000001 – 004000

Total Page:16

File Type:pdf, Size:1020Kb

000001 – 004000 ELEMENTS AND OPPOSITION DATES IN 2018 ecliptic and equinox J2000.0, epoch 2018 october 9.0 tt Planet H G M ω Ω i e µ a TE Oppos. V m ◦ ◦ ◦ ◦ ◦ 1 Ceres 3.34 0.12 34.96253 73.21926 80.30823 10.59360 0.0756108 0.21409536 2.7673529 18 2 3.9 6.9 2 Pallas 4.13 0.11 17.01563 310.01747 173.08095 34.83787 0.2303765 0.21352415 2.7722861 18 — — 3 Juno 5.33 0.32 349.71122 248.15370 169.85737 12.98884 0.2569720 0.22599352 2.6693492 18 11 22.3 7.4 4 Vesta 3.20 0.32 41.55579 150.70302 103.81174 7.14177 0.0887960 0.27161184 2.3614037 18 6 19.9 5.5 5 Astraea 6.85 X 234.60621 358.71723 141.58154 5.36725 0.1911898 0.23867505 2.5739377 18 9 20.5 10.8 6 Hebe 5.71 0.24 33.97849 239.84042 138.64322 14.73677 0.2029828 0.26092606 2.4254430 18 12 27.5 8.5 7 Iris 5.51 X 86.89317 145.26804 259.56335 5.52365 0.2313380 0.26755248 2.3852289 18 — — 8 Flora 6.49 0.28 134.54754 285.25813 110.89936 5.88683 0.1568801 0.30183189 2.2010300 18 1 2.6 8.2 9 Metis 6.28 0.17 223.38653 6.38800 68.90962 5.57687 0.1229730 0.26744269 2.3858816 18 6 16.7 9.8 10 Hygiea 5.43 X 116.86586 312.22631 283.20942 3.83151 0.1125829 0.17705530 3.1409673 18 9 22.1 10.1 11 Parthenope 6.55 X 227.39436 195.75282 125.55812 4.63001 0.1006054 0.25667315 2.4521616 18 1 26.6 10.1 12 Victoria 7.24 0.22 78.08271 69.63538 235.41053 8.37315 0.2200833 0.27634983 2.3343354 18 11 22.6 10.2 13 Egeria 6.74 X 139.73231 80.62521 43.23122 16.53743 0.0847259 0.23825593 2.5769554 18 5 17.9 10.3 14 Irene 6.30 X 117.50027 97.86811 86.12402 9.12169 0.1666861 0.23708530 2.5854311 18 7 25.7 10.0 15 Eunomia 5.28 0.23 237.78636 98.28140 292.95224 11.74490 0.1860390 0.22902753 2.6457223 18 5 4.2 9.8 16 Psyche 5.90 0.20 249.32528 228.41661 150.08763 3.09476 0.1336475 0.19689717 2.9262386 18 5 11.4 10.5 17 Thetis 7.76 X 252.59354 136.19958 125.55253 5.59114 0.1329339 0.25384260 2.4703569 18 — — 18 Melpomene 6.51 0.25 210.68423 227.87471 150.43979 10.12900 0.2181392 0.28324314 2.2963061 18 3 24.1 10.2 19 Fortuna 7.13 0.10 145.69630 182.05414 211.14439 1.57395 0.1585411 0.25833062 2.4416615 18 2 1.3 10.1 20 Massalia 6.50 0.25 65.16532 256.59217 206.10861 0.70870 0.1421542 0.26365157 2.4086987 18 — — 21 Lutetia 7.35 0.11 292.50387 249.85705 80.86603 3.06405 0.1636789 0.25925267 2.4358688 18 4 12.4 10.8 22 Kalliope 6.45 0.21 157.58222 355.55046 66.05320 13.71891 0.0983245 0.19823550 2.9130533 18 4 7.2 10.9 23 Thalia 6.95 X 289.48647 60.64947 66.84681 10.11429 0.2350539 0.23164831 2.6257294 18 10 31.3 10.2 24 Themis 7.08 0.19 319.74830 106.92450 35.93577 0.75160 0.1249393 0.17740059 3.1368904 18 — — 25 Phocaea 7.83 X 119.87088 90.26091 214.13468 21.60533 0.2544563 0.26501383 2.4004372 18 12 29.6 12.3 26 Proserpina 7.5 X 60.15400 193.42641 45.77768 3.56345 0.0902325 0.22792264 2.6542658 18 7 8.0 10.6 27 Euterpe 7.0 X 280.44365 356.48704 94.78784 1.58370 0.1732066 0.27421697 2.3464240 18 9 6.9 10.0 28 Bellona 7.09 X 230.76370 344.15279 144.30021 9.43023 0.1519470 0.21317231 2.7753357 18 9 5.4 11.4 29 Amphitrite 5.85 0.20 236.01942 63.27579 356.34684 6.08217 0.0725634 0.24141389 2.5544332 18 6 15.1 9.5 30 Urania 7.57 X 334.89876 87.44212 307.47541 2.09573 0.1274974 0.27092760 2.3653780 18 9 18.0 9.9 31 Euphrosyne 6.74 X 52.02940 61.41993 31.11678 26.30556 0.2209906 0.17588438 3.1548922 18 — — 32 Pomona 7.56 X 344.60866 339.50201 220.44155 5.52473 0.0804656 0.23682990 2.5872895 18 1 10.8 11.1 33 Polyhymnia 8.55 0.33 301.63147 338.28119 8.50157 1.85310 0.3316731 0.20216817 2.8751524 18 4 30.8 13.1 34 Circe 8.51 X 81.75533 330.87531 184.40142 5.49641 0.1054652 0.22355115 2.6887563 18 4 18.3 11.7 35 Leukothea 8.6 X 177.22791 213.37262 353.74700 7.93382 0.2257323 0.19027088 2.9937888 18 10 18.2 13.9 36 Atalante 8.46 X 256.49019 47.71808 358.22950 18.36738 0.3047508 0.21639977 2.7476717 18 6 1.4 13.6 37 Fides 7.29 0.24 295.60709 62.88035 7.27015 3.07109 0.1755361 0.22952305 2.6419130 18 8 31.0 10.5 38 Leda 8.32 X 321.44664 169.32902 295.72284 6.97043 0.1550861 0.21733985 2.7397429 18 11 29.9 11.3 39 Laetitia 6.0 X 259.11356 208.79754 156.99111 10.36622 0.1116740 0.21367495 2.7709816 18 5 6.8 10.3 40 Harmonia 7.0 X 49.67930 269.84809 94.18885 4.25726 0.0469608 0.28866708 2.2674508 18 12 8.9 9.4 41 Daphne 7.12 0.10 91.38896 45.86889 178.08754 15.79380 0.2755361 0.21494639 2.7600436 18 8 30.1 11.1 42 Isis 7.53 X 151.74337 237.31465 84.19598 8.51451 0.2226470 0.25826769 2.4420581 18 — — 43 Ariadne 7.93 0.11 77.71745 16.23683 264.81310 3.47121 0.1682981 0.30136067 2.2033238 18 10 11.1 10.4 44 Nysa 7.03 0.46 30.51779 343.25237 131.55132 3.70667 0.1479498 0.26131547 2.4230328 18 — — 45 Eugenia 7.46 0.07 354.17499 88.44928 147.64909 6.60218 0.0844607 0.21955320 2.7212987 18 3 19.9 10.9 46 Hestia 8.36 0.06 20.79195 177.42397 181.09037 2.34971 0.1719228 0.24554304 2.5257147 18 10 28.9 10.8 47 Aglaja 7.84 0.16 12.01914 314.63770 3.08184 4.97563 0.1297065 0.20155547 2.8809761 18 8 12.6 11.0 48 Doris 6.90 X 33.30499 253.18526 183.55731 6.54706 0.0725731 0.17963819 3.1107870 18 — — 49 Pales 7.8 X 205.16497 111.74800 285.30650 3.18084 0.2232859 0.18013825 3.1050273 18 4 22.9 13.1 50 Virginia 9.24 X 112.69614 200.10669 173.52825 2.83815 0.2859720 0.22860117 2.6490109 18 — — 51 Nemausa 7.35 0.08 41.74748 2.71705 176.01050 9.97834 0.0672669 0.27082127 2.3659971 18 2 24.1 9.9 52 Europa 6.31 0.18 200.89746 343.61359 128.60667 7.47881 0.1103230 0.18118959 3.0930045 18 7 20.0 11.2 53 Kalypso 8.81 X 17.75841 313.28245 143.55360 5.17111 0.2056788 0.23280026 2.6170604 18 — — 54 Alexandra 7.66 X 334.20635 344.94284 313.25911 11.79633 0.1976186 0.22077031 2.7112877 18 4 17.0 11.4 55 Pandora 7.7 X 318.04119 5.37068 10.38100 7.18042 0.1428491 0.21501052 2.7594947 18 7 28.2 11.2 56 Melete 8.31 X 199.38796 105.02204 192.98788 8.08057 0.2379172 0.23562759 2.5960833 18 — — 57 Mnemosyne 7.03 X 107.82531 210.77158 199.19989 15.21615 0.1136775 0.17622381 3.1508399 18 1 21.6 11.6 58 Concordia 8.86 X 254.25325 30.59147 161.11230 5.06511 0.0428549 0.22209167 2.7005230 18 12 31.3 12.5 59 Elpis 7.93 X 114.94825 211.13990 170.02648 8.64149 0.1193075 0.22068331 2.7120002 18 — — 60 Echo 8.21 0.27 155.15324 271.17582 191.57438 3.60036 0.1840403 0.26619699 2.3933192 18 5 18.2 11.6 61 Dana¨e 7.68 X 233.81697 12.56745 333.70438 18.20211 0.1663667 0.19123277 2.9837413 18 3 13.1 12.7 62 Erato 8.76 X 205.14777 275.69153 125.28453 2.22972 0.1679250 0.17729624 3.1381211 18 4 29.8 14.0 63 Ausonia 7.55 0.25 86.44368 295.88476 337.74049 5.77593 0.1269003 0.26588167 2.3952110 18 10 5.7 10.6 64 Angelina 7.67 0.48 353.80521 178.79965 309.11585 1.30959 0.1256649 0.22445987 2.6814945 18 — — 65 Cybele 6.62 0.01 230.03717 102.51752 155.61854 3.56314 0.1118067 0.15537222 3.4267872 18 — — 66 Maja 9.36 X 333.25684 44.00675 7.50811 3.04585 0.1728851 0.22900492 2.6458964 18 10 6.5 12.0 67 Asia 8.28 X 226.13960 107.07773 202.44063 6.03058 0.1854067 0.26165368 2.4209444 18 1 11.8 12.4 68 Leto 6.78 0.05 218.98132 304.65071 44.13029 7.97171 0.1866885 0.21248885 2.7812837 18 3 8.2 11.5 69 Hesperia 7.05 0.19 262.63881 289.24112 184.99838 8.59203 0.1703703 0.19195398 2.9762630 18 9 17.3 11.6 70 Panopaea 8.11 0.14 23.88801 255.35184 47.69559 11.59520 0.1803608 0.23300433 2.6155321 18 8 17.4 10.8 71 Niobe 7.30 0.40 221.03874 266.92576 316.01022 23.26006 0.1733207 0.21532047 2.7568460 18 12 18.8 11.8 72 Feronia 8.94 X 309.12594 102.74870 207.97078 5.41632 0.1207621 0.28880521 2.2667278 18 4 1.7 12.0 73 Klytia 9.0 X 111.31653 52.42115 7.02286 2.37068 0.0432395 0.22668556 2.6639136 18 1 15.1 12.3 74 Galatea 8.66 X 232.58277 174.21692 197.25600 4.07511 0.2373141 0.21231971 2.7827605 18 4 10.7 13.6 75 Eurydike 8.96 0.23 276.84299 339.25650 359.40285 4.99373 0.3041142 0.22530825 2.6747590 18 3 30.5 13.6 76 Freia 7.90 X 252.77322 252.47223 204.30351 2.12178 0.1658285 0.15638205 3.4120191 18 8 18.5 13.2 77 Frigga 8.52 0.16 238.18831 61.76965 1.15716 2.42278 0.1321448 0.22610218 2.6684939 18 6 20.5 12.7 78 Diana 8.09 0.08 271.73808 152.79259 333.40742 8.70139 0.2074204 0.23250470 2.6192778 18 10 4.5 11.9 79 Eurynome 7.96 0.25 177.45755 200.98708 206.61715 4.61651 0.1903647 0.25758213 2.4463893 18 3 30.9 11.7 80 Sappho 7.98 X 40.58349 139.67840 218.69809 8.67563 0.1999723 0.28329109 2.2960470 18 12 11.3 10.3 – 1028 – ELEMENTS AND OPPOSITION DATES IN 2018 ecliptic and equinox J2000.0, epoch 2018 october 9.0 tt Planet H G M ω Ω i e µ a TE Oppos.
Recommended publications
  • Binzel, RP (2002). “Phase II of the Small Main-Belt Asteroid
    267 Bus, S.J.; Binzel, R.P. (2002). “Phase II of the small main-belt PRELIMINARY SPIN-SHAPE MODEL asteroid spectroscopic survey: A feature-based taxonomy.” Icarus FOR 755 QUINTILLA 158, 146-177. Lorenzo Franco DSFTA (2020). Dipartimento di Scienze Fisiche, della Terra e Balzaretto Observatory (A81), Rome, ITALY dell'Ambiente – Astronomical Observatory. [email protected] https://www.dsfta.unisi.it/en/research/labs - eng/astronomicalobservatory Robert K. Buchheim Altimira Observatory (G76) Durech, J.; Hanus, J.; Ali-Lagoa, V. (2018). “Asteroid model 18 Altimira, Coto de Caza, CA 92679 reconstructed from the Lowell Photometric Database and WISE data.” Astron. Astrophys. 617, A57. Donald Pray Sugarloaf Mountain Observatory Harris, A.W.; Young,J.W.; Scaltriti,F.; Zappala, V.(1984). South Deerfield, MA USA “Lightcurves and phase relations of the asteroids 82 Alkmene and 444 Gyptis.” Icarus 57, 251-258. Michael Fauerbach Florida Gulf Coast University JPL (2020). Small-Body Database Browser. 10501 FGCU Blvd. http://ssd.jpl.nasa.gov/sbdb.cgi#top Ft. Myers, FL33965-6565 Masiero, J.R.; Mainzer, A.K.; Grav, T.; Bauer, J.M.; Cutri, R.M.; Fabio Mortari Dailey,J.; Eisenhardt,P.R.M.; McMillan, R.S.; Spahr,T.B.; Hypatia Observatory (L62), Rimini, ITALY Skrutskie, M.F.; Tholen, D.; Walker, R.G.; Wright, E.L.; DeBaun, E.; Elsbury, D.; Gautier, T. IV; Gomillion, S.; Wilkins, A. (2011 ). Giovanni Battista Casalnuovo, Benedetto Chinaglia “Main Belt Asteroidswith WISE/NEOWISE. I. Preliminary Filzi School Observatory (D12), Laives, ITALY Albedos and Diameters.” Astrophys. J. 741, A68. Giulio Scarfi Masiero, J.R.; Grav, T.; Mainzer, A.K.; Nugent, C.R.; Bauer, Iota Scorpii Observatory (K78), La Spezia, ITALY J.M.; Stevenson, R.; Sonnett, S.
    [Show full text]
  • The Minor Planet Bulletin
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 36, NUMBER 3, A.D. 2009 JULY-SEPTEMBER 77. PHOTOMETRIC MEASUREMENTS OF 343 OSTARA Our data can be obtained from http://www.uwec.edu/physics/ AND OTHER ASTEROIDS AT HOBBS OBSERVATORY asteroid/. Lyle Ford, George Stecher, Kayla Lorenzen, and Cole Cook Acknowledgements Department of Physics and Astronomy University of Wisconsin-Eau Claire We thank the Theodore Dunham Fund for Astrophysics, the Eau Claire, WI 54702-4004 National Science Foundation (award number 0519006), the [email protected] University of Wisconsin-Eau Claire Office of Research and Sponsored Programs, and the University of Wisconsin-Eau Claire (Received: 2009 Feb 11) Blugold Fellow and McNair programs for financial support. References We observed 343 Ostara on 2008 October 4 and obtained R and V standard magnitudes. The period was Binzel, R.P. (1987). “A Photoelectric Survey of 130 Asteroids”, found to be significantly greater than the previously Icarus 72, 135-208. reported value of 6.42 hours. Measurements of 2660 Wasserman and (17010) 1999 CQ72 made on 2008 Stecher, G.J., Ford, L.A., and Elbert, J.D. (1999). “Equipping a March 25 are also reported. 0.6 Meter Alt-Azimuth Telescope for Photometry”, IAPPP Comm, 76, 68-74. We made R band and V band photometric measurements of 343 Warner, B.D. (2006). A Practical Guide to Lightcurve Photometry Ostara on 2008 October 4 using the 0.6 m “Air Force” Telescope and Analysis. Springer, New York, NY. located at Hobbs Observatory (MPC code 750) near Fall Creek, Wisconsin.
    [Show full text]
  • An Anisotropic Distribution of Spin Vectors in Asteroid Families
    Astronomy & Astrophysics manuscript no. families c ESO 2018 August 25, 2018 An anisotropic distribution of spin vectors in asteroid families J. Hanuš1∗, M. Brož1, J. Durechˇ 1, B. D. Warner2, J. Brinsfield3, R. Durkee4, D. Higgins5,R.A.Koff6, J. Oey7, F. Pilcher8, R. Stephens9, L. P. Strabla10, Q. Ulisse10, and R. Girelli10 1 Astronomical Institute, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovickáchˇ 2, 18000 Prague, Czech Republic ∗e-mail: [email protected] 2 Palmer Divide Observatory, 17995 Bakers Farm Rd., Colorado Springs, CO 80908, USA 3 Via Capote Observatory, Thousand Oaks, CA 91320, USA 4 Shed of Science Observatory, 5213 Washburn Ave. S, Minneapolis, MN 55410, USA 5 Hunters Hill Observatory, 7 Mawalan Street, Ngunnawal ACT 2913, Australia 6 980 Antelope Drive West, Bennett, CO 80102, USA 7 Kingsgrove, NSW, Australia 8 4438 Organ Mesa Loop, Las Cruces, NM 88011, USA 9 Center for Solar System Studies, 9302 Pittsburgh Ave, Suite 105, Rancho Cucamonga, CA 91730, USA 10 Observatory of Bassano Bresciano, via San Michele 4, Bassano Bresciano (BS), Italy Received x-x-2013 / Accepted x-x-2013 ABSTRACT Context. Current amount of ∼500 asteroid models derived from the disk-integrated photometry by the lightcurve inversion method allows us to study not only the spin-vector properties of the whole population of MBAs, but also of several individual collisional families. Aims. We create a data set of 152 asteroids that were identified by the HCM method as members of ten collisional families, among them are 31 newly derived unique models and 24 new models with well-constrained pole-ecliptic latitudes of the spin axes.
    [Show full text]
  • Clasificación Taxonómica De Asteroides
    Clasificación Taxonómica de Asteroides Cercanos a la Tierra por Ana Victoria Ojeda Vera Tesis sometida como requisito parcial para obtener el grado de MAESTRO EN CIENCIAS EN CIENCIA Y TECNOLOGÍA DEL ESPACIO en el Instituto Nacional de Astrofísica, Óptica y Electrónica Agosto 2019 Tonantzintla, Puebla Bajo la supervisión de: Dr. José Ramón Valdés Parra Investigador Titular INAOE Dr. José Silviano Guichard Romero Investigador Titular INAOE c INAOE 2019 El autor otorga al INAOE el permiso de reproducir y distribuir copias parcial o totalmente de esta tesis. II Dedicatoria A mi familia, con gran cariño. A mis sobrinos Ian y Nahil, y a mi pequeña Lia. III Agradecimientos Gracias a mi familia por su apoyo incondicional. A mi mamá Tere, por enseñarme a ser perseverante y dedicada, y por sus miles de muestras de afecto. A mi hermana Fernanda, por darme el tiempo, consejos y cariño que necesitaba. A mi pareja Odi, por su amor y cariño estos tres años, por su apoyo, paciencia y muchas horas de ayuda en la maestría, pero sobre todo por darme el mejor regalo del mundo, nuestra pequeña Lia. Gracias a mis asesores Dr. José R. Valdés y Dr. José S. Guichard, promotores de esta tesis, por su paciencia, consejos y supervisión, y por enseñarme con sus clases divertidas y motivadoras todo lo que se refiere a este trabajo. A los miembros del comité, Dra. Raquel Díaz, Dr. Raúl Mújica y Dr. Sergio Camacho, por tomarse el tiempo de revisar y evaluar mi trabajo. Estoy muy agradecida con todos por sus críticas constructivas y sugerencias.
    [Show full text]
  • 16 Minor Planet Bulletin 40 (2013)
    16 bimodal but has some indication of flattening of the maximums. LIGHTCURVES FOR 1394 ALGOA, 3078 HORROCKS, 4874 Burke was observed by Aymani (2012), who obtained a 4724 BROCKEN, AND 6329 HIKONEJYO period of 3.657 ± 0.001 and amplitude A = 0.31 mag. Menzies FROM ETSCORN CAMPUS OBSERVATORY (2012) obtained a period of 3.656 ± 0.001 and an amplitude of 0.23 ± 0.02 mag. Daniel A. Klinglesmith III, Ethan Risley, Janek Turk, Angelica Vargas, Curtis Warren The 115° longitude difference between the Etscorn Campus Etscorn Campus Observatory Observatory and the Bigmuskie Observatory allowed almost an 8 New Mexico Tech hour (~0.3) phase shift for 3948 Bohr. This allowed us to cover the 101 East Road nearly 24-hour sidereal period asteroid completely. This type of Socorro, NM, USA 87801 international collaboration is essential for asteroid with periods [email protected] near 24 hours. The collaboration continued with the observations of 4874 Burke’s 3.657-hour period (Received: 6 September) Between 2012 March and June, four asteroids were observed at the Etscorn Campus Observatory. Synodic periods and amplitudes were determined for all four: 1394 Algoa, P = 2.768 ± 0.001 h, A = 0.21 ± 0.10 mag; 3078 Horrocks, P = 13.620 ± 0.003 h, A = 0.25 ± 0.10 mag; 4724 Brocken, P = 5.912 ± 0.001 h, A = 0.75 ± 0.10 mag; and 6329 Hikonejyo, P = 6.064 ± 0.001 h, A = 0.23 ± 0.10 mag. Continuing with the lightcurve program at Etscorn Campus Observatory, we obtained data for four asteroids using our two Celestron 35.6-cm f/11 Schmidt-Cassegrain telescopes and SBIG STL-1001E CCD cameras with 1024x1024x24-micron pixels.
    [Show full text]
  • Aqueous Alteration on Main Belt Primitive Asteroids: Results from Visible Spectroscopy1
    Aqueous alteration on main belt primitive asteroids: results from visible spectroscopy1 S. Fornasier1,2, C. Lantz1,2, M.A. Barucci1, M. Lazzarin3 1 LESIA, Observatoire de Paris, CNRS, UPMC Univ Paris 06, Univ. Paris Diderot, 5 Place J. Janssen, 92195 Meudon Pricipal Cedex, France 2 Univ. Paris Diderot, Sorbonne Paris Cit´e, 4 rue Elsa Morante, 75205 Paris Cedex 13 3 Department of Physics and Astronomy of the University of Padova, Via Marzolo 8 35131 Padova, Italy Submitted to Icarus: November 2013, accepted on 28 January 2014 e-mail: [email protected]; fax: +33145077144; phone: +33145077746 Manuscript pages: 38; Figures: 13 ; Tables: 5 Running head: Aqueous alteration on primitive asteroids Send correspondence to: Sonia Fornasier LESIA-Observatoire de Paris arXiv:1402.0175v1 [astro-ph.EP] 2 Feb 2014 Batiment 17 5, Place Jules Janssen 92195 Meudon Cedex France e-mail: [email protected] 1Based on observations carried out at the European Southern Observatory (ESO), La Silla, Chile, ESO proposals 062.S-0173 and 064.S-0205 (PI M. Lazzarin) Preprint submitted to Elsevier September 27, 2018 fax: +33145077144 phone: +33145077746 2 Aqueous alteration on main belt primitive asteroids: results from visible spectroscopy1 S. Fornasier1,2, C. Lantz1,2, M.A. Barucci1, M. Lazzarin3 Abstract This work focuses on the study of the aqueous alteration process which acted in the main belt and produced hydrated minerals on the altered asteroids. Hydrated minerals have been found mainly on Mars surface, on main belt primitive asteroids and possibly also on few TNOs. These materials have been produced by hydration of pristine anhydrous silicates during the aqueous alteration process, that, to be active, needed the presence of liquid water under low temperature conditions (below 320 K) to chemically alter the minerals.
    [Show full text]
  • The Minor Planet Bulletin
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 35, NUMBER 3, A.D. 2008 JULY-SEPTEMBER 95. ASTEROID LIGHTCURVE ANALYSIS AT SCT/ST-9E, or 0.35m SCT/STL-1001E. Depending on the THE PALMER DIVIDE OBSERVATORY: binning used, the scale for the images ranged from 1.2-2.5 DECEMBER 2007 – MARCH 2008 arcseconds/pixel. Exposure times were 90–240 s. Most observations were made with no filter. On occasion, e.g., when a Brian D. Warner nearly full moon was present, an R filter was used to decrease the Palmer Divide Observatory/Space Science Institute sky background noise. Guiding was used in almost all cases. 17995 Bakers Farm Rd., Colorado Springs, CO 80908 [email protected] All images were measured using MPO Canopus, which employs differential aperture photometry to determine the values used for (Received: 6 March) analysis. Period analysis was also done using MPO Canopus, which incorporates the Fourier analysis algorithm developed by Harris (1989). Lightcurves for 17 asteroids were obtained at the Palmer Divide Observatory from December 2007 to early The results are summarized in the table below, as are individual March 2008: 793 Arizona, 1092 Lilium, 2093 plots. The data and curves are presented without comment except Genichesk, 3086 Kalbaugh, 4859 Fraknoi, 5806 when warranted. Column 3 gives the full range of dates of Archieroy, 6296 Cleveland, 6310 Jankonke, 6384 observations; column 4 gives the number of data points used in the Kervin, (7283) 1989 TX15, 7560 Spudis, (7579) 1990 analysis. Column 5 gives the range of phase angles.
    [Show full text]
  • IRTF Spectra for 17 Asteroids from the C and X Complexes: a Discussion of Continuum Slopes and Their Relationships to C Chondrites and Phyllosilicates ⇑ Daniel R
    Icarus 212 (2011) 682–696 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus IRTF spectra for 17 asteroids from the C and X complexes: A discussion of continuum slopes and their relationships to C chondrites and phyllosilicates ⇑ Daniel R. Ostrowski a, Claud H.S. Lacy a,b, Katherine M. Gietzen a, Derek W.G. Sears a,c, a Arkansas Center for Space and Planetary Sciences, University of Arkansas, Fayetteville, AR 72701, United States b Department of Physics, University of Arkansas, Fayetteville, AR 72701, United States c Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, United States article info abstract Article history: In order to gain further insight into their surface compositions and relationships with meteorites, we Received 23 April 2009 have obtained spectra for 17 C and X complex asteroids using NASA’s Infrared Telescope Facility and SpeX Revised 20 January 2011 infrared spectrometer. We augment these spectra with data in the visible region taken from the on-line Accepted 25 January 2011 databases. Only one of the 17 asteroids showed the three features usually associated with water, the UV Available online 1 February 2011 slope, a 0.7 lm feature and a 3 lm feature, while five show no evidence for water and 11 had one or two of these features. According to DeMeo et al. (2009), whose asteroid classification scheme we use here, 88% Keywords: of the variance in asteroid spectra is explained by continuum slope so that asteroids can also be charac- Asteroids, composition terized by the slopes of their continua.
    [Show full text]
  • Final Report Asteroid Impact Monitoring
    Final Report Asteroid Impact Monitoring Environmental and Instrumentation Requirements A component of the Asteroid Impact & Deflection Assessment (AIDA) Mission By the AIM Advisory Team Dr. Patrick MICHEL (Univ. Nice, CNRS, OCA), Team Leader Dr. Jens Biele (DLR) Dr. Marco Delbo (Univ. Nice, CNRS, OCA) Dr. Martin Jutzi (Univ. Bern) Pr. Guy Libourel (Univ. Nice, CNRS, OCA) Dr. Naomi Murdoch Dr. Stephen R. Schwartz (Univ. Nice, CNRS, OCA) Dr. Stephan Ulamec (DLR) Dr. Jean-Baptiste Vincent (MPS) April 12th, 2014 Introduction In this report, we describe the knowledge gain resulting from the implementation of either the European Space Agency’s Asteroid Impact Monitoring (AIM) as a stand- alone mission or AIM with its second component, the Double Asteroid Redirection Test (DART) mission under study by the Johns Hopkins Applied Physics Laboratory with support from members of NASA centers including Goddard Space Flight Center, Johnson Space Center, and the Jet Propulsion Laboratory. We then present our analysis of the required measurements addressing the goals of the AIM mission to the binary Near-Earth Asteroid (NEA) Didymos, and for two specified payloads. The first payload is a mini thermal infrared camera (called TP1) for short and medium range characterisation. The second payload is an active seismic experiment (called TP2). We then present the environmental parameters for the AIM mission. AIM is a rendezvous mission that focuses on the monitoring aspects i.e., the capability to determine in-situ the key properties of the secondary of a binary asteroid. DART consists primarily of an artificial projectile aims to demonstrate asteroid deflection. In the framework of the full AIDA concept, AIM will also give access to the detailed conditions of the DART impact and its outcome, allowing for the first time to get a complete picture of such an event, a better interpretation of the deflection measurement and a possibility to compare with numerical modeling predictions.
    [Show full text]
  • The Minor Planet Bulletin Is Open to Papers on All Aspects of 6500 Kodaira (F) 9 25.5 14.8 + 5 0 Minor Planet Study
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 32, NUMBER 3, A.D. 2005 JULY-SEPTEMBER 45. 120 LACHESIS – A VERY SLOW ROTATOR were light-time corrected. Aspect data are listed in Table I, which also shows the (small) percentage of the lightcurve observed each Colin Bembrick night, due to the long period. Period analysis was carried out Mt Tarana Observatory using the “AVE” software (Barbera, 2004). Initial results indicated PO Box 1537, Bathurst, NSW, Australia a period close to 1.95 days and many trial phase stacks further [email protected] refined this to 1.910 days. The composite light curve is shown in Figure 1, where the assumption has been made that the two Bill Allen maxima are of approximately equal brightness. The arbitrary zero Vintage Lane Observatory phase maximum is at JD 2453077.240. 83 Vintage Lane, RD3, Blenheim, New Zealand Due to the long period, even nine nights of observations over two (Received: 17 January Revised: 12 May) weeks (less than 8 rotations) have not enabled us to cover the full phase curve. The period of 45.84 hours is the best fit to the current Minor planet 120 Lachesis appears to belong to the data. Further refinement of the period will require (probably) a group of slow rotators, with a synodic period of 45.84 ± combined effort by multiple observers – preferably at several 0.07 hours. The amplitude of the lightcurve at this longitudes. Asteroids of this size commonly have rotation rates of opposition was just over 0.2 magnitudes.
    [Show full text]
  • A Photometric Search for Active Main Belt Asteroids S
    Astronomy & Astrophysics manuscript no. MBCsearch c ESO 2018 May 15, 2018 A photometric search for active Main Belt asteroids S. Cikota1, J. L. Ortiz2, A. Cikota3, N. Morales2, and G. Tancredi4 1 Physics Department, University of Split, Nikole Tesle 12, 21000 Split, Croatia. e-mail: [email protected] 2 Instituto de Astrofísica de Andalucía - CSIC, Apt 3004, 18008 Granada, Spain. 3 Institute for Astro- and Particle Physics, University of Innsbruck, Technikerstr. 25/8, A-6020 Innsbruck, Austria. 4 Observatorio Astronómico Los Molinos DICYT-MEC Cno. de los Molinos 5769, 12400 Montevideo, Uruguay. May 15, 2018 ABSTRACT It is well known that some Main Belt asteroids show comet-like features. A representative example is the first known Main Belt comet 133P/(7968) Elst-Pizarro. If the mechanisms causing this activity are too weak to develop visually evident comae or tails, the objects stay unnoticed. We are presenting a novel way to search for active asteroids, based on looking for objects with deviations from their expected brightnesses in a database. Just by using the MPCAT-OBS Observation Archive we have found five new candidate objects that possibly show a type of comet-like activity, and the already known Main Belt comet 133P/(7968) Elst-Pizarro. Four of the new candidates, (315) Constantia, (1026) Ingrid, (3646) Aduatiques, and (24684) 1990 EU4, show brightness deviations independent of the object’s heliocentric distance, while (35101) 1991 PL16 shows deviations dependent on its heliocentric distance, which could be an indication of a thermal triggered mechanism. The method could be implemented in future sky survey programmes to detect outbursts on Main Belt objects almost simultaneously with their occurrence.
    [Show full text]
  • The Minor Planet Bulletin Semi-Major Axis of 2.317 AU, Eccentricity 0.197, Inclination 7.09 (Warner Et Al., 2018)
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 45, NUMBER 3, A.D. 2018 JULY-SEPTEMBER 215. LIGHTCURVE ANALYSIS FOR TWO NEAR-EARTH 320ʺ/min during the close approach. The eclipse was observed, ASTEROIDS ECLIPSED BY EARTH’S SHADOW within minutes of the original prediction. Preliminary rotational and eclipse lightcurves were made available soon after the close Peter Birtwhistle approach (Birtwhistle, 2012; Birtwhistle, 2013; Miles, 2013) but it Great Shefford Observatory should be noted that a possible low amplitude 8.7 h period (Miles, Phlox Cottage, Wantage Road 2013) has been discounted in this analysis. Great Shefford, Berkshire, RG17 7DA United Kingdom Several other near-Earth asteroids are known to have been [email protected] eclipsed by the Earth’s shadow, e.g. 2008 TC3 and 2014 AA (both before impacting Earth), 2012 KT42, and 2016 VA (this paper) (Received 2018 March18) but internet searches have not found any eclipse lightcurves. The asteroid lightcurve database (LCDB; Warner et al., 2009) lists a Photometry was obtained from Great Shefford reference to an unpublished result for 2012 XE54 by Pollock Observatory of near-Earth asteroids 2012 XE54 in 2012 (2013) without lightcurve details, but these have been provided on and 2016 VA in 2016 during close approaches. A request and give the rotation period as 0.02780 ± 0.00002 h, superfast rotation period has been determined for 2012 amplitude 0.33 mag derived from 101 points over a period of 30 XE54 and H-G magnitude system coefficients have been minutes for epoch 2012 Dec 10.2 UT at phase angle 19.5°, estimated for 2016 VA.
    [Show full text]