Rings in the Solar System: a Short Review

Total Page:16

File Type:pdf, Size:1020Kb

Rings in the Solar System: a Short Review Rings in the Solar System: a short review Sébastien CHARNOZ1, Aurélien CRIDA2,3, Ryuki HYODO4 (1) Université Paris Diderot / Institut de Physique du Globe, Paris FRANCE (2) Université Côte d'Azur / Observatoire de la Côte d’Azur, Lagrange, Nice, FRANCE (3) Institut Universitaire de France, Paris, FRANCE (4) Earth-Life Science Institute/Tokyo Institute of Technology, 2-12-1 Tokyo, Japan Abstract: Rings are ubiquitous around giant planets in our Solar System. They evolve jointly with the nearby satellite system. They could form either during the giant planet formation process or much later, as a result of large scale dynamical instabilities either in the local satellite system, or at the planetary scale. We review here the main characteristics of rings in our solar system, and discuss their main evolution processes and possible origin. We also discuss the recent discovery of rings around small bodies. All giant planets of the Solar System have rings. The brightest and most massive, those of Saturn, have been discovered by Galileo Galilei himself (whereas he did not interpreted them as rings, the first one to interpret them correctly was the dutch astronomer Christian Huygens), but it is really with the space missions Voyager 1 and 2, during the 70’s and 80’s that it was realized that all four giant planets harbor rings. Conversely, rings seem absent around terrestrial planets, despite many attempts to find dusty rings (especially around Mars). Rings are still some very mysterious structures that are ubiquitous to all giant planets, either gas or ice giants. However, the 4 rings systems that we know are all very different, and within a ring system, rings could be either dense and made of large particles (like Saturn and Uranus rings) or dusty (like Jupiter or Saturn’s E or G rings). See Figure 1 for a comparative sketch of the 4 rings systems found in our Solar System. Unlike a very common thought, rings are not necessarily confined to a planet’s Roche limit (see section 2), and dusty rings are found commonly beyond the Roche Limit. The generality and the diversity of rings systems make their origin difficult to understand. They could form either concomitant with their host planets (inside the circumplanetary disk), or they could be the result of late dynamical evolution either of their satellite systems (through collisions), or results from comet showers due to large scale instabilities of the planetary system. Thanks to the Cassini and Galileo missions, Saturn and Jupiter rings were investigated in great details (see e.g. Cuzzi et al., 2010 for a review of Saturn’s rings as seen by Cassini). Today, due to the increased detection capacities, Uranus and Neptune rings are better understood thanks to observations from Earth (see e.g. Showalter et al., 2008). Rings are rapidly evolving structures under the action of gravity, viscosity and radiative forces. We understand now that there is a close association between rings and satellites, through dynamical interactions (moons sculpt rings) or material exchange (rings can give birth to moons, see e.g. Charnoz et al., 2011; Crida & Charnoz 2012). As they represent a huge surface to volume ratio, rings are also very efficient to capture meteoritic bombardment, that, over long timescales, may modify their average composition. We have no clear idea of the ring’s age. They could be as old as the Solar System itself (like in the formation scenario proposed by Canup 2010 invoking a migrating satellite that is tidally dirupted), or as young as a few 100 Myrs according to different theories (like in Ćuk et al., 2016). But no model is consistent with all data, and the planetary rings origin is still heavily debated. Finally, unexpectedly, rings were found recently about small bodies, like centaurs, making a general theory of their formation even more difficult to build. In this chapter, we will briefly review our current knowledge about rings in our Solar System, emphasizing their diversity, as well as the key fundamental processes that govern their evolution. We also discuss the recent rings detection about small bodies. 1.Overview of Solar System rings systems Main rings systems are those that are found inside the planet’s Roche Limit (see section 2), i.e. typically inside ~2.5 planetary radii. Of course, the definition of the Roche Limit depends on the ring material density, that could be diverse and changing, and that is often not very well constrained. However, the Roche Limit only scales with the density to the exponent 1/3, so it does not vary greatly from one system to another and is found in general around 2-3 planetary radii. Outside the Roche Limit, dusty rings systems are also found, but they need to be replenished because the material is removed by the Poynting-Robertson force. In addition, the collisional timescale of dusty rings system is so long, that they are never flat and are in general vertically extended either due to radiative forces, or simply by keeping the memory of the orbit of the moon that is the dust source . We now briefly present the main characteristics of the rings systems around the 4 giant planets. Figure 1: Jupiter, Saturn, Uranus and Neptune rings and inner moons scaled by the planet radius. The shaded regions designate the dusty rings. 1.1 Jupiter rings Jupiter rings are extremely tenuous and are mostly dusty (Figure 2). They are closely associated to the four small moons, Methis, Adrastea, Amalthea and Thebe that release dust from their orbit. This dust adopts a 3d structure with finite thickness due to the randomization of their longitude of nodes and pericenters. The two outermost rings (the “Amalthea” and the “Thebe” gossamer rings), extend up to about 2.5 and 3.15 jovian radii respectively and have an optical depth about 10-7 and 10-8. They are vertically extended (unlike Saturn’s main rings) with thickness about 2300 and 8400 km respectively, that reflects the inclination of the two parent moons. The volume density of these two rings is not maximum in the midplane, but rather at the top and the bottom, because of the simple geometric effect : a particle on an inclined orbit (like all dust grains in these rings) spend more time at the top and bottom of its orbit because the vertical velocity is there zero. This creates a “sandwich”-like structure whose origin is purely kinematic. Closer to the planet the main rings, bounded by Adrastea is much flatter, about 30 km and is composed mainly of big particles as testified by a weak transmission in forward scattered light. A vertical extension appears, up a to a few 100 km, that may be composed of micrometer sized dust. Then comes, the innermost ring, called the “halo” that is very puffed up (up to a few 10,000 km) and is dusty. The vertical extension of the halo is maybe due to the coupling of the charged dusty grains with the magnetic field of Jupiter, that excites the particles inclinations (Hamilton et al., 2008). dust circulates efficiently in this ring system due to the Poynting-Robertson force (see section 2), forcing the dust grains to spiral toward the central planet. Particle sizes in Jupiter’s rings system show a steep size distribution, and are typically in the range 0.1-30µm. Only the main ring seems to contain a significant population of cm sized particles. The structure of the Jovian rings is currently the best understood the four rings systems. It shows well that big particles, that are not subject to radiative forces, and lose energy through collisions gather in a thin sheet (the main rings) whereas dusty particles, subject to radiative forces and that are in a low collisional environment (owing to the lower optical depth in the dusty rings) in general do not flatten into a thin rings system, but keep a torus like structure in 3D. For a detailed review of Jupiter rings and physics, we recommend the Burns et al. (1984) review paper. Figure 2 : Jupiter ring’s structure. Rj=Jupiter’ radius 1.2 Saturn’s rings They are the most famous, the richest and the most massive ring system of the four giant planets. Very broadly speaking, they are composed of a dense and vertically thin ring system inside the Saturn’s Roche limit (about 2.5 Saturn’s radii), as well as several of dusty rings, sometimes associated with satellites, beyond the Roche limit. Hundreds of dynamical structures have been identified in Saturn’s main ring system, with a number of them clearly associated to ring-moons gravitational interactions, but the origin of numerous structures is not clearly associated to moons. The study of Saturn’s rings is a very dynamical subject, fueled by the Cassini mission, and several review papers can be found in the “Saturn from Cassini- Huygens” book (2009, M. dougherty, L.Esposito, S. Krimigis Eds. Springer) and the forthcoming “Planetary Rings” book (C.d. Murray, M. Tiscareno Eds, Univ. of Arizona Press), that should be edited in 2018. For a review of the most surprising structures we recommend the Cuzzi et al. (2010) paper or the (excellent) Tiscareno (2013) review paper about rings in the Solar System. The main rings systems consist in 4 -regions with different optical depth and different types of structures (Figure 3). By increasing order of distance to Saturn, we find first the d and C rings, deeply embedded in Saturn’s Roche limit, that consists of ringlets and plateaus of material with varying optical depth about 10-4 and 10-3 respectively, then comes the B ring, the densest ring and probably the one that contains most of Saturn’s rings mass, with optical depth much higher than 1.
Recommended publications
  • Arxiv:1912.09192V2 [Astro-Ph.EP] 24 Feb 2020
    Draft version February 25, 2020 Typeset using LATEX preprint style in AASTeX62 Photometric analyses of Saturn's small moons: Aegaeon, Methone and Pallene are dark; Helene and Calypso are bright. M. M. Hedman,1 P. Helfenstein,2 R. O. Chancia,1, 3 P. Thomas,2 E. Roussos,4 C. Paranicas,5 and A. J. Verbiscer6 1Department of Physics, University of Idaho, Moscow, ID 83844 2Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca NY 14853 3Center for Imaging Science, Rochester Institute of Technology, Rochester NY 14623 4Max Planck Institute for Solar System Research, G¨ottingen,Germany 37077 5APL, John Hopkins University, Laurel MD 20723 6Department of Astronomy, University of Virginia, Charlottesville, VA 22904 ABSTRACT We examine the surface brightnesses of Saturn's smaller satellites using a photometric model that explicitly accounts for their elongated shapes and thus facilitates compar- isons among different moons. Analyses of Cassini imaging data with this model reveals that the moons Aegaeon, Methone and Pallene are darker than one would expect given trends previously observed among the nearby mid-sized satellites. On the other hand, the trojan moons Calypso and Helene have substantially brighter surfaces than their co-orbital companions Tethys and Dione. These observations are inconsistent with the moons' surface brightnesses being entirely controlled by the local flux of E-ring par- ticles, and therefore strongly imply that other phenomena are affecting their surface properties. The darkness of Aegaeon, Methone and Pallene is correlated with the fluxes of high-energy protons, implying that high-energy radiation is responsible for darkening these small moons. Meanwhile, Prometheus and Pandora appear to be brightened by their interactions with nearby dusty F ring, implying that enhanced dust fluxes are most likely responsible for Calypso's and Helene's excess brightness.
    [Show full text]
  • Cornell University Ithaca, New York 14650 JOSE - JUPITER ORBITING SPACECRAFT
    N T Z 33854 C *?** IS81 1? JOSE - JUPITER ORBITING SPACECRAFT: A SYSTEMS STUDY Volume I '>•*,' T COLLEGE OF ENGINEERING Cornell University Ithaca, New York 14650 JOSE - JUPITER ORBITING SPACECRAFT: A SYSTEMS STUDY Volume I Prepared Under Contract No. NGR 33-010-071 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION by NASA-Cornell Doctoral Design Trainee Group (196T-TO) October 1971 College of Engineering Cornell University Ithaca, New York Table of Contents Volume I Preface Chapter I: The Planet Jupiter: A Brief Summary B 1-2 r. Mechanical Properties of the Planet Jupiter. P . T-fi r> 1-10 F T-lfi F T-lfi 0 1-29 H, 1-32 T 1-39 References ... p. I-k2 Chapter II: The Spacecraft Design and Mission Definition A. Introduction p. II-l B. Organizational Structure and the JOSE Mission p. II-l C. JOSE Components p. II-1* D. Proposed Configuration p. II-5 Bibliography and References p. 11-10 Chapter III: Mission Trajectories A. Interplanetary Trajectory Analysis .... p. III-l B. Jupiter Orbital Considerations p. III-6 Bibliography and References. p. 111-38 Chapter IV: Attitude Control A. Introduction and Summary . p. IV-1 B. Expected Disturbance Moments M in Interplanetary Space . p. IV-3 C. Radiation-Produced Impulse Results p. IV-12 D. Meteoroid-Produced Impulse Results p. IV-13 E. Inertia Wheel Analysis p. IV-15 F. Attitude System Tradeoff Analysis p. IV-19 G. Conclusion P. IV-21 References and Bibliography p. TV-26 Chapter V: Propulsion Subsystem A. Mission Requirements p. V-l B. Orbit Insertion Analysis p.
    [Show full text]
  • Surface Characteristics of Transneptunian Objects and Centaurs from Photometry and Spectroscopy
    Barucci et al.: Surface Characteristics of TNOs and Centaurs 647 Surface Characteristics of Transneptunian Objects and Centaurs from Photometry and Spectroscopy M. A. Barucci and A. Doressoundiram Observatoire de Paris D. P. Cruikshank NASA Ames Research Center The external region of the solar system contains a vast population of small icy bodies, be- lieved to be remnants from the accretion of the planets. The transneptunian objects (TNOs) and Centaurs (located between Jupiter and Neptune) are probably made of the most primitive and thermally unprocessed materials of the known solar system. Although the study of these objects has rapidly evolved in the past few years, especially from dynamical and theoretical points of view, studies of the physical and chemical properties of the TNO population are still limited by the faintness of these objects. The basic properties of these objects, including infor- mation on their dimensions and rotation periods, are presented, with emphasis on their diver- sity and the possible characteristics of their surfaces. 1. INTRODUCTION cally with even the largest telescopes. The physical char- acteristics of Centaurs and TNOs are still in a rather early Transneptunian objects (TNOs), also known as Kuiper stage of investigation. Advances in instrumentation on tele- belt objects (KBOs) and Edgeworth-Kuiper belt objects scopes of 6- to 10-m aperture have enabled spectroscopic (EKBOs), are presumed to be remnants of the solar nebula studies of an increasing number of these objects, and signifi- that have survived over the age of the solar system. The cant progress is slowly being made. connection of the short-period comets (P < 200 yr) of low We describe here photometric and spectroscopic studies orbital inclination and the transneptunian population of pri- of TNOs and the emerging results.
    [Show full text]
  • Dynamics of Saturn's Small Moons in Coupled First Order Planar Resonances
    Dynamics of Saturn's small moons in coupled first order planar resonances Maryame El Moutamid Bruno Sicardy and St´efanRenner LESIA/IMCCE | Paris Observatory 26 juin 2012 Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk Saturn system Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk Very small moons Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk New satellites : Anthe, Methone and Aegaeon (Cooper et al., 2008 ; Hedman et al., 2009, 2010 ; Porco et al., 2005) Very small (0.5 km to 2 km) Vicinity of the Mimas orbit (outside and inside) The aims of the work A better understanding : - of the dynamics of this population of news satellites - of the scenario of capture into mean motion resonances Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk Dynamical structure of the system µ µ´ Mp We consider only : - The resonant terms - The secular terms causing the precessions of the orbit When µ ! 0 ) The symmetry is broken ) different kinds of resonances : - Lindblad Resonance - Corotation Resonance D'Alembert rules : 0 0 c = (m + 1)λ − mλ − $ 0 L = (m + 1)λ − mλ − $ Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk Corotation Resonance - Aegaeon (7/6) : c = 7λMimas − 6λAegaeon − $Mimas - Methone (14/15) : c = 15λMethone − 14λMimas − $Mimas - Anthe (10/11) : c = 11λAnthe − 10λMimas − $Mimas Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk Corotation resonances Mean motion resonance : n1 = m+q n2 m Particular case : Lagrangian Equilibrium Points Maryame El Moutamid ESLAB-2012 | ESA/ESTEC Noordwijk Adam's ring and Galatea Maryame
    [Show full text]
  • 7 Planetary Rings Matthew S
    7 Planetary Rings Matthew S. Tiscareno Center for Radiophysics and Space Research, Cornell University, Ithaca, NY, USA 1Introduction..................................................... 311 1.1 Orbital Elements ..................................................... 312 1.2 Roche Limits, Roche Lobes, and Roche Critical Densities .................... 313 1.3 Optical Depth ....................................................... 316 2 Rings by Planetary System .......................................... 317 2.1 The Rings of Jupiter ................................................... 317 2.2 The Rings of Saturn ................................................... 319 2.3 The Rings of Uranus .................................................. 320 2.4 The Rings of Neptune ................................................. 323 2.5 Unconfirmed Ring Systems ............................................. 324 2.5.1 Mars ............................................................... 324 2.5.2 Pluto ............................................................... 325 2.5.3 Rhea and Other Moons ................................................ 325 2.5.4 Exoplanets ........................................................... 327 3RingsbyType.................................................... 328 3.1 Dense Broad Disks ................................................... 328 3.1.1 Spiral Waves ......................................................... 329 3.1.2 Gap Edges and Moonlet Wakes .......................................... 333 3.1.3 Radial Structure .....................................................
    [Show full text]
  • JUICE Red Book
    ESA/SRE(2014)1 September 2014 JUICE JUpiter ICy moons Explorer Exploring the emergence of habitable worlds around gas giants Definition Study Report European Space Agency 1 This page left intentionally blank 2 Mission Description Jupiter Icy Moons Explorer Key science goals The emergence of habitable worlds around gas giants Characterise Ganymede, Europa and Callisto as planetary objects and potential habitats Explore the Jupiter system as an archetype for gas giants Payload Ten instruments Laser Altimeter Radio Science Experiment Ice Penetrating Radar Visible-Infrared Hyperspectral Imaging Spectrometer Ultraviolet Imaging Spectrograph Imaging System Magnetometer Particle Package Submillimetre Wave Instrument Radio and Plasma Wave Instrument Overall mission profile 06/2022 - Launch by Ariane-5 ECA + EVEE Cruise 01/2030 - Jupiter orbit insertion Jupiter tour Transfer to Callisto (11 months) Europa phase: 2 Europa and 3 Callisto flybys (1 month) Jupiter High Latitude Phase: 9 Callisto flybys (9 months) Transfer to Ganymede (11 months) 09/2032 – Ganymede orbit insertion Ganymede tour Elliptical and high altitude circular phases (5 months) Low altitude (500 km) circular orbit (4 months) 06/2033 – End of nominal mission Spacecraft 3-axis stabilised Power: solar panels: ~900 W HGA: ~3 m, body fixed X and Ka bands Downlink ≥ 1.4 Gbit/day High Δv capability (2700 m/s) Radiation tolerance: 50 krad at equipment level Dry mass: ~1800 kg Ground TM stations ESTRAC network Key mission drivers Radiation tolerance and technology Power budget and solar arrays challenges Mass budget Responsibilities ESA: manufacturing, launch, operations of the spacecraft and data archiving PI Teams: science payload provision, operations, and data analysis 3 Foreword The JUICE (JUpiter ICy moon Explorer) mission, selected by ESA in May 2012 to be the first large mission within the Cosmic Vision Program 2015–2025, will provide the most comprehensive exploration to date of the Jovian system in all its complexity, with particular emphasis on Ganymede as a planetary body and potential habitat.
    [Show full text]
  • 000881536.Pdf (3.344Mb)
    UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO" CAMPUS DE GUARATINGUETÁ TIAGO FRANCISCO LINS LEAL PINHEIRO Estudo da sailboat para sistemas binários Guaratinguetá 2016 Tiago Francisco Lins Leal Pinheiro Estudo da sailboat para sistemas binários Trabalho de Graduação apresentado ao Conselho de Curso de Graduação em Bacharel em Física da Faculdade de Engenharia do Campus de Gua- ratinguetá, Universidade Estatual Paulista, como parte dos requisitos para obtenção do diploma de Graduação em Bacharel em Física . Orientador: Profo Dr. Rafael Sfair Guaratinguetá 2016 Pinheiro, Tiago Francisco Lins Leal L654e Estudo da sailboat para sistemas binários / Tiago Francisco Lins Leal Pinheiro– Guaratinguetá, 2016. 57 f.: il. Bibliografia: f. 53 Trabalho de Graduação em Bacharelado em Física – Universidade Estadual Paulista, Faculdade de Engenharia de Guaratinguetá, 2016. Orientador: Prof. Dr. Rafael Sfair 1. Planetas - Orbitas 2. Sistema binário (Matematica) 3. Metodos de simulação I. Título . CDU 523. DADOS CURRICULARES TIAGO FRANCISCO LINS LEAL PINHEIRO NASCIMENTO 03/06/1993 - Lorena / SP FILIAÇÃO Roberto Carlos Pinheiro Jurema Lins Leal Pinheiro 2012 / 2016 Bacherelado em Física Faculdade de Engenharia de Guaratin- guetá - UNESP 2011 Bacherelado em Engenharia de Produção Centro Universitário Salesiano de São Paulo - UNISAL 2008 / 2010 Ensino Médio Instituto Santa Teresa AGRADECIMENTOS Em primeiro lugar agradeço a Deus, fonte da vida e da graça. Agradeço pela minha vida, minha inteligência, minha família e meus amigos, ao meu orientador, Prof. Dr. Rafael Sfair que jamais deixou de me incentivar. Sem a sua orientação, dedicação e auxílio, o estudo aqui apresentado seria praticamente impossível. aos meus pais Roberto Carlos Pinheiro e Jurema Lins Leal Pinheiro, e irmãos Maria Teresa, Daniel, Gabriel e Rafael, que apesar das dificuldades enfrentadas, sempre incentivaram meus estudos.
    [Show full text]
  • The Subsurface Habitability of Small, Icy Exomoons J
    A&A 636, A50 (2020) Astronomy https://doi.org/10.1051/0004-6361/201937035 & © ESO 2020 Astrophysics The subsurface habitability of small, icy exomoons J. N. K. Y. Tjoa1,?, M. Mueller1,2,3, and F. F. S. van der Tak1,2 1 Kapteyn Astronomical Institute, University of Groningen, Landleven 12, 9747 AD Groningen, The Netherlands e-mail: [email protected] 2 SRON Netherlands Institute for Space Research, Landleven 12, 9747 AD Groningen, The Netherlands 3 Leiden Observatory, Leiden University, Niels Bohrweg 2, 2300 RA Leiden, The Netherlands Received 1 November 2019 / Accepted 8 March 2020 ABSTRACT Context. Assuming our Solar System as typical, exomoons may outnumber exoplanets. If their habitability fraction is similar, they would thus constitute the largest portion of habitable real estate in the Universe. Icy moons in our Solar System, such as Europa and Enceladus, have already been shown to possess liquid water, a prerequisite for life on Earth. Aims. We intend to investigate under what thermal and orbital circumstances small, icy moons may sustain subsurface oceans and thus be “subsurface habitable”. We pay specific attention to tidal heating, which may keep a moon liquid far beyond the conservative habitable zone. Methods. We made use of a phenomenological approach to tidal heating. We computed the orbit averaged flux from both stellar and planetary (both thermal and reflected stellar) illumination. We then calculated subsurface temperatures depending on illumination and thermal conduction to the surface through the ice shell and an insulating layer of regolith. We adopted a conduction only model, ignoring volcanism and ice shell convection as an outlet for internal heat.
    [Show full text]
  • Rings Under Close Encounters with the Giant Planets: Chariklo Vs Chiron
    Mon. Not. R. Astron. Soc. 000, 1–8 (2017) Printed 15 March 2021 (MN LATEX style file v2.2) Rings under close encounters with the giant planets: Chariklo vs Chiron R. A. N. Araujo1, O. C. Winter1, R. Sfair1 1UNESP - Sao˜ Paulo State University, Grupo de Dinamicaˆ Orbital e Planetologia, CEP 12516-410, Guaratingueta,´ SP, Brazil ABSTRACT In 2014, the discovery of two well-defined rings around the Centaur (10199) Chariklo were announced. This was the first time that such structures were found around a small body. In 2015, it was proposed that the Centaur (2060) Chiron may also have a ring. In a previous study, we analyzed how close encounters with giant planets would affect the rings of Chariklo. The most likely result is the survival of the rings. In the present work, we broaden our analysis to (2060) Chiron. In addition to Chariklo, Chiron is currently the only known Centaur with a presumed ring. By applying the same method as Araujo, Sfair & Winter (2016), we performed numerical integrations of a system composed of 729 clones of Chiron, the Sun, and the giant planets. The number of close encounters that disrupted the ring of Chiron during one half-life of the study period was computed. This number was then compared to the number of close encounters for Chariklo. We found that the probability of Chiron losing its ring due to close encounters with the giant planets is about six times higher than that for Chariklo. Our analysis showed that, unlike Chariklo, Chiron is more likely to remain in an orbit with a relatively low inclination and high eccentricity.
    [Show full text]
  • Universidade Estadual Paulista "Júlio De Mesquita Filho" Campus De Guaratinguetá
    UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO" CAMPUS DE GUARATINGUETÁ TIAGO FRANCISCO LINS LEAL PINHEIRO Estudo da estabilidade de anéis em exoplanetas Guaratinguetá 2019 Tiago Francisco Lins Leal Pinheiro Estudo da estabilidade de anéis em exoplanetas Trabalho Mestrado apresentado ao Conselho da Pós Graduação em Mestrado em Física da Faculdade de Engenharia do Campus de Guaratinguetá, Univer- sidade Estatual Paulista, como parte dos requisitos para obtenção do diploma de Mestre em Mestrado em Física . Orientador: Profo Dr. Rafael Sfair Guaratinguetá 2019 Pinheiro, Tiago Francisco Lins Leal P654E Estudo da estabilidade de anéis em exoplanetas / Tiago Francisco Lins Leal Pinheiro – Guaratinguetá, 2019. 57 f : il. Bibliografia: f. 54 Dissertação (Mestrado) – Universidade Estadual Paulista, Faculdade de Engenharia de Guaratinguetá, 2019. Orientador: Prof. Dr. Rafael Sfair 1. Exoplanetas. 2. Satélites. 3. Métodos de simulação. I. Título. CDU 523.4(043) Luciana Máximo Bibliotecária/CRB-8 3595 DADOS CURRICULARES TIAGO FRANCISCO LINS LEAL PINHEIRO NASCIMENTO 03/06/1993 - Lorena / SP FILIAÇÃO Roberto Carlos Pinheiro Jurema Lins Leal Pinheiro 2012 / 2016 Bacharelado em Física Universidade Estadual Paulista "Júlio de Mesquita Filho" 2017 / 2019 Mestrado em Física Universidade Estadual Paulista "Júlio de Mesquita Filho" Dedico este trabalho aos meus pais, Roberto e Jurema, aos meus irmãos, Maria Teresa, Daniel, Gabriel e Rafael, a minha sobrinha Giovanna Maria e amigos. AGRADECIMENTOS Em primeiro lugar agradeço a Deus, fonte da vida e da graça. Agradeço pela minha vida, minha inteligência, minha família e meus amigos, ao meu orientador, Prof. Dr. Rafael Sfair que jamais deixou de me incentivar. Sem a sua orientação, dedicação e auxílio, o estudo aqui apresentado seria praticamente impossível.
    [Show full text]
  • Instructor's Guide for Virtual Astronomy Laboratories
    Instructor’s Guide for Virtual Astronomy Laboratories Mike Guidry, University of Tennessee Kevin Lee, University of Nebraska The Brooks/Cole product Virtual Astronomy Laboratories consists of 20 virtual online astronomy laboratories (VLabs) representing a sampling of interactive exercises that illustrate some of the most important topics in introductory astronomy. The exercises are meant to be representative, not exhaustive, since introductory astronomy is too broad to be covered in only 20 laboratories. Material is approximately evenly divided between that commonly found in the Solar System part of an introductory course and that commonly associated with the stars, galaxies, and cosmology part of such a course. Intended Use This material was designed to serve two general functions: on the one hand it represents a set of virtual laboratories that can be used as part or all of an introductory astronomy laboratory sequence, either within a normal laboratory setting or in a distance learning environment. On the other hand, it is meant to serve as a tutorial supplement for standard textbooks. While this is an efficient use of the material, it presents some problems in organization since (as a rule of thumb) supplemental tutorial material is more concept oriented while astronomy laboratory material typically requires more hands-on problem-solving involving at least some basic mathematical manipulations. As a result, one will find material of varying levels of difficulty in these laboratories. Some sections are highly conceptual in nature, emphasizing more qualitative answers to questions that students may deduce without working through involved tasks. Other sections, even within the same virtual laboratory, may require students to carry out guided but non-trivial analysis in order to answer questions.
    [Show full text]
  • Mellor 2018 Mres Genderpowe
    Gender, power and disguise: cross dressing women within Shakespeare and Spenser MELLOR, Hollyann Available from the Sheffield Hallam University Research Archive (SHURA) at: http://shura.shu.ac.uk/24018/ A Sheffield Hallam University thesis This thesis is protected by copyright which belongs to the author. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Please visit http://shura.shu.ac.uk/24018/ and http://shura.shu.ac.uk/information.html for further details about copyright and re-use permissions. GENDER, POWER AND DISGUISE: CROSS-DRESSING WOMEN WITHIN SHAKESPEARE AND SPENSER. Submitted by Hollyann Kaye Mellor Department of Development and Society In partial fulfilment of the requirements for the degree of Masters by Research in English Sheffield Hallam University September 2018 Abstract Gender, Power and Disguise: Cross-Dressing Women within Shakespeare and Spenser. Master of Arts in English, 2018. By engaging with Jonathan Dollimore and Alan Sinfield’s (1994) consolidation, subversion and containment theory this dissertation explores how Edmund Spenser and William Shakespeare incorporated female crossdressers within their works to present fictional women as threatening to established Elizabethan gender codes. Transgressive female characters in these works demand particular attention given the insecure variant of patriarchy that had emerged out of Elizabeth I’s reign, and the insistent iconography of female power and constancy that was encouraged throughout the final decades of her rule. This dissertation argues that Spenser and Shakespeare presented crossdressing women as figures who had the potential to subvert established notions of patriarchy during the final decade of the sixteenth-century.
    [Show full text]