Everes lacturnus Cupido prosecusa 0.73 Cupido prosecusa

Cupido osiris Cupido prosecusa *

* Cupido osiris Cupido buddhista buddhista Cupido buddhista buddhista Cupido buddhista buddhista 0.61 Cupido buddhista buddhista * Cupido minimus noguerae * Cupido tusovi 0.64 Cupido minimus Cupido minimus 0.95 Cupido osiris Cupido minimus 0.88 Cupido osiris Cupido minimus noguerae 0.1 0.1

c d Tongeia fischeri Tongeia fischeri

Everes lacturnus Everes lacturnus

Everes amyntula Everes amyntula

Everes argiades Everes argiades

Everes comyntas Everes comyntas

0.52 Everes alcetas Everes alcetas 0.67 0.62 Everes decoloratus Everes decoloratus

Cupido prosecusa Cupido prosecusa

0.60 Cupido buddhista Cupido buddhista

Cupido osiris Cupido osiris 1.00 0.96 Cupido minimus Cupido minimus 0.95 0.98 Cupido tusovi Cupido tusovi 99

Figure7

TD =10N e 20 TD =1N e

15 TD =0.1N e Observed

10 Count

5

0 1 1 3 5 7 9 11 13 15 17 19 21

100

Figure8 a Species 1 Species 2 Species 3 Species 1 Species 2 Species 3

Locus 1 Locus 2

b c Species 1 Species 2 Species 3 Species 1 Species 2 Species 3

Species Tree 1 Species Tree 2 3 deep coalescences 2 deep coalescences

101

APPENDIX C

EVOLUTION OF EXPLOITATION: ILLICIT SIGNALING IN A LYCAENID- ANT INTERACTION 102

EvolutionofExploitation:IllicitSignalinginaLycaenidAntInteraction JeffreyC.Oliver 1andLauraR.Stein 2 1InterdisciplinaryPrograminInsectScienceandDepartmentofEntomology,and

2DepartmentofEcologyandEvolutionaryBiology,UniversityofArizona,Tucson,AZ

85721,USA. 103

Abstract

Manyphytophagousinsectsparticipateininterspecificinteractionstogaindefensefrom predatorsandparasitoids.Lycaenidbutterflycaterpillarsareofteninvolvedin mutualismswithanthosts:theselarvaeprovidecarbohydraterewardsfromthedorsal nectaryorgan(DNO)toassociatedants,inreturnforprotectionfromnaturalenemies.

Theseinteractionsalsodependonvolatilesignalsemittedfromthelycaenidlarvae.

However,larvaeofsomelycaenidspeciesdonotpossesstherewardproducingorgan,yet arestillfoundinassociationwithants.Membersofthe Lycaenaxanthoides species groupareonesuchexample:larvaelacktheDNO,yetarealmostalwaysfound associatedwiththeant Formicafrancoeuri .Herewetestthehypothesisthat L. xanthoides larvaefunctionasillicitsignalers,manipulatingantbehaviorwhenfacedwith asimulatedpredatorattack,whileprovidingnorewardtoantassociates.Weevaluatethe relationshipinaphylogeneticframeworkandshowthat L.xanthoides likelyevolved fromanonantassociatedancestor.Thissuggeststhat L.xanthoides has‘crackedthe code’thatother,honestsignalinglycaenidlarvaeusetocommunicatetoants.Evolution ofmutualismsbetweenhonestsignalinglarvaeandantswilllikelybeaffectedbythe impactofillicitsignalinglarvae.

104

Introduction

Insectshaveevolvedanarrayofintrinsicphysical,behavioral,andchemical defensestoreducemortalityfrompredatorsandparasitoids(Pasteelsetal.1983;Gross

1993).Someinsectshavealsoevolvedindirectdefenses:byparticipatinginamutualism withatoppredator,insectsmayshifttheburdenofdefensetotheirpartnerspecies(Nault etal.1976;Pierce&Mead1981;Weeks2003).Althoughlivinginclosecontactwithtop predatorsseemslikeariskydefensivestrategy,vulnerablepartnersareequippedwitha diversesetofadaptationstokeepfrombecomingpreytotheirdefenders.Asincentiveto theirprotectivepartners,phytophagousinsectsoftenprovidenutritionalrewardsinreturn fordefensefromnaturalenemies(Pierce&Mead1981;Stadler&Dixon2005).

Antsarecommonlyrecruiteddefendersforphytophagousinsects,including aphids,lycaenidbutterflycaterpillars,andcynipidwasps(Gross1993).Interactions betweenantsandthesephytophagousinsectspeciesrepresentaclassicsignalingsystem betweenanemitterandareceiver(Otte1974).Amajorityoflycaenidspeciesare involvedinmutualisticinteractionswithants(Osborn&Jaffé1997;Pierceetal.2002): antsrespondtosignalsemittedbylarvae,andareprovidedwithanutritionalrewardfrom thedorsalnectaryorgan(Pierce&Mead1981;FiedlerandMaschwitz1989;Agarwal&

Fordyce2000;Saarinen2006).However,thesesystems,inwhicha(signaler) advertisesarewardtoanant(receiver),aresusceptibletoinvasionbyillicitsignalers

(Otte1974;Haynes&Yeargan1999).Inthecaseofantlycaenidmutualisms,illicit signalerswouldsimulatethesignalsofarewardprovidinglycaenidlarvaandgainthe protectionofantswithoutprovidingareward.Therearenumerousexamplesof 105 commensallycaenidlarvaewhichgainaccesstoenemyfree(antpatrolled)spacewithout providingnutritionalrewards,butthereisnoevidencetodateoflycaenidlarvaeactingas illicitsignalerstakingadvantageofthehonestsignalspassedbetweenantsandother lycaenidlarvae(Osborn&Jaffe1997;Pierceetal.2002).Ifalycaenidlarvacanproduce signalswhichresultinmanipulatingantbehaviorwithoutprovidingareward,itwillbe essentialtoincorporatetheexistenceofsuchillicitsignalinginstudiesofantlycaenid mutualisms(Stanton2003).

Inthisstudy,weinvestigateasysteminwhichthelarvaeofalycaenidspecies lackingtherewardproducingorgan(dorsalnectaryorgan,orDNO)areassociatedwith ants. Lycaenaxanthoides (Boisduval)(Lepidoptera:Lycaenidae)larvaeareknownto associatewithtwoantspecies, Formicafrancoeuri Boltonand Liometopumoccidentale

Emery,andfacestrongpressurefromnaturalenemies(Ballmer&Pratt1991;Oliveret al.2007). Formicafrancoeuri alsotendsotherlycaenidlarvae,mostofwhichpossess

DNOsandthuscanofferrewardsforprotection.Because F.francoeuri antstendother lycaenidspeciesofferingrewards,theyaresusceptibletoillicitsignalsfrom L. xanthoides ,whichmayemitsuchsignalsandmanipulatethebehaviorof F.francoeuri , withoutprovidinganutritionalreward.Thefirstgoalofthisstudyistodetermineif L. xanthoides larvaecanfunctionasillicitsignalersandmanipulate F.francoeuri behavior.

Asasecondgoal,wealsoinvestigatedtheevolutionoftheassociationbetween L. xanthoides larvaeand F.francoeuri ,byreconstructingaphylogenyofthegenus Lycaena .

If L.xanthoides areillicitsignalers,therearetwolikelyscenariosfortheevolutionofthis association:(1)theancestorof L.xanthoides onceprovidednutritionalrewardstoants, 106 butlosttherewardproducingDNOinthelineageleadingto L.xanthoides ;or(2)the ancestorof L.xanthoides wasnotassociatedwithants,butevolvedasignaling mechanismtoexploitotherlycaenidantmutualisms.Theformerscenariocouldbe considered‘permanentcheating’,whereaoncehonestsignalerwasabletogainrewards withouteverprovidingareward.ThesecondscenariosuggeststhatL.xanthoides larvae have‘crackedthecode’betweenhonestsignalerandreceiver(Letourneau1990).By inferringthephylogenyofrelatedspeciesandreconstructingcharacterevolutiononthis phylogeny,wewillhaveabetterunderstandingoftheconditionsleadingtotheevolution ofsuchassociationsbetweenlycaenidlarvaeandants.

Materials & Methods

Studysystem

Lycaenaxanthoides occupiesmesichabitatsinlowtomiddleelevationsof

California,northernBaja,Mexico,andsouthernOregon.Larvaefeedon45speciesof

Rumex (Polygonaceae)(Scott1986;Ballmer&Pratt1988)andareusuallyassociated withants(Ballmer&Pratt1991;Oliveretal.2007). Formicafrancoeuri occupiesthe mountainsofnorthernBaja,Mexico,andtheTransverseandsouthernCoastrangesof

California(Francoeur1973). Formicafrancoeuri isknowntotendatleastsixspeciesof lycaenidsinCalifornia: Lycaenaxanthoides , L.heteronea (Boisduval),Plebejusacmon

(Westwood&Hewitson), P.lupini (Boisduval), Glaucopsychepiasus(Boisduval),and

Plebulinaemigdionis (Grinnell)(Ballmer&Pratt1991).Neither L.xanthoides nor L. heteronea (subfamilyLycaeninae)larvaepossessadorsalnectaryorgan;thelarvaeofthe 107 latterfourspecies(allinthesubfamily)allpossessaDNO(Ballmer&

Pratt1988).

Laboratorytestforillicitsignaling

Fourth(final)instar Lycaenaxanthoides larvaeand F.francoeuri antswere collectedinthefieldfromtwopopulationsandbroughtintothelaboratory.Wecollected

5larvaefromPineCreek(SanDiegoCounty,California,32.8548°N,116.5228°W)and

4larvaefromLakeHemet(RiversideCounty,California,33.6702°N,116.6993°W).

Eachlarvawashousedsinglywithhostplantmaterial( Rumexsalicifolius )from respectivecollectionsiteuntiltrials.Fortrials,asinglelarvawasplacedinanarenawith

9(PineCreek)or14(LakeHemet)antsfromthesamelocationthelarvawascollected.

Afteratwominuteacclimationperiod,thelarvawasrandomlygivenoneoftwo treatments:apinchwithforcepsonthedorsalthorax(‘attack’)ornopinch(‘control’).In thecontroltreatment,forcepswereintroducedintothearena,abovethelarva,butno pinchwasapplied.Theinteractionbetweenthelarvaandantswasvideorecordedfor5 minutes.Afterthistrial,thelarvawasremovedfromthearenaandplacedinacontainer with Rumexsalicifolius forfourhoursbeforereceivingthealternatetreatment;antswere aloneinthearenaforatleast20minutesfollowingtheendofthelasttrialbeforeanother trialbegan.

Todetermineifantsrespondeddifferentlytothedifferenttreatments,werecorded thetotalantsecondsforeachtrial.Antsecondsreflecttheamountthelarvawastended byants.Forexampleifalarvawastendedfor10secondsbyoneant,and15secondby 108 anotherant,thetotalforthattrialwouldbe25antseconds.Notethatifmultipleants tendedalarvaatasingletime,eachofthoseants’tendingtimeswasincluded.Wetested forwithinlarvaedifferencesbetweentreatmentsusingapairedttesttodetermineif larvaeweretendedmorewheninattacktreatmentsthancontroltreatments.Additionally, wemeasuredthetotaltimeeachlarvawasmovingduringthetrialandperformedpaired tteststodetermineifsimulatedpredationeventsresultedingreatermovementbythe larvae.Greatermovementbythelarvamayhaveaffordedgreateropportunitytocome intocontactwithants,producinganartificialpositiverelationshipbetweenasimulated predationeventandourmeasureofanttending.Totestforthisrelationship,we performedrepeatedmeasureslinearregressiontestingforaneffectoflarvaemovement onanttending.AllstatisticalanalyseswereperformedinR2.6.0(RDevelopmentCore

Team2007).

Evolutionofassociation

Toinvestigatetheevolutionaryhistoryof L.xanthoides ’associationwithants,we reconstructedamolecularphylogenyofthegenus Lycaena .Wesequencedthreegenes:a portionofthemitochondrialgenescytochromeoxidasesubunitsIandII(COIandCOII, respectively)andthenucleargeneelongationfactor1alpha(EF1α).Usingtheprimers

Ron,Nancy,Tonya,Hobbes(COI),Pierre,Eva(COII),ef44f,andefrcM4r(EF1α)

(Caterino&Sperling1999,Monteiro&Pierce2001),allgenesweresequencedinboth directionsonanAppliedBiosystems3730XLDNAAnalyzerbytheGenomicAnalysis andTechnologyCore(UniversityofArizona,Tucson,AZ).Consensussequenceswere 109 generatedandalignedwiththeaidofphred/phrap(Green1999;Green&Ewing2002) andtheChromaseqpackageofMesquite(D.R.Maddison&W.P.Maddison2007).In additiontospecimenssequencedforthisstudy,wealsoincludedrepresentativesofsix othersubfamiliesofLycaenidae,aswellastwooutgroupspecies(Table1;Wahlberget al.2005).Inallsubsequentanalyses,COIandCOIIdatawereanalyzedassinglelocus, becausetheyaretightlylinkedonthemitochondrialgenome.

Toreconstructthisphylogeny,weusedthemethodofOliver(AppendixB), whichusesgenegenealogiestoreconstructaspeciesphylogenybasedonacriterionof deepcoalescences(Maddison1997;Maddison&Knowles2006).Wefirstgenerated genegenealogiesforthecombinedCOI/COIIdataandEF1αdatausingMCMCin

MrBayes(Huelsenbeck&Ronquist2001).Foreachlocus,wesampledtreesfromtwo independentMCMCrunsoffourchainseach.EachMCMCanalysiswasrunfor5 milliongenerations,andtreesweresampledevery1000generations.Onlytreessampled aftertheburninphasewereusedinsubsequentanalyses;theburninphaselasteduntillog likelihoodscoresstabilizedandthetworunsconverged.Convergencewasreachedwhen theaveragestandarddeviationofthesplitfrequencieswaslessthan0.02(Huelsenbeck&

Ronquist2001).Forbothloci,theburninphaseendedafter2milliongenerations,so onlytreessampledafter2milliongenerationswereusedforspeciestreeinference.

Toinfertherelationshipsofthespeciesincludedinthisstudy,wefirstpruned genegenealogiesofspecimensforwhichdatafromonlyonelocuswereavailable.

Althoughspeciestreeinferencescanaccommodategenegenealogieswithdiffering numbersoftaxa,thetaxamissingfromsomegenetreesaddedconsiderableuncertaintyto 110 ourspeciestreeinference.FromthegenegenealogydistributionscreatedinMCMC,we randomlysampledonegenetreeforeachlocus,andusedthosetwogenealogiestoinfera speciestree.UsingMesquite’sTreeSearchfunction(W.P.Maddison&D.R.Maddison

2007),wesearchedforthespeciestreethatminimizedthenumberofdeepcoalescences ofthetwocontainedgenetrees.Foreachsearch,weemployedthenearestneighbor interchange(NNI)branchswappingalgorithm,savingamaximumof100mostoptimal treespersearchandtreatingthecontainedtreesasrooted(outgroup= Danausplexippus ).

Werepeatedthissearchprocedure100times,samplingtwonewgenegenealogiesfor eachsearch.WethengeneratedaconsensusspeciestreeusingPAUP’sconsensustree function(Swofford2001).Thefrequencyatwhichacladeoccurredinthespeciestree searchesisusedasameasureofcladesupport.

Todeterminewhether L.xanthoides ’associationwithantsevolvedfromanant associatedornonantassociatedancestor,wereconstructedthehistoryofantassociation oneachoftheBayesianconsensusgenetreesandontheconsensusspeciestree.We codedtaxaasbeingmyrmecophilous(antassociated)ormyrmecoxenous(nonant associated),basedonpublishedrecords(Table1).HereweusePierceetal.’s(2002) broaddefinitionofmyrmecoxenyasnonantassociated,asopposedtothedefinition originallyofferedbyKitching&Luke(1985),whichdefinestaxaasmyrmecoxenousif theylacktheDNO.Forthosetaxalackingrecordsregardingantassociation,characters werecodedasmissingdata.Forancestralreconstructionsofantassociationonthetwo consensusgenetrees,weusedthe“TraceOverTrees”functioninMesquite,which reconstructsancestralhistoryonmultiplephylogenies,toincorporatetopological 111 uncertaintyinancestralreconstructionsofcharacterstates(W.P.Maddison&D.R.

Maddison2007).ForeachBayesianconsensusgenegenealogy,wereconstructed ancestralstatesonasampleof3000postburningenetreesusinganMk1likelihood modelofevolution.WefocusedonnodeswithintheLycaeninaecladethatwere ancestraltothe L.xanthoides clade.Likelihoodreconstructionsarereportedas(1)the averagelikelihoodofeachstatereconstructionand(2)thenumberoftreescontainingthe nodeinquestioninwhichaparticularstatewasreconstructedastheuniquelybeststate.

Toreconstructthehistoryofantassociationonthespeciestree,weagainused

“TraceOverTrees”inMesquite.Wereconstructedthehistoryofantassociationin

Lycaenidaeonallspeciestreesusedtogeneratetheconsensusspeciestree,usingan unorderedparsimonymodelofcharacterchange.Thesereconstructionswerethen summarizedontheconsensusspeciestree,wherethefrequencyofeachstateisreported foreachancestralnode.WefocusedontheancestralstateofthesubfamilyLycaeninae, which,inourspeciestreereconstructions,isthedirectancestorofthecladeleadingto L. xanthoides .IftheancestorofallLycaeninaeisreconstructedasmyrmecoxenous,wecan inferthat L.xanthoides ’associationwithantsevolvedfromamyrmecoxenousancestor.

Ancestralcharacterreconstructionsindicateasecond,separateoriginof myrmecophilywithintheLycaeninae(seeResults&Discussion). Lycaena heteronea is alsoassociatedwithants(Ballmer&Pratt1991),butisnotcloselyrelatedto L. xanthoides (Pratt&Wright2002;thisstudy).Ancestralreconstructionsofant associationindicate L.heteronea evolvedmyrmecophilyindependentlyoftheassociation observedin L.xanthoides .Totestifthesearetwoindependentoriginsofmyrmecophily, 112 weperformedpairedtreesearchesasdescribedinOliver(AppendixB),comparing speciestreesfromunconstrainedsearchestospeciestreesconstrainedtoreflectan exclusivecladeofallmyrmecophilous Lycaena .If L.xanthoides and L.heteronea evolvedmyrmecophilyindependently,constrainedsearchesshouldproduceconsistently lessoptimaltreesthanunconstrainedsearches.Wecalculatedthedifferenceinthe numberofdeepcoalescencesofoptimaltreesfromconstrainedandunconstrained searchesbasedonthesamesetofgenegenealogies.Weperformed20replicates,saving amaximumoftenmostoptimaltrees(MAXTREES=10)duringSPRbranchswapping, treatingthecontainedgenetreesasrooted(outgroup= Danaus plexippus ).If myrmecophilous Lycaena formaclade,wewouldnotexpectconstrainedsearchesto consistentlyrecoverlessoptimaltreesthanunconstrainedsearches.

Results & Discussion

Laboratorytestforillicitsignaling

Foreightofninelarvaetested,wefoundhigherratesofanttendinginattack treatmentsthancontroltreatments(Figure1).Anttendingwastypicallycharacterizedby antennalpalpation,oftenattheposteriorendofthelarva,wheretheDNOislocatedon otherlycaenidlarvae.Onaverage,individuallarvaeweretendedmorewhensubjectedto asimulatedattackthanincontroltreatments(t 8=3.92,p=0.004).Larvaemovedmore duringattacktreatmentsthancontroltreatments,butthedifferencebetweentreatments wasonlymarginallysignificant(t 8=2.24,p=0.055).Inalinearregressionmodel,we foundnorelationshipbetweenthetimealarvaespentmovingandtheamountofant 113

tending(F1,7 =0.049,p=0.8312).Theseresultsdemonstratetheabilityof L.xanthoides larvaetomanipulateantbehaviorwithoutprovidinganutritionalreward.

Themechanismofthismanipulationremainsunknown,dueinlargeparttothe lackofmanyantassociatedorganswithinthesubfamilyLycaeninaeandthelackof functionalknowledgeaboutthosethatarepresentinantassociated Lycaena .Inaddition totheabsenceofthedorsalnectaryorgan,allsurveyed Lycaena specieslackeversible tentacleorgans(Ballmer&Pratt1988);theseareusedbymanyantassociatedlycaenid speciestoemitvolatilesthatelicitanalarmresponseinants(Henning1983;Pierceetal.

2002).AlmostallLycaenidae,includingallsurveyed Lycaena species,possesspore cupolaorgans,althoughthesearepresumedtobeusedforsuppressingantaggression, notmanipulatingantbehavior(Pierceetal.2002).Allantassociated Lycaena species possessdendriticsetae,whileallnonantassociated Lycaenadonot.Thefunctionof thesesetaeremainsunknown,butthecorrelationoftheirpresencewithantassociation suggestsarelationship(Ballmer&Pratt1991).Regardlessofthesignalingmechanism, thelackofanyrewardingmechanismarguesforexploitationofantdefensebyanon rewardinglycaenidspecies.

Wehypothesizethisinteractionbetween L.xanthoides larvaeand F.francoeuri representsacaseofaggressivechemicalmimicry(Wickler1968;Dettner&Liepert

1994).Inaggressivemimicry,adeceivergainsaccesstoresourcesbymimickinga rewardingmodel(Wickler1968;VaneWright1976;Ruxtonetal.2004).Inthiscase, L. xanthoides larvaeareabletomimicthesignalsproducedbyother,rewardinglycaenid larvaethat F.francoeuri tendsinnature.Thisexploitationmaybepossibledueto F. 114 francoeuri ’sgeneraliststrategyoftending:inadditiontoassociationswithatleastsix speciesofCalifornialycaenidcaterpillars,laboratorytrialsindicatethatF.francoeuri workerswilltendnovellycaenidspecies,includingatleastonespeciesfromAsia

(Ballmer&Pratt1991).However,inordertoconfirmthishypothesisofmimicry,itwill benecessarytocomparetheresponsesof F.francoeuri toother,rewardingspeciesof lycaenidlarvae,inexperimentsanalogoustothosepresentedinthisstudy.

Evolutionofassociation

Phylogeneticreconstructionsofgenetreesrevealedlittleresolutionamongthe subfamiliesofLycaenidae(Figure2),andforonegene(EF1a),themonophylyofthe familyLycaenidaewasnotsupported.Additionally,amongthosesubfamilies representedbymorethanonespecies,onlyLycaeninaewasreconstructedas monophyletic.Theconsensusinferredspeciestree,basedon8668treesrecoveredinthe treesearchingprocedure,reflectsuncertaintyinearlylycaeniddivergences,aswellasthe monophylyofsubfamilyLycaeninae(Figure3).Thespeciestreeshowssomeresolution ofrelationshipswithinthegenus Lycaena ,includingstrongsupportfora( L.xanthoides +

L.editha + L.dione + L.rubidus )clade.Thesefourspecies,taxonomicallytreatedas subgenus ,areallassociatedwithantsinnature(Ballmer&Pratt1991;Allenet al.2005),butlacktherewardingstructure,thedorsalnectaryorgan(Ballmer&Pratt

1988).Forthepurposesofancestralreconstruction,weconsidermyrmecophilyofthese taxatobehomologous,andassumethemostrecentcommonancestorofthefourtaxa wasalsoassociatedwithants. 115

AncestralstatereconstructionsindicatetheassociationobservedinL.xanthoides andothermembersofthesubgenus Gaeides evolvedfromamyrmecoxenousancestor.

Figure4andTable2showtheresultsofreconstructingtheevolutionofantassociation onthetwoconsensusgenetrees.Foreachgenetree,thenodeswithinLycaeninaethat areancestraltothesubgenus Gaeides arereconstructedasmyrmecoxenouswithhigh likelihood.Inparsimonyreconstructionsoninferredspeciestrees,8496ofthe8668trees containedanodecorrespondingtotheancestorofallLycaeninae(indicatedbyarrowin

Figure3).Thisancestorwasreconstructedasmyrmecoxenousin6370trees(75.0%),ant associatedin26trees(0.3%),andequivocalin2100trees(24.7%).Thereconstructions ofantassociationongenetreesandspeciestreessupportthehypothesisthatthecurrent associationbetweenantsand Gaeides speciesarosefromamyrmecoxenousancestor.

Weassessedsupportforasingleoriginofmyrmecophilywithinthegenus

Lycaena bycomparingspeciestreesfromsearchestopologicallyunconstrainedtotrees constrainedtoreflectacladeofmyrmecophilous Lycaena ( Gaeides + L.heteronea ).We foundnosupportforanexclusivemyrmecophilouscladewithintheLycaeninae: constrainingtreestoreconstructanexclusive Gaeides + L.heteronea cladeconsistently producedlessoptimaltreesthanunconstrainedsearches(differenceinnumberofdeep coalescences:average=7.1,minimum=5,maximum=9).Although L.heteronea has notbeenassayedtomeasureitsabilitytomanipulateantbehavior(asweassayed L. xanthoides inthisstudy),Ballmer&Pratt(1991)foundthat F.francoeuri wouldtend fourthinstar L.heteronea larvaeinthelaboratoryandinthewild.Thisindependent evolutionofassociationbetweenantsandanonrewardingspeciesoflycaenid 116 demonstratesthepossibilityofantlycaenidinteractionsevolvingfromamyrmecoxenous ancestorlackingtherewardingDNO.Futurestudiesshouldtestwhether L.heteronea larvaeareabletomanipulateantbehaviorasobservedin L.xanthoides larvae.

Illicitsignalingandtheevolutionofexploitation

Thisstudydemonstratesthat L.xanthoides canmanipulateantbehaviorandthe associationbetween L.xanthoides andrelativesinthesubgenus Gaeides likelyevolved fromamyrmecoxenousancestor.By‘crackingthecode’ofcommunicationpassed betweenhonestsignalinglarvaeandants, L.xanthoides mayenjoyprotectionfrom naturalenemieswithoutthecostofprovidinganutritionalreward.Illicitsignalingby lycaenidsisnotuncommon:manyspeciesmimicanttogainaccesstoant nests,wherelarvaefeedonantbroodorotherantprovidedresources(Fiedler1991;

Pierceetal.2002);however,thetypeofillicitsignalingdescribedherehasnotbeen demonstratedinpreviousstudiesoflycaenids.Thisphenomenonmaybemorecommon among‘myrmecoxenous’larvaethanpreviouslythought,andotherpotentialexamples involvinglycaenidlarvaelackingtherewardingDNOinclude Lycaena dispar

(Lycaeninae)and Myrmica laevinodis (Myrmicinae)(Hinton1951), regula

(Curetinae)and Anoplolepis longipes (Formicinae)(DeVries1984),and dentatis

()and Lepisiota ( Acantholepis ) capensis (Formicinae)(Henning1983).

Amostpromisingavenueofresearchliesintheevaluationofsignalspassed betweenmembersoftheseinteractions.Whatarethesignalspassedfromlarvaetoant?

Thevolatilecomponentsofsignalsproducedbylycaenidsundersimulatedattacksremain 117 undescribed.Althoughitishypothesized(andlikely)thatvolatilesemittedfromthe tentacleorgansmimicantalarmpheromones,datasupportingthisclaimarelacking

(Pierceetal.2002).Futureworkshouldalsoconsiderotherpotentialcomponentsof signalsproducedbylarvae,suchasacousticsignaling(DeVries1990;Travassos&

Pierce2000),andhowsignalcomplexitymayaffectinteractionsamongantsandthe varioussignalers(Rowe1999).Inadditiontopairwiseanalysesbetweenantsand lycaenids,amoreinclusiveapproachiswarranted:thecommunicationunderlyingthe interactionsbetweenone(honest)speciesoflycaenidandtheantprotectorwilllikely effecttheinteractionbetweentheother(illicit)speciesoflycaenid,andviceversa

(Bronstein2001;Stanton2003).Ofcourseinmanycasesitmayalsobenecessaryto considerotherillicitmembersoflycaenidantinteractions,suchasillicitantreceivers, whichmayexploitrewardsprovidedbyhonestsignalinglycaenidswithoutproviding protectioninreturn(Fraseretal.2001).

Thisstudydemonstratesthatlycaenidlarvaemaygainprotectionfromantseven intheabsenceofprovidingareward,andthisexploitationlikelyevolvedfroma myrmecoxenousancestor.Exploitersofmutualismsusuallyarisefromnonmutualistic ancestors,andareoftennotcloselyrelatedtomembersofthemutualismtheyare exploiting(Bronstein2001).Additionalstudiesarenecessarytoresolvetherelationships withinLycaenidae,butassociationsbetweenLycaeninaeandantshaveevolvedatleast twice,onceinthelineageleadingto Gaeides andonceleadingto L.heteronea .Amore thoroughsamplingoftaxaandgeneticlociwillprovidebetterunderstandingofthe evolutionofmyrmecophilywithinLycaeninae,aswellastheevolutionofmyrmecophily 118 ingeneral.Abroadersamplingoftaxaandlociwillallowresearcherstoanswer questionsessentialtothestudyofmutualisms.Didantlycaenidmutualismsevolvefrom parasiticlycaenids?Howdoesthepresenceorabsenceofillicitsignalersaffectsignal receivercommunication?Howdoesgeographicalvariationinillicitsignalerdistribution affectmutualisms?Thisstudyhighlightstheneedforadditionalbehavioral,chemical, andphylogeneticstudiesinordertounderstandtheevolutionofantassociationsin

Lycaenidae.

Acknowledgments

WethankD.R.Papaj,Y.Carrière,K.L.Prudic,E.C.SnellRood,andJ.M.Davisfor discussionsconcerningbehavioralanalysesandspeciesinteractions.D.R.Maddisonand

M.J.Sandersonprovidedinsightonanalysesofcharacterevolution.Wewouldalsolike tothankthoseindividualswhoprovidedspecimens:G.Anweiler,G.C.Bozano,A.M.

Shapiro,andE.Weingartner.ThisworkwasfundedbytheCenterforInsectScienceand anNSFDDIG (# 0412447)toJCO. 119

References

Agarwal,A.A.&Fordyce,J.A.2000Inducedindirectdefenseinalycaenidant association:theregulationofaresourceinamutualism. Proc.R.Soc.Lond.B 67 ,1857 1861. Allen,T.J.,Brock,J.P.andGlassberg,J.2005 CaterpillarsintheFieldandGarden:A FieldGuidetotheButterflyCaterpillarsofNorthAmerica .OxfordUniversityPress. Ballmer,G.R.&Pratt,G.F.1988AsurveyofthelastinstarlarvaeoftheLycaenidae (Lepidoptera)ofCalifornia. J.Res.Lepid. 27 ,181. Ballmer,G.R.&Pratt,G.F.1991Quantificationofantattendance(myrmecophily)of lycaenidlarvae. J.Res.Lepid. 30 ,95112. Bernays,E.A.1997Feedingbylepidopteranlarvaeisdangerous. Ecol.Entomol. 22 , 121123. Bronstein,J.L.2001Theexploitationofmutualisms. Ecol.Lett. 4,277287. Caterino,M.S.&Sperling,F.A.H.1999 Papilio phylogenybasedonmitochondrial cytochromeoxidaseIandIIgenes. Mol.Phylogenet.Evol. 11 ,122137. Dettner,K.&Liepert,C.1994Chemicalmimicryandcamouflage. Annu.Rev.Entomol. 39 ,129154. DeVries,P.J.1984OfcrazyantsandCuretinae:are Curetis butterfliestendedbyants? Zool.J.LinneanSoc. 79 ,5966. DeVries,P.J.1990Enhancementofsymbiosesbetweenbutterflycaterpillarsandantsby vibrationalcommunication. Science 248 ,11041106. Fiedler,K.1991Systematic,evolutionary,andecologicalimplicationsofmyrmecophily withintheLycaenidae(Insecta:Lepidoptera:Papilionoidea). Bonn.Zool.Monogr. 31 ,1 210. Fiedler,K.&Maschwitz,U.1989Functionalanalysisofthemyrmecophilous relationshipsbetweenants(Hymenoptera:Formicidae)andLycaenids(Lepidoptera: Lycaenidae). Ethology 80 ,7180. Francoeur,A.1973Revisiontaxonomiquedesespecesnearctiquesdugroup fusca ,genre Formica (Hymenoptera:Formicidae). Mem.Soc.Entomol.Québec 3,1316 120

Fraser,A.M.,Axén,A.H.&Pierce,N.E.2001Assessingthequalityofdifferentant speciesaspartnersofamyrmecophilousbutterfly. Oecologia 129 ,452460. Green,P.1999Phrap.http://phrap.org. Green,P.&Ewing,B.2002Phred.http://phrap.org Gross,P.1993Insectbehavioralandmorphologicaldefensesagainstparasitoids. Ann. Rev.Entomol. 38 ,251273. Haynes,K.F.&Yeargan,K.V.1999Exploitationofintraspecificcommunication systems:illicitsignalersandreceivers. Ann.Entomol.Soc.Am. 92 ,960970. Henning,F.F.1983Chemicalcommunicationbetweenlycaenidlarvae(Lepidoptera: Lycaenidae)andants(Hymenoptera:Formicidae). J.Entomol.Soc.S.Afr. 46 ,341366. Hinton,H.E.1951MyrmecophilousLycaenidaeandotherLepidoptera–asummary. Proc.Trans.S.LondonEntomol.Nat.Hist.Soc. 1949-50 ,111175. Huelsenbeck,J.P.&Ronquist,F.2001MrBayes:Bayesianinferenceofphylogeny. Bioinformatics 17 ,754755. Kitching,R.L.&Luke,B.1985Themyrmecophilousorgansofthelarvaeofsome BritishLycaenidae(Lepidoptera):acomparativestudy. J.Nat.Hist. 19 ,259276. Letourneau,D.K.1990Codeofantplantmutualismbrokenbyparasite. Science 248 , 215217. Maddison,D.R.&Maddison,W.P.2007 Chromaseq:aMesquitemoduleforanalyzing sequencechromatograms. Version0.91.http://mesquiteproject.org/packages/chromaseq. Maddison,W.P.1997Genetreesinspeciestrees. Syst.Biol. 46 ,523536. Maddison,W.P.&Knowles,L.L.2006Inferringphylogenydespiteincompletelineage sorting. Syst.Biol. 55 ,2130. Maddison,W.P.&Maddison,D.R.2007 Mesquite:amodularsystemforevolutionary analysis. Version2.0bi44.http://mesquiteproject.org. Monteiro,A.&Pierce,N.E.2001Phylogenyof Bicyclus (Lepidoptera:Nymphalidae) inferredfromCOI,COIIandEF1alphagenesequences. Mol.Phylogenet.Evol. 18 ,264 281. 121

Nault,L.R.,Montgomery,M.E.&Bowers,W.S.1976Antaphidassociation:roleof aphidalarm. Science 192 ,13491351 Oliver,J.C.(inpreparation)Inferringspeciestreesfromdeepcoalescenceswhile accommodatinggenetreeuncertainty. Oliver,J.C.,Prudic,K.L.&Pauly,G.B.2007Parasitismratesinlarval Lycaena xanthoides (Godart)(Lepidoptera:Lycaenidae)andanewhostrecordfor Cotesiatheclae (Riley)(Hymenoptera:Braconidae). PanPac.Entomol. 83 ,255257. Osborn,F.&Jaffé,K.1997Cooperationvs.exploitation:interactionsbetweenLycaenid (Lepidoptera:Lycaenidae)larvaeandants. J.Res.Lepid. 34 ,6982. Otte,D.1974Effectsandfunctionsintheevolutionofsignalingsystems. Ann.Rev.Ecol. Syst. 5,385417. Pasteels,J.M.,Grégoire,J.C.&RowellRahier,M.1983Thechemicalecologyof defensein. Ann.Rev.Entomol. 28 ,263289. Pierce,N.E.,Braby,M.F.,Heath,A.,Lohman,D.J.,Mathew,J.,Rand,D.B.& Travassos,M.A.2002TheecologyandevolutionofantassociationintheLycaenidae (Lepidoptera). Ann.Rev.Entomol. 47 ,733771. Pierce,N.E.&Mead,P.S.1981Parasitoidsasselectiveagentsinthesymbiosisbetween lycaenidbutterflylarvaeandants. Science 211 ,11851187. Pratt,G.F.&Wright,D.M.2002AllozymephylogenyofNorthAmericancoppers (Lycaeninae:Lycaenidae). ThePanPacificEntomologist 78 ,219229. RDevelopmentCoreTeam(2007).R:Alanguageandenvironmentforstatistical computing.RFoundationforStatisticalComputing,Vienna,Austria.http://www.R project.org. Rowe,C.1999Receiverpsychologyandtheevolutionfmulticomponentsignals. Anim. Behav. 58 ,921931. Ruxton,G.D.,Sherratt,T.N.&Speed,M.P.2004 AvoidingAttack:TheEvolutionary EcologyofCrypsis,WarningSignalsandMimicry .OxfordUniversityPress. Saarinen,E.V.2006Differencesinworkercastebehaviourof Oecophylla smaragdina (Hymenoptera:Formicidae)inresponsetolarvaeof Anthene emolus (Lepidoptera: Lycaenidae). Biol.J.LinneanSoc. 88 ,391395 122

Scott,J.A.1986 TheButterfliesofNorthAmerica:ANaturalHistoryandFieldGuide . Stanford,CA:StanfordUniversityPress. Stadler,B.&Dixon,A.F.G.2005Ecologyandevolutionofaphidantinteractions. Ann. Rev.Ecol.Evol.Syst. 36 ,345372. Stanton,M.L.2003Interactingguilds:movingbeyondthepairwiseperspectiveon mutualisms. Am.Nat. 162 ,S10S23. Swofford,D.L.2001 PAUP*:PhylogeneticAnalysesUnderParsimony(*andother methods) ,version4.0b10.Sunderland,MA:SinauerAssociates. Travassos,M.A.&Pierce,N.E.2000Acoustics,contextandfunctionofvibrational signallinginalycaenidbutterflyantmutualism. Anim.Behav. 60 ,1326. VaneWright,R.I.1976Aunifiedclassificationofmimeticresemblances. Biol.J. LinneanSoc. 8,2556. Wahlbert,N.,Braby,M.F.,Brower,A.V.Z.,deJong,R.,Lee,M.M.,Nylin,S.,Pierce, N.E.,Sperling,F.A.H.,Vila,R.,Warren,A.D.&Zakharov,E.2005Synergisticeffects ofcombiningmorphologicalandmoleculardatainresolvingthephylogenyofbutterflies andskippers. Proc.R.Soc.B 272 ,15771586. Weeks,J.A.2003Parasitismandantprotectionalterthesurvivalofthelycaenid Hemiargus isola . Ecol.Entomol. 28 ,228232. Wicker,W.1968 MimicryinPlantsandAnimals. NewYork:McGrawHillBook Company. 123

Tables and figures Table1 Lycaenidaeandoutgroupsincludedinthisstudy. Family Subfamily Species Antassociated Reference Lycaenidae Curetinae Curetisbulis No Fiedler1991 Miletinae Miletusancon ? Pierceetal.2002 Liphyrabrassolis Yes Braby2000 Poritiaerycinoides No Fiedler1991 Lipteninae Baliochilaminima No Fiedler1991 Theclinae enthea No Fiedler1991 Lucialimbaria Yes Braby2000 Theclacoelicolor ? Callipsychebehrii ? Polyommatinae Antheneemolus Yes Saarinen2006 Plebejusacmon Yes Ballmer&Pratt1991 Echinargusisola Yes Weeks2003 Lycaeninae Heliophoruseventa ? Lycaenamargelanica ? Lycaenaphlaeas No Ballmer&Pratt1991 Lycaenacupreus No Ballmer&Pratt1991 Lycaenadispar No Fiedler1991 Lycaenali ? Lycaenaarota No Fiedler1991 Lycaenaalpherakyi ? Lycaenasolskyi ? Lycaenatityrus No Fiedler1991 Lycaenavirgaureae No Fiedler1991 Lycaenadione Yes Allenetal2005 Lycaenaeditha Yes Ballmer&Pratt1991 Lycaenarubidus Yes Ballmer&Pratt1991 Lycaenaxanthoides Yes Ballmer&Pratt1991, Oliveretal.2007 Lycaenahyllus No Fiedler1991 Lycaenadorcas No Fiedler1991 Lycaenadospassosi No Fiedler1991 Lycaenahelloides No Fiedler1991 Lycaenanivalis No Fiedler1991 Lycaenamariposa No Fiedler1991 Lycaenagorgon No Ballmer&Pratt1991 Lycaenaheteronea Yes Ballmer&Pratt1991 Lycaenahermes No Fiedler1991 Nymphalidae Danainae Danausplexippus NA Riodinidae Riodininae Riodinalysippus NA

124

Table2 Likelihoodancestralstatereconstructionsofmyrmecophilyonselectnodesofgenetrees. NodescorrespondtolabelsinFigure4.Valuesfortreesinwhichparticularnodewas present:(a)istheaveragelikelihoodofnodereconstructedasmyrmecoxenous(nonant associated),indicatedaswhiteinchartsinFigure4;(b)istheproportionoftreesinwhich myrmecoxenyistheuniquelybeststateatnode;and(c)istheproportionoftreesin whichmyrmecophilyistheuniquelybeststateatnode.Tisthenumberofsampledgene genealogiesinwhichnodewaspresent.Seetextfordetailsofancestralstate reconstruction. Node a b c T COI/COII M1 0.979 0.391 0 3000 M2 0.973 0.931 0 1637 M3 0.970 0.603 0 1717 M4 0.073 0 0.899 3000 EF1α N1 0.978 0.598 0 2920 N2 0.983 0.987 0 1559 N3 0.982 0.993 0 2998 N4 0.884 0.619 0 2496 N5 0.002 0 1 3000 125

Figure Legends

Figure1:Individuallarvalresponsestoattackandcontroltreatmentsinlaboratorytestof antmanipulation.

Figure2:Consensusgenegenealogiesfor(a)COIandCOIIdataand(b)EF1αdata.

Branchlabelsindicatecladeposteriorprobability(*=1.00).Branchlengthsareconsensus branchlengthscalculatedbyMrBayes(HuelsenbeckandRonquist2001);seetextfor conditionsofBayesianestimation.

Figure3:InferredphylogenyofLycaenidaeincludedinthisstudy.Branchlabelsindicate frequencyatwhichacladewasrecoveredinspeciestreesearches.Boxesindicate characterstatesofantassociationforLycaenidaetaxa:black=myrmecophilous(ant associated),white=myrmecoxenous(notantassociated).Fortaxalackingdataonant association,noboxisshown.ArrowindicatesancestorofsubfamilyLycaeninae.Chart onnodeindicatesproportionofspeciestreescontainingmonophyleticLycaeninaein whichtheancestorofLycaeninaewasreconstructedasmyrmecophilous(black,26trees), myrmecoxenous(white,6370trees),orequivocal(grey,2100trees)inparsimony ancestralstatereconstructions.

Figure4:Historyofantassociationof L.xanthoides ’ancestorsreconstructedonthe

Lycaeninaecladeof(a)COIandCOIIand(b)EF1αBayesianconsensusgenetrees. 126

CladesshownhaveBayesianposteriorprobabilitygreaterthan0.5.Chartsonnodes indicateaveragelikelihoodreconstructionsofmyrmecoxenous(white)and myrmecophilous(black)lifestyle.SeeTable2forlikelihoodvalues. 127

Figure1

1600

1400

1200 ) 3 1000

800

600 Ant-seconds(10 400

200

0 Control Attack Treatment

128

Figure2(a) Danaus plexippus Riodina lysippus 0.65 Anthene emolus Curetis bulis Lucia limbaria 0.82 Liphyra brassolis * Miletus ancon 0.99 Baliochila minima Poritia erycinoides 0.63 Callipsyche behrii 0.68 Thecla coelicolor * Echinargus isola 0.56 Plebejus acmon Heliophorus eventa 0.70 Lycaena cupreus 0.68 Lycaena dispar Lycaena virgaureae * Lycaena tityrus * 0.91 Lycaena solskyi * Lycaena solskyi Lycaena alpherakyi * Lycaena phlaeas 0.64 Lycaena phlaeas Lycaena arota Lycaena li * * Lycaena xanthoides 0.65 Lycaena editha Lycaena xanthoides 0.91 * Lycaena margelanica Lycaena margelanica Lycaena hermes 0.70 Lycaena hyllus Lycaena nivalis 0.63 * Lycaena mariposa Lycaena helloides * Lycaena helloides * Lycaena dorcas 0.53 Lycaena dorcas Lycaena dospassosi * Lycaena gorgon 0.1 129

Figure2(b) Danaus plexippus 0.56 Curetis bulis * Echinargus isola Plebejus acmon Anthene emolus Liphyra brassolis Lucia limbaria Riodina lysippus 0.56 0.74 Araragi enthea Miletus ancon 0.56 * Callipsyche behrii Thecla coelicolor 0.76 Baliochila minima 0.63 Poritia erycinoides Heliophorus eventa Lycaena li 0.76 Lycaena cupreus 0.61 Lycaena dispar Lycaena virgaureae 0.69 Lycaena tityrus 0.83 Lycaena alpherakyi * * * Lycaena solskyi 0.68 Lycaena solskyi * Lycaena phlaeas Lycaena phlaeas Lycaena hermes 0.83 Lycaena arota Lycaena rubidus

0.97 Lycaena xanthoides * Lycaena editha Lycaena dione 0.52 Lycaena xanthoides Lycaena hyllus Lycaena nivalis 0.97 * Lycaena mariposa Lycaena helloides 0.90 * Lycaena dorcas * Lycaena dorcas Lycaena dospassosi * Lycaena gorgon Lycaena heteronea 0.1 130

Figure3 Danaus plexippus Nymphalidae Riodina lysippus Riodinidae Curetis bulis Curetinae Miletus ancon Miletinae Liphyra brassolis 0.77 Poritia erycinoides Poritiinae Baliochila minima Lipteninae Araragi enthea Lucia limbaria Theclinae 0.70 Thecla coelicolor Callipsyche behrii Anthene emolus 1.00 Plebejus acmon Polyommatinae Echinargus isola Heliophorus eventa Lycaena li Lycaena arota Lycaena phlaeas 0.72 Lycaena cupreus 0.67 Lycaena dispar 1.00 Lycaena alpherakyi Lycaena solskyi 0.98 0.84 0.79 Lycaena tityrus Lycaena virgaureae Lycaena dione Lycaeninae 0.96 Lycaena rubidus 0.51 Lycaena editha Lycaena xanthoides Lycaena hermes 0.64 Lycaena hyllus Lycaena nivalis 0.92 0.98 Lycaena mariposa 0.65 Lycaena dorcas 1.00 0.66 Lycaena dospassosi Lycaena helloides 1.00 Lycaena gorgon Lycaena heteronea 131

Figure4 Lycaena phlaeas Lycaena phlaeas Lycaena Heliophorus eventa cupreus Lycaena dispar Lycaena virgaureae Lycaena tityrus Lycaena alpherakyi Lycaena solskyi Lycaena solskyi Lycaena li Lycaena hermes Lycaena arota Lycaena rubidus Lycaena xanthoides Lycaena editha Lycaena dione Lycaena xanthoides Lycaena hyllus Lycaena nivalis Lycaena mariposa Lycaena helloides Lycaena dorcas Lycaena dorcas Lycaena dospassosi Lycaena gorgon Lycaena heteronea Lycaena 5 N 4 N 3 N 2 N 1 N b Heliophorus eventa phlaeas Lycaena phlaeas Lycaena cupreus Lycaena disparLycaena festivus virgaureae Lycaena tityrus Lycaena solskyi Lycaena solskyi Lycaena alpherakyi Lycaena arota Lycaena li Lycaena rubidus Lycaena dione Lycaena xanthoides Lycaena editha Lycaena xanthoides Lycaena margelanica Lycaena margelanica Lycaena hermes Lycaena hyllus Lycaena nivalis Lycaena mariposa Lycaena helloides Lycaena helloides Lycaena dorcas Lycaena dorcas Lycaena dospassosi Lycaena gorgon Lycaena heteronea Lycaena 4 M 3 M 2 M 1 M

a 132

APPENDIX D PERMISSION TO REUSE BLACKWELL CONTENT FOR THIS DISSERTATION

133

Date: Tue, 16 Oct 2007 09:24:14 +0100 [Tuesday October 16, 2007 01:24:14 AM MST] From: Journals Rights To: Jeff Oliver Subject: RE: Permission to reuse Blackwell Content DearJeffreyOliver, Thankyouforyouremailrequest.Permissionisgrantedforyoutousethematerialbelowforyourthesis, subjecttotheusualacknowledgementsandontheunderstandingthatyouwillreapplyforpermissionif youwishtodistributeorpublishyourthesiscommercially. Withbestwishes, Sally SallyByers PermissionsAssistant WileyBlackwellPublishingLtd. POBox805 9600GarsingtonRoad OxfordOX42DQ UK Tel.01865476149 Fax.01865471149 OriginalMessage From:JeffOliver[mailto: [email protected] ] Sent:15October200715:54 To:JournalsRights Subject:PermissiontoreuseBlackwellContent BlackwellPublishingLtd.recentlypublishedthefollowingarticle: JEFFREYC.OLIVER,ARTHURM.SHAPIRO(2007)Geneticisolationand crypticvariationwithintheLycaenaxanthoidesspeciesgroup(Lepidoptera: Lycaenidae)MolecularEcology16(20),4308?4320. doi:10.1111/j.1365294X.2007.03494.x Thisworkispartofmydissertationresearch,andIwouldliketoask permissiontoincludeitinmyprintedPh.D.thesis(I'mtheleadauthor). Pleaseletmeknowwhatadditionalinformationyourequire. Thankyouinadvanceforyourtime. JeffreyC.Oliver UniversityofArizona