The Structure of a Calsequestrin Filament Reveals Mechanisms Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 Metabolic Dysfunction Is Restricted to the Sciatic Nerve in Experimental
Page 1 of 255 Diabetes Metabolic dysfunction is restricted to the sciatic nerve in experimental diabetic neuropathy Oliver J. Freeman1,2, Richard D. Unwin2,3, Andrew W. Dowsey2,3, Paul Begley2,3, Sumia Ali1, Katherine A. Hollywood2,3, Nitin Rustogi2,3, Rasmus S. Petersen1, Warwick B. Dunn2,3†, Garth J.S. Cooper2,3,4,5* & Natalie J. Gardiner1* 1 Faculty of Life Sciences, University of Manchester, UK 2 Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK 3 Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, UK 4 School of Biological Sciences, University of Auckland, New Zealand 5 Department of Pharmacology, Medical Sciences Division, University of Oxford, UK † Present address: School of Biosciences, University of Birmingham, UK *Joint corresponding authors: Natalie J. Gardiner and Garth J.S. Cooper Email: [email protected]; [email protected] Address: University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, United Kingdom Telephone: +44 161 275 5768; +44 161 701 0240 Word count: 4,490 Number of tables: 1, Number of figures: 6 Running title: Metabolic dysfunction in diabetic neuropathy 1 Diabetes Publish Ahead of Print, published online October 15, 2015 Diabetes Page 2 of 255 Abstract High glucose levels in the peripheral nervous system (PNS) have been implicated in the pathogenesis of diabetic neuropathy (DN). However our understanding of the molecular mechanisms which cause the marked distal pathology is incomplete. Here we performed a comprehensive, system-wide analysis of the PNS of a rodent model of DN. -
Triadin, a Linker for Calsequestrin and the Ryanodine Receptor
Triadin, a Linker for Calsequestrin and the Ryanodine Receptor Wei Guo,* Annelise 0. Jorgensen,' and Kevin P. Campbell* *Howard Hughes Medical Institute, Department of Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, Iowa 52242, and *Departmentof Anatomy and Cell Biology, University of Toronto, Toronto, Ontario, Canada M5S 1A8 Introduction Protein components of the triad junction play essential roles in muscle excitation- contraction coupling (EC coupling). Considerable research has been performed on the identification and characterization of proteins that regulate calcium storage and release from the sarcoplasmic reticulum (McPherson and Campbell, 1993; Franzini- Armstrong and Jorgensen, 1994). Key proteins characterized include the dihydro- pyridine receptor; the voltage sensor and L-type calcium channel in t-tubules; the ryanodine receptor/Ca2+-releasechannel in the terminal cisternae of the sarcoplas- mic reticulum; and calsequestrin, a moderate-affinity, high-capacity calcium-bind- ing protein located in the lumen of the junctional sarcoplasmic reticulum. Study of these proteins has been instrumental to our understanding of the molecular mecha- nisms of EC coupling. Recent research from our laboratory has focused on triadin, an abundant transmembrane protein in the junctional sarcoplasmic reticulum. Here, we briefly review recent results on the structure of triadin and its interactions with other protein components of the junctional complex in skeletal and cardiac muscle. Identification of Triadin Using purified skeletal muscle triads, we generated a library of monoclonal anti- bodies against different proteins of the junctional sarcoplasmic reticulum (Camp- bell et al., 1987). Several monoclonal antibodies recognize a protein of 94 kD (now called triadin) on reducing SDS-PAGE (Fig. -
Massive Alterations of Sarcoplasmic Reticulum Free Calcium in Skeletal Muscle Fibers Lacking Calsequestrin Revealed by a Genetic
Massive alterations of sarcoplasmic reticulum free calcium in skeletal muscle fibers lacking calsequestrin revealed by a genetically encoded probe M. Canatoa,1, M. Scorzetoa,1, M. Giacomellob, F. Protasic,d, C. Reggiania,d, and G. J. M. Stienene,2 Departments of aHuman Anatomy and Physiology and bExperimental Veterinary Sciences, University of Padua, 35121 Padua, Italy; cCeSI, Department of Basic and Applied Medical Sciences, University G. d’Annunzio, I-66013 Chieti, Italy; dIIM-Interuniversity Institute of Myology and eLaboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, 1081BT, Amsterdam, The Netherlands Edited* by Clara Franzini-Armstrong, University of Pennsylvania Medical Center, Philadelphia, PA, and approved November 12, 2010 (received for review June 30, 2010) The cytosolic free Ca2+ transients elicited by muscle fiber excitation tion essential to maintain a low metabolic rate in quiescent ex- are well characterized, but little is known about the free [Ca2+] citable cells. In addition, CSQ has been shown to modulate RyR- dynamics within the sarcoplasmic reticulum (SR). A targetable mediated Ca2+ release from the SR (6). To understand the pivotal ratiometric FRET-based calcium indicator (D1ER Cameleon) allowed role of CSQ in SR function, it is critical to determine free SR us to investigate SR Ca2+ dynamics and analyze the impact of cal- Ca2+ concentration, and this has been made possible by the ad- sequestrin (CSQ) on SR [Ca2+] in enzymatically dissociated flexor vent of a targetable ratiometric FRET-based indicator, such as digitorum brevis muscle fibers from WT and CSQ-KO mice lacking D1ER Cameleon (7). Seminal studies using this technique have isoform 1 (CSQ-KO) or both isoforms [CSQ-double KO (DKO)]. -
HAX-1 Regulates Cyclophilin-D Levels and Mitochondria Permeability
HAX-1 regulates cyclophilin-D levels and mitochondria PNAS PLUS permeability transition pore in the heart Chi Keung Lam1, Wen Zhao1, Guan-Sheng Liu, Wen-Feng Cai, George Gardner, George Adly, and Evangelia G. Kranias2 Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0575 Edited by Andrew R. Marks, Columbia University College of Physicians & Surgeons, New York, NY, and approved October 21, 2015 (received for review May 5, 2015) The major underpinning of massive cell death associated with since its discovery in 1997 (7), its presence in cardiomyocytes was myocardial infarction involves opening of the mitochondrial only recently identified. Interestingly, cardiac HAX-1 localizes permeability transition pore (mPTP), resulting in disruption of not only to mitochondria but also the endo/sarcoplasmic re- mitochondria membrane integrity and programmed necrosis. ticulum (ER/SR) and it binds to phospholamban, increasing Studies in human lymphocytes suggested that the hemato- inhibition of the SR calcium transport ATPase and reducing poietic-substrate-1 associated protein X-1 (HAX-1) is linked to SR calcium cycling. As cardiomyocyte contraction-relaxation is regulation of mitochondrial membrane function, but its role in coupled to calcium oscillation, HAX-1 is an important regulator of controlling mPTP activity remains obscure. Herein we used models cardiomyocyte contractility (12, 13). HAX-1 can also modulate ER with altered HAX-1 expression levels in the heart and uncovered stress responses by inhibiting the inositol requiring enzyme-1 (IRE- an unexpected role of HAX-1 in regulation of mPTP and cardio- 1) signaling arm, which diminishes cell death through reduction of myocyte survival. -
Cardiac Calsequestrin Phosphorylation and Trafficking in the Am Mmalian Cardiomyocyte Timothy Mcfarland Wayne State University
Wayne State University DigitalCommons@WayneState Wayne State University Dissertations 1-1-2011 Cardiac Calsequestrin Phosphorylation And Trafficking In The aM mmalian Cardiomyocyte Timothy Mcfarland Wayne State University Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations Recommended Citation Mcfarland, Timothy, "Cardiac Calsequestrin Phosphorylation And Trafficking In The aM mmalian Cardiomyocyte" (2011). Wayne State University Dissertations. Paper 176. This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState. CARDIAC CALSEQUESTRIN PHOSPHORYLATION AND TRAFFICKING IN THE MAMMALIAN CARDIOMYOCYTE by TIMOTHY P. MCFARLAND DISSERTATION Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY 2011 MAJOR: PHYSIOLOGY Approved by: ____________________________________ Advisor Date ____________________________________ ____________________________________ ____________________________________ ____________________________________ © COPYRIGHT BY TIMOTHY P. MCFARLAND 2011 All Rights Reserved DEDICATION This work is dedicated to my family. To my parents and grandparents, who provided continuous support and footed the bill for the past ten years, thank you. Your investment finally paid off. And to my beautiful and patient wife Lindsay, thank you for getting me through the tough times and keeping our family afloat, I love you. ii ACKNOWLEDGEMENTS I would like to thank the members of my dissertation committee for their support and forwardness throughout this process. Your honesty and exceptional insights have helped me to develop professionally and have greatly expedited my graduation. I would especially like to thank my mentor Dr. Steven Cala for helping me to become a scientist. -
Short Duration Presynaptic Action Potentials Shape Calcium Dynamics and Transmitter Release at the Neuromuscular Junction in Healthy and Diseased States
Title Page Short duration presynaptic action potentials shape calcium dynamics and transmitter release at the neuromuscular junction in healthy and diseased states by Scott Patrick Ginebaugh B.S., Wayne State University, 2016 Submitted to the Graduate Faculty of the School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2021 Committee Page UNIVERSITY OF PITTSBURGH SCHOOL OF MEDICINE This dissertation was presented by Scott Patrick Ginebaugh It was defended on January 27, 2021 and approved by James R. Faeder, Ph.D., Associate Professor, Department of Computational and Systems Biology, University of Pittsburgh Zachary Freyberg, M.D., Ph.D., Assistant Professor, Department of Psychiatry, University of Pittsburgh Ivet Bahar, Ph.D., Distinguished Professor & John K. Vries Chair, Department of Computational and Systems Biology, University of Pittsburgh Rozita Laghaei, Ph.D., Research Scientist, Pittsburgh Supercomputing Center, Carnegie Mellon University Dissertation Director: Stephen D. Meriney, Ph.D., Professor, Department of Neuroscience, University of Pittsburgh ii Copyright © by Scott Patrick Ginebaugh 2021 iii Short duration presynaptic action potentials shape calcium dynamics and transmitter release at the neuromuscular junction in healthy and diseased states Scott Patrick Ginebaugh, PhD University of Pittsburgh, 2021 The action potential (AP) waveform controls the opening of voltage-gated calcium channels (VGCCs) at presynaptic nerve terminals. The calcium ion flux through these VGCCs acts as a second messenger, triggering the release of neurotransmitter. The frog and mouse neuromuscular junctions (NMJs) have long been model synapses for the study of neurotransmission, but the presynaptic AP waveforms from these NMJs have never been recorded because the nerve terminals are too small impale with an electrode for electrophysiological recordings. -
Skeletal Muscle Gene Expression in Long-Term Endurance and Resistance Trained Elderly
International Journal of Molecular Sciences Article Skeletal Muscle Gene Expression in Long-Term Endurance and Resistance Trained Elderly 1,2, 3, 1,2, Alessandra Bolotta y, Giuseppe Filardo y, Provvidenza Maria Abruzzo *, Annalisa Astolfi 4,5 , Paola De Sanctis 1, Alessandro Di Martino 6, Christian Hofer 7, Valentina Indio 4 , Helmut Kern 7, Stefan Löfler 7 , Maurilio Marcacci 8, Sandra Zampieri 9,10, 1,2, 1, Marina Marini z and Cinzia Zucchini z 1 Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna School of Medicine, 40138 Bologna, Italy; [email protected] (A.B.); [email protected] (P.D.S.); [email protected] (M.M.); [email protected] (C.Z.) 2 IRCCS Fondazione Don Carlo Gnocchi, 20148 Milan, Italy 3 Applied and Translational Research Center, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; g.fi[email protected] 4 Giorgio Prodi Interdepartimental Center for Cancer Research, S.Orsola-Malpighi Hospital, 40138 Bologna, Italy; annalisa.astolfi@unibo.it (A.A.); [email protected] (V.I.) 5 Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy 6 Second Orthopaedic and Traumatologic Clinic, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; [email protected] 7 Ludwig Boltzmann Institute for Rehabilitation Research, 1160 Wien, Austria; [email protected] (C.H.); [email protected] (H.K.); stefan.loefl[email protected] (S.L.) 8 Department of Biomedical Sciences, Knee Joint Reconstruction Center, 3rd Orthopaedic Division, Humanitas Clinical Institute, Humanitas University, 20089 Milan, Italy; [email protected] 9 Department of Surgery, Oncology and Gastroenterology, University of Padua, 35122 Padua, Italy; [email protected] 10 Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy * Correspondence: [email protected]; Tel.: +39-051-2094122 These authors contributed equally to this work. -
The Role of Altered Calcium-Handling in Mechanically-Induced
THE ROLE OF ALTERED CALCIUM-HANDLING IN MECHANICALLY-INDUCED ARRHYTHMIAS DURING ACUTE REGIONAL ISCHEMIA by Peter A.R. Baumeister Submitted in partial fulfillment of requirements for the degree of Master of Science at Dalhousie University Halifax, Nova Scotia May 2016 Copyright by Peter A.R. Baumeister, 2016 TABLE OF CONTENTS LIST OF FIGURES ............................................................................................................ vi ABSTRACT .................................................................................................................. viii LIST OF ABBREVIATIONS USED ................................................................................. ix ACKNOWLEDGEMENTS ................................................................................................ xi CHAPTER 1: Introduction .................................................................................................. 1 1.1 Sudden Cardiac Death and Acute Regional Ischemia .............................................. 1 1.2 Conditions for Arrhythmogenesis ............................................................................ 3 1.2.I Abnormal Automaticity ........................................................................................ 3 1.2.II Triggered Activity - Afterdepolarizations........................................................... 5 1.2.III Reentrant Activity .............................................................................................. 9 1.2.IV Conclusion ...................................................................................................... -
Intracellular Calcium Dysregulation by the Alzheimer's Disease-Linked Protein Presenilin 2
International Journal of Molecular Sciences Review Intracellular Calcium Dysregulation by the Alzheimer’s Disease-Linked Protein Presenilin 2 1,2, 1, 1,2,3 1,2, 1,2 Luisa Galla y, Nelly Redolfi y, Tullio Pozzan , Paola Pizzo * and Elisa Greotti 1 Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; [email protected] (L.G.); nelly.redolfi@unipd.it (N.R.); [email protected] (T.P.); [email protected] (E.G.) 2 Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy 3 Venetian Institute of Molecular Medicine (VIMM), 35131 Padua, Italy * Correspondence: [email protected] These authors contributed equally to this work. y Received: 17 December 2019; Accepted: 21 January 2020; Published: 24 January 2020 Abstract: Alzheimer’s disease (AD) is the most common form of dementia. Even though most AD cases are sporadic, a small percentage is familial due to autosomal dominant mutations in amyloid precursor protein (APP), presenilin-1 (PSEN1), and presenilin-2 (PSEN2) genes. AD mutations contribute to the generation of toxic amyloid β (Aβ) peptides and the formation of cerebral plaques, leading to the formulation of the amyloid cascade hypothesis for AD pathogenesis. Many drugs have been developed to inhibit this pathway but all these approaches currently failed, raising the need to find additional pathogenic mechanisms. Alterations in cellular calcium (Ca2+) signaling have also been reported as causative of neurodegeneration. Interestingly, Aβ peptides, mutated presenilin-1 (PS1), and presenilin-2 (PS2) variously lead to modifications in Ca2+ homeostasis. In this contribution, we focus on PS2, summarizing how AD-linked PS2 mutants alter multiple Ca2+ pathways and the functional consequences of this Ca2+ dysregulation in AD pathogenesis. -
Calcium and Heart Failure: How Did We Get Here and Where Are We Going?
International Journal of Molecular Sciences Review Calcium and Heart Failure: How Did We Get Here and Where Are We Going? Natthaphat Siri-Angkul 1,2,3, Behzad Dadfar 4 , Riya Jaleel 5 , Jazna Naushad 6, Jaseela Parambathazhath 7, Angelia A. Doye 8, Lai-Hua Xie 1 and Judith K. Gwathmey 1,9,* 1 Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA 2 Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand 3 Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand 4 Department of General Medicine, School of Medicine, Mazandaran University of Medical Sciences, Sari 1471655836, Iran 5 School of International Education, Zhengzhou University, Zhengzhou 450001, China 6 Weill Cornell Medicine Qatar, Doha P. O. Box 24144, Qatar 7 Process Dynamics Laboratories, Al Khor 679576, Qatar 8 Gwathmey Inc., Cambridge, MA 02138, USA 9 Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA * Correspondence: [email protected]; Tel.: +1-973-972-2411; Fax: +1-973-972-7489 Abstract: The occurrence and prevalence of heart failure remain high in the United States as well as globally. One person dies every 30 s from heart disease. Recognizing the importance of heart failure, clinicians and scientists have sought better therapeutic strategies and even cures for end-stage Citation: Siri-Angkul, N.; Dadfar, B.; heart failure. This exploration has resulted in many failed clinical trials testing novel classes of Jaleel, R.; Naushad, J.; pharmaceutical drugs and even gene therapy. As a result, along the way, there have been paradigm Parambathazhath, J.; Doye, A.A.; Xie, shifts toward and away from differing therapeutic approaches. -
Calcium Signaling, Second Edition
This is a free sample of content from Calcium Signaling, Second Edition. Click here for more information on how to buy the book. Index A ANO1, 441 ABT-199/Venetoclax, 471, 473 AP. See Action potential Action potential (AP), 407 Aquaporin, 441 Activin-A, 389 ARF1, 291 AD. See Alzheimer’s disease Arteriosclerosis. See Calcification ADAM10, 551 ASD. See Autism spectrum disorder Addiction. See Drug addiction Astrocyte Adenylyl cyclase, CRAC channel calcium brain aging modulation, 72–73 Alzheimer’s disease Aging amyloid-b effects on calcium dynamics, brain 549–550 Alzheimer’s disease astrogliopathology, 548–549 amyloid-b effects on calcium calcium signaling in astrocytes, 549–552 dynamics, 549–550 endoplasmic reticulum calcium release and astrogliopathology, 548–549 astrogliotic response, 552 calcium signaling in astrocytes, 549–552 astroglia support over life, 546–547 endoplasmic reticulum calcium release and ionic signaling and excitability, 547 astrogliotic response, 552 physiology in aging, 547–548 astrocyte transcription-dependent metabolic plasticity, 391–393 astroglia support over life, 546–547 ATF3, 389 ionic signaling and excitability, 547 Atherosclerosis. See Calcification physiology in aging, 547–548 Atrap, 164 overview, 545–546 Autism spectrum disorder (ASD) tissue calcification, 534–535 IL1RAPL1 mutations, 296 AKAP9, 470 parvalbumin neurons, 228–229 AKAP79, 75 ALN, 163 B Alzheimer’s disease (AD) BAP1, 482 astrocyte aging Bcl-2 amyloid-b effects on calcium dynamics, 549–550 endoplasmic reticulum function, 465–466 astrogliopathology, -
David Alfred Eisner
CURRICULUM VITAE David Alfred Eisner BHF Professor of Cardiac Physiology University of Manchester Cardiac Physiology Unit 3.18 Core Technology Facility 46 Grafton St Manchester M13 9NT Contents Page Career details 2 Honours 2 Editorial Boards 2 Professional Appointments 3 Service within the University 4 Bibliometric Analysis 5 Research Synopsis 6 Research grants held 9 Invited seminars and lectures 12 Publications 15 David Eisner David Eisner Born: 3 January, 1955, Manchester, England 1973-1976 King's College Cambridge 1976 B.A. (class II.1) 1976-1979 Balliol College Oxford 1979 D.Phil. (Supervisor Prof D. Noble) 1979-1980 Postdoctoral Research Assistant- Physiological Laboratory, Cambridge (with Prof I.M. Glynn). 1981-1986 University Lecturer, University College London. 1982-1988 Visiting Assistant Professor, Department of Physiology, University of Maryland 1986-1990 Wellcome Senior Lecturer, University College London 1988- Research Associate Professor, Department of Physiology, University of Maryland 1989-1990 Reader in Physiology, University of London 1990-1999 Professor of Veterinary Biology, University of Liverpool 1992-1999 Head of Veterinary Preclinical Sciences Department 1999 - Professor of Cardiac Physiology, Department of Medicine, The University of Manchester 2000- British Heart Foundation Professor of Cardiac Physiology, The University of Manchester Honours 1975 Powell Prize and Senior Scholarship: King's College Cambridge 1985 Awarded Pfizer Prize for research in biology 1986 Wellcome Senior Lectureship 1988 Awarded Wellcome