Optical Detection and Analysis of Pictor A's Jet
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
15Th October at 19:00 Hours Or 7Pm AEST
TheSky (c) Astronomy Software 1984-1998 TheSky (c) Astronomy Software 1984-1998 URSA MINOR CEPHEUS CASSIOPEIA DRACO Night sky map OctoberDRACO 2017 URSA MAJOR North North STAR BRIGHTNESS Zero or brighter 1st magnitude nd LACERTA Deneb 2 NE rd NE Vega CYGNUS CANES VENATICI LYRAANDROMEDA 3 Vega NW th NW 4 LYRA LEO MINOR CORONA BOREALIS HERCULES BOOTES CORONA BOREALIS HERCULES VULPECULA COMA BERENICES Arcturus PEGASUS SAGITTA DELPHINUS SAGITTA SERPENS LEO Altair EQUULEUS PISCES Regulus AQUILAVIRGO Altair OPHIUCHUS First Quarter Moon SERPENS on the 28th Spica AQUARIUS LIBRA Zubenelgenubi SCUTUM OPHIUCHUS CORVUS Teapot SEXTANS SERPENS CAPRICORNUS SERPENSCRATER AQUILA SCUTUM East East Antares SAGITTARIUS CETUS PISCIS AUSTRINUS P SATURN Centre of the Galaxy MICROSCOPIUM Centre of the Galaxy HYDRA West SCORPIUS West LUPUS SAGITTARIUS SCULPTOR CORONA AUSTRALIS Antares GRUS CENTAURUS LIBRA SCORPIUS NORMAINDUS TELESCOPIUM CORONA AUSTRALIS ANTLIA Zubenelgenubi ARA CIRCINUS Hadar Alpha Centauri PHOENIX Mimosa CRUX ARA CAPRICORNUS TRIANGULUM AUSTRALEPAVO PYXIS TELESCOPIUM NORMAVELALUPUS FORNAX TUCANA MUSCA 47 Tucanae MICROSCOPIUM Achernar APUS ERIDANUS PAVO SMC TRIANGULUM AUSTRALE CIRCINUS OCTANSCHAMAELEON APUS CARINA HOROLOGIUMINDUS HYDRUS Alpha Centauri OCTANS SouthSouth CelestialCelestial PolePole VOLANS Hadar PUPPIS RETICULUM POINTERS SOUTHERN CROSS PISCIS AUSTRINUS MENSA CHAMAELEONMENSA MUSCA CENTAURUS Adhara CANIS MAJOR CHART KEY LMC Mimosa SE GRUS DORADO SMC CAELUM LMCCRUX Canopus Bright star HYDRUS TUCANA SWSW MOON PHASE Faint star VOLANS DORADO -
Instruction Manual
1 Contents 1. Constellation Watch Cosmo Sign.................................................. 4 2. Constellation Display of Entire Sky at 35° North Latitude ........ 5 3. Features ........................................................................................... 6 4. Setting the Time and Constellation Dial....................................... 8 5. Concerning the Constellation Dial Display ................................ 11 6. Abbreviations of Constellations and their Full Spellings.......... 12 7. Nebulae and Star Clusters on the Constellation Dial in Light Green.... 15 8. Diagram of the Constellation Dial............................................... 16 9. Precautions .................................................................................... 18 10. Specifications................................................................................. 24 3 1. Constellation Watch Cosmo Sign 2. Constellation Display of Entire Sky at 35° The Constellation Watch Cosmo Sign is a precisely designed analog quartz watch that North Latitude displays not only the current time but also the correct positions of the constellations as Right ascension scale Ecliptic Celestial equator they move across the celestial sphere. The Cosmo Sign Constellation Watch gives the Date scale -18° horizontal D azimuth and altitude of the major fixed stars, nebulae and star clusters, displays local i c r e o Constellation dial setting c n t s ( sidereal time, stellar spectral type, pole star hour angle, the hours for astronomical i o N t e n o l l r f -
Naming the Extrasolar Planets
Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named. -
The Constellation Microscopium, the Microscope Microscopium Is A
The Constellation Microscopium, the Microscope Microscopium is a small constellation in the southern sky, defined in the 18th century by Nicolas Louis de Lacaille in 1751–52 . Its name is Latin for microscope; it was invented by Lacaille to commemorate the compound microscope, i.e. one that uses more than one lens. The first microscope was invented by the two brothers, Hans and Zacharius Jensen, Dutch spectacle makers of Holland in 1590, who were also involved in the invention of the telescope (see below). Lacaille first showed it on his map of 1756 under the name le Microscope but Latinized this to Microscopium on the second edition published in 1763. He described it as consisting of "a tube above a square box". It contains sixty-nine stars, varying in magnitude from 4.8 to 7, the lucida being Gamma Microscopii of apparent magnitude 4.68. Two star systems have been found to have planets, while another has a debris disk. The stars that now comprise Microscopium may formerly have belonged to the hind feet of Sagittarius. However, this is uncertain as, while its stars seem to be referred to by Al-Sufi as having been seen by Ptolemy, Al-Sufi does not specify their exact positions. Microscopium is bordered Capricornus to the north, Piscis Austrinus and Grus to the west, Sagittarius to the east, Indus to the south, and touching on Telescopium to the southeast. The recommended three-letter abbreviation for the constellation, as adopted Seen in the 1824 star chart set Urania's Mirror (lower left) by the International Astronomical Union in 1922, is 'Mic'. -
Educator's Guide: Orion
Legends of the Night Sky Orion Educator’s Guide Grades K - 8 Written By: Dr. Phil Wymer, Ph.D. & Art Klinger Legends of the Night Sky: Orion Educator’s Guide Table of Contents Introduction………………………………………………………………....3 Constellations; General Overview……………………………………..4 Orion…………………………………………………………………………..22 Scorpius……………………………………………………………………….36 Canis Major…………………………………………………………………..45 Canis Minor…………………………………………………………………..52 Lesson Plans………………………………………………………………….56 Coloring Book…………………………………………………………………….….57 Hand Angles……………………………………………………………………….…64 Constellation Research..…………………………………………………….……71 When and Where to View Orion…………………………………….……..…77 Angles For Locating Orion..…………………………………………...……….78 Overhead Projector Punch Out of Orion……………………………………82 Where on Earth is: Thrace, Lemnos, and Crete?.............................83 Appendix………………………………………………………………………86 Copyright©2003, Audio Visual Imagineering, Inc. 2 Legends of the Night Sky: Orion Educator’s Guide Introduction It is our belief that “Legends of the Night sky: Orion” is the best multi-grade (K – 8), multi-disciplinary education package on the market today. It consists of a humorous 24-minute show and educator’s package. The Orion Educator’s Guide is designed for Planetarians, Teachers, and parents. The information is researched, organized, and laid out so that the educator need not spend hours coming up with lesson plans or labs. This has already been accomplished by certified educators. The guide is written to alleviate the fear of space and the night sky (that many elementary and middle school teachers have) when it comes to that section of the science lesson plan. It is an excellent tool that allows the parents to be a part of the learning experience. The guide is devised in such a way that there are plenty of visuals to assist the educator and student in finding the Winter constellations. -
Arxiv:1806.02345V2 [Astro-Ph.GA] 18 Feb 2019
Draft version February 20, 2019 Preprint typeset using LATEX style emulateapj v. 12/16/11 PROPER MOTIONS OF MILKY WAY ULTRA-FAINT SATELLITES WITH Gaia DR2 × DES DR1 Andrew B. Pace1,4 and Ting S. Li2,3 1 George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, and Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA 2 Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510, USA and 3 Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA Draft version February 20, 2019 ABSTRACT We present a new, probabilistic method for determining the systemic proper motions of Milky Way (MW) ultra-faint satellites in the Dark Energy Survey (DES). We utilize the superb photometry from the first public data release (DR1) of DES to select candidate members, and cross-match them with the proper motions from Gaia DR2. We model the candidate members with a mixture model (satellite and MW) in spatial and proper motion space. This method does not require prior knowledge of satellite membership, and can successfully determine the tangential motion of thirteen DES satellites. With our method we present measurements of the following satellites: Columba I, Eridanus III, Grus II, Phoenix II, Pictor I, Reticulum III, and Tucana IV; this is the first systemic proper motion measurement for several and the majority lack extensive spectroscopic follow-up studies. We compare these to the predictions of Large Magellanic Cloud satellites and to the vast polar structure. With the high precision DES photometry we conclude that most of the newly identified member stars are very metal-poor ([Fe/H] . -
Sydney Observatory Night Sky Map September 2012 a Map for Each Month of the Year, to Help You Learn About the Night Sky
Sydney Observatory night sky map September 2012 A map for each month of the year, to help you learn about the night sky www.sydneyobservatory.com This star chart shows the stars and constellations visible in the night sky for Sydney, Melbourne, Brisbane, Canberra, Hobart, Adelaide and Perth for September 2012 at about 7:30 pm (local standard time). For Darwin and similar locations the chart will still apply, but some stars will be lost off the southern edge while extra stars will be visible to the north. Stars down to a brightness or magnitude limit of 4.5 are shown. To use this chart, rotate it so that the direction you are facing (north, south, east or west) is shown at the bottom. The centre of the chart represents the point directly above your head, called the zenith, and the outer circular edge represents the horizon. h t r No Star brightness Moon phase Last quarter: 08th Zero or brighter New Moon: 16th 1st magnitude LACERTA nd Deneb First quarter: 23rd 2 CYGNUS Full Moon: 30th rd N 3 E LYRA th Vega W 4 LYRA N CORONA BOREALIS HERCULES BOOTES VULPECULA SAGITTA PEGASUS DELPHINUS Arcturus Altair EQUULEUS SERPENS AQUILA OPHIUCHUS SCUTUM PISCES Moon on 23rd SERPENS Zubeneschamali AQUARIUS CAPRICORNUS E SAGITTARIUS LIBRA a Saturn Centre of the Galaxy Antares Zubenelgenubi t s Antares VIRGO s t SAGITTARIUS P SCORPIUS P e PISCESMICROSCOPIUM AUSTRINUS SCORPIUS Mars Spica W PISCIS AUSTRINUS CORONA AUSTRALIS Fomalhaut Centre of the Galaxy TELESCOPIUM LUPUS ARA GRUSGRUS INDUS NORMA CORVUS INDUS CETUS SCULPTOR PAVO CIRCINUS CENTAURUS TRIANGULUM -
Design Radiator Catalogue
January 2019 Offers Beauty And Functionality Design Stay Classy Radiator Be Extraordinary Catalogue MORE THAN A RADIATOR AESTHETICALLY STRONG DIFFERENT IN STYLE 2 warmhaus.co.uk Contents Chrome Radiators p. 5 White & Anthracite Radiators p. 29 Multi Column Radiators p. 55 Myth Atmosphere Moonlight - Arcadia - Andromeda - Artemis - Atlantis - Aquila - Celine - Camelot - Carina - Luna - Nysa - Draco - Mika - Dinas - Circinus - Selena - Lyonesse - Columba - Shiva - Meropis - Crux - Chandra - Brittia - Hercules - Hawaiki - Mensa Traditional Radiators p. 65 - Oasis - Orion Heritage - Phoenix Stainless Steel Radiators p. 19 - Pyxis - Aztec Impulse - Vela - Inca - Tucana - Roma - Storm - Aquarius - Maya - Hurricane - Aries - Lydia - Thunder - Lyra - Kush - Swirl - Dorado - Tuwana - Flash - Gemini - Aksum - Whirlwind - Leo - Hittite - Tornado - Hydra - Pisces - Pictor - Scorpius - Taurus - Virgo - Cepheus warmhaus.co.uk 3 CHROME RADIATORS 4 warmhaus.co.uk Myth Warmhaus Myth Series offers you the opportunity to live with legends of the past. warmhaus.co.uk 5 CHROME RADIATORS 6 warmhaus.co.uk MYTH ARCADIA Product Code C5 Profile: Square Bar: Square PRODUCT HEIGHT WIDTH C/C W/C PRODUCT BTU/DT60 WATT CODE (mm) (mm) (mm) (mm) Arcadia C5 600 300 260 55~70 675 198 Arcadia C5 600 400 360 55~70 829 243 Arcadia C5 600 500 460 55~70 982 288 Arcadia C5 600 600 560 55~70 1136 333 Arcadia C5 800 300 260 55~70 939 275 Arcadia C5 800 400 360 55~70 1162 341 Arcadia C5 800 500 460 55~70 1383 406 Arcadia C5 800 600 560 55~70 1607 471 Arcadia C5 1000 300 260 55~70 -
These Sky Maps Were Made Using the Freeware UNIX Program "Starchart", from Alan Paeth and Craig Counterman, with Some Postprocessing by Stuart Levy
These sky maps were made using the freeware UNIX program "starchart", from Alan Paeth and Craig Counterman, with some postprocessing by Stuart Levy. You’re free to use them however you wish. There are five equatorial maps: three covering the equatorial strip from declination −60 to +60 degrees, corresponding roughly to the evening sky in northern winter (eq1), spring (eq2), and summer/autumn (eq3), plus maps covering the north and south polar areas to declination about +/− 25 degrees. Grid lines are drawn at every 15 degrees of declination, and every hour (= 15 degrees at the equator) of right ascension. The equatorial−strip maps use a simple rectangular projection; this shows constellations near the equator with their true shape, but those at declination +/− 30 degrees are stretched horizontally by about 15%, and those at the extreme 60−degree edge are plotted twice as wide as you’ll see them on the sky. The sinusoidal curve spanning the equatorial strip is, of course, the Ecliptic −− the path of the Sun (and approximately that of the planets) through the sky. The polar maps are plotted with stereographic projection. This preserves shapes of small constellations, but enlarges them as they get farther from the pole; at declination 45 degrees they’re about 17% oversized, and at the extreme 25−degree edge about 40% too large. These charts plot stars down to magnitude 5, along with a few of the brighter deep−sky objects −− mostly star clusters and nebulae. Many stars are labelled with their Bayer Greek−letter names. Also here are similarly−plotted maps, based on galactic coordinates. -
4391 Abbreviated Instruction
English 4391 Abbreviated instruction • To see details of specifications and operations, refer to the instruction manual: 4391 instruction manual Component identification Setting the constellation dial and the moon dial 1. Find the time difference in local sidereal time from the difference between the longitude of Japan Standard Time and that of your observation place. Constellation dial • +1° of longitude difference results in about +4-minute time difference. Minute hand • You can find the time difference in local sidereal time at your observation place through the difference between the longitude of Japan Standard Time Hour hand (135°E) and your place using the figure below. For example, in places near Tokyo (the longitude of Japan Standard Time +5°), the time difference becomes 20 minutes (= 5 (degree) x 4 (minute)). Crown Difference from the longitude of Japan Standard Time and time difference 125°E 130°E 135°E 140°E 145°E Second hand Crown's position 35°N 0 1 2 • Actual appearance may differ from the illustration. –40 min. –20 min. 0 min. +20 min. +40 min. • The crown has two positions when pulling it out. 2. Pull the crown out to position 1. Constellation dial (displaying the entire sky at 35°N) 3. Rotate the crown to set the constellation dial. • Set the time of the day on the right ascension scale to the corresponding Right ascension scale Ecliptic Celestial equator date on the date scale compensating the time difference found in step 1. Date scale Altitude ‒18° line Ex.: In a place of 140°E on June 11th 21:00 (compensated time: 21:20) Right ascension Constellation dial setting scale Rotation direction of position the constellation and Date scale moon dials (in normal condition) Crown June 11th 21:20 Time setting position Normal position Zenith Meridian Horizon Local sidereal time display position • Finally rotate the constellation dial clockwise to finish the setting. -
A Comprehensive and Novel Analysis of the Chandra X-Ray Observatory Data for the Pictor a Radio Galaxy
A Comprehensive and Novel Analysis of the Chandra X-ray Observatory Data for the Pictor A Radio Galaxy A PhD Dissertation by mgr Rameshan Thimmappa [email protected] presented to The Faculty of Physics, Astronomy and Applied Computer Science of the Jagiellonian University Krak´ow,Poland Supervisor: dr hab.Lukasz STAWARZ March 2021 Dedicated to My mother Padhmamma and my father Thimmappa A Comprehensive and Novel Analysis of the Chandra X-ray Observatory Data for the Pictor A Radio Galaxy by mgr Rameshan Thimmappa Abstract Pictor A, recognized as the archetypal powerful radio galaxy of the FR II type, is not only one of the brightest radio sources in the sky, but is also particularly prominent in the X-ray domain. Importantly, the extended structure of Pictor A is characterized by the large angular size of the order of several arcminutes. This structure could be therefore easily resolved by the modern X-ray telescopes, in particular by the Chandra X-ray Observatory. As such, Pictor A is a truly unique object among all the other radio galaxies. The main goal of my scientific research carried out during the last years, and summarized in this dissertation, is a comprehensive and novel re-analysis of all the available archival Chandra data for Pictor A. One of the main difficulties in this respect, is that the Chandra observations spread over the past decades have targeted different regions in the source with various exposures and off-axis angles. In addition, those regions do vary dramatically in their X-ray output and appearance, from the extremely bright and point-like (unresolved) nucleus, to the low-surface brightness but considerably extended lobes. -
The Advanced X-Ray Imaging Satellite
AXIS Advanced X-ray Imaging Satellite arXiv:1903.04083v2 [astro-ph.HE] 15 Mar 2019 Astro2020 Decadal Survey Probe Mission Study i PI Richard Mushotzky and the AXIS Team THE ADVANCED X-RAY IMAGING SATELLITE Authors: Richard F. Mushotzky1, James Aird2, Amy J. Barger3, Nico Cappelluti4, George Chartas5, Lía Corrales6, Rafael Eufrasio7;8, Andrew C. Fabian9, Abraham D. Falcone10, Elena Gallo6, Roberto Gilli11, Catherine E. Grant12, Martin Hardcastle13, Edmund Hodges-Kluck1;8, Erin Kara1;8;12, Michael Koss14, Hui Li15, Carey M. Lisse16, Michael Loewenstein1;8, Maxim Markevitch8, Eileen T. Meyer17, Eric D. Miller12, John Mulchaey18, Robert Petre8, Andrew J. Ptak8, Christopher S. Reynolds9, Helen R. Russell9, Samar Safi-Harb19, Randall K. Smith20, Bradford Snios20, Francesco Tombesi1;9;21;22, Lynne Valencic8;23, Stephen A. Walker8, Brian J. Williams8, Lisa M. Winter15;24, Hiroya Yamaguchi25, William W. Zhang8 Contributors: Jon Arenberg26, Niel Brandt10, David N. Burrows10, Markos Georganopoulos17, Jon M. Miller6, Colin A. Norman17, Piero Rosati27 A Probe-class mission study commissioned by NASA for the NAS Astro2020 Decadal Survey March 20, 2019 AUTHOR AFFILIATIONS 1 Department of Astronomy, University of Maryland, College Park, MD 20742 2 Department of Physics and Astronomy, The University of Leicester, Leicester LE1 7RH, UK 3 Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53706 4 Physics Department, University of Miami, Coral Gables, FL 33124 5 Department of Physics and Astronomy, College of Charleston, Charleston, SC