Mechanistic Insights Into Cytosolic Molecular Chaperones in Protein Unfolding and Disaggregation

Total Page:16

File Type:pdf, Size:1020Kb

Mechanistic Insights Into Cytosolic Molecular Chaperones in Protein Unfolding and Disaggregation Unicentre CH-1015 Lausanne http://serval.unil.ch Year : 2014 MECHANISTIC INSIGHTS INTO CYTOSOLIC MOLECULAR CHAPERONES IN PROTEIN UNFOLDING AND DISAGGREGATION Mattoo Rayees Mattoo Rayees, 2014, MECHANISTIC INSIGHTS INTO CYTOSOLIC MOLECULAR CHAPERONES IN PROTEIN UNFOLDING AND DISAGGREGATION Originally published at : Thesis, University of Lausanne Posted at the University of Lausanne Open Archive http://serval.unil.ch Document URN : urn:nbn:ch:serval-BIB_EA49B7E040F21 Droits d’auteur L'Université de Lausanne attire expressément l'attention des utilisateurs sur le fait que tous les documents publiés dans l'Archive SERVAL sont protégés par le droit d'auteur, conformément à la loi fédérale sur le droit d'auteur et les droits voisins (LDA). A ce titre, il est indispensable d'obtenir le consentement préalable de l'auteur et/ou de l’éditeur avant toute utilisation d'une oeuvre ou d'une partie d'une oeuvre ne relevant pas d'une utilisation à des fins personnelles au sens de la LDA (art. 19, al. 1 lettre a). A défaut, tout contrevenant s'expose aux sanctions prévues par cette loi. Nous déclinons toute responsabilité en la matière. Copyright The University of Lausanne expressly draws the attention of users to the fact that all documents published in the SERVAL Archive are protected by copyright in accordance with federal law on copyright and similar rights (LDA). Accordingly it is indispensable to obtain prior consent from the author and/or publisher before any use of a work or part of a work for purposes other than personal use within the meaning of LDA (art. 19, para. 1 letter a). Failure to do so will expose offenders to the sanctions laid down by this law. We accept no liability in this respect. Département de biologie moléculaire végétale MECHANISTIC INSIGHTS INTO CYTOSOLIC MOLECULAR CHAPERONES IN PROTEIN UNFOLDING AND DISAGGREGATION Thèse de doctorat ès sciences de la vie (Ph.D.) Présentée à la Faculté de biologie et de médecine de l’Université de Lausanne par RAYEES U. H. MATTOO Biochemistry diplômé ou Master de l’Université Aligarh Inde. Jury Prof. Jan Roelof van der Meer, Président Prof. Pierre Goloubinoff, Directeur de thèse Prof. Anat Ben-Zvi, expert Prof. Didier Picard, expert Lausanne, 2014. TABLE OF CONTENT Table of Content………………………………………………………………………..….. I Graphical Abstract…….………………….……………………………………...……..…. II Abstract………………………………………………………………….……………….... III Résumé…………………………………………………………………………………….. IV Acknowledgements.…..………………………………………………………………….... V General Overview…….…..……………………………………………………………….. VI-XII Chapter 1 Introduction: Recruiting unfolding chaperones to solubilize misfolded recombinant proteins (Mattoo and Goloubinoff, 2014b). Chapter 2: Biophysical characterization of two different stable misfolded monomeric polypeptides that are chaperone-amenable substrates (Natalello et al., 2013). Chapter 3: Hsp110 is a bona fide chaperone using ATP to unfold stable misfolded polypeptides and reciprocally collaborate with Hsp70 to solubilize protein aggregates (Mattoo et al., 2013). Chapter 4: GroEL and CCT are catalytic unfoldases mediating out-of-cage polypeptide refolding without ATP (Priya et al., 2013). Chapter 5: Stable α-synuclein oligomers strongly inhibit chaperone activity of the hsp70 system by weak interactions with j-domain co-chaperones (Hinault et al., 2010). Chapter 6: Meta-analysis of heat- and chemically upregulated chaperone genes in plant and human cells (Finka et al., 2011). Chapter 7, Conclusion: Molecular chaperones are nano-machines that catalytically unfold misfolded and alter-natively folded proteins (Mattoo and Goloubinoff, 2014a). Perspectives I Thesis Graphical Abstract MECHANISTIC INSIGHTS INTO CYTOSOLIC MOLECULAR CHAPERONES IN PROTEIN UNFOLDING AND DISAGGREGATION Cytosolic molecular chaperones reactivate misfolded or aggregated proteins by their polypeptide unfoldase activity. Protein synthesized de novo follow a native folding pathway under optimal conditions to acquire a terminal tertiary functional structure or may assemble to form a functional quaternary oligomer (upper pathway). Under stress or non-native conditions, protein may misfold (2) and enter an aggregation pathway (lower pathway), leading to the formation of aggregates and fibrils that can be cytotoxic. Chapter (2) presents an innovative method of preparation and biophysical characterization of stable misfolded monomers that were paradigmatic of the earliest species in the aggregation process and were unique chaperone amenable substrates that I used in most of the subsequent chapters of my thesis. In chapter (3), I addressed the disaggregation mechanism of stable protein aggregates by human Hsp70 and Hsp110 that acted as equal partners and synergistically combined their individual ATP-consuming polypeptide-unfoldase activity to reactivate stable protein aggregates. In chapter (4), my collaborators and I, showed that Hsp60 could act as a polypeptide unfoldase at reactivating stable misfolded proteins without ATP and without necessarily encaging them. In chapter (5) we investigated the role of Hsp40 (J-protein) at targeting Hsp70 onto the misfolded substrates and the inhibitory effect of potentially toxic protein aggregates on J- proteins that rendered Hsp70 unfolding activity less efficient, as in Parkinson’s diseases. In chapter (6) we performed an innovative type of meta-analysis of chaperone expressomic data under various stress conditions that revealed possible co-expressions between core chaperone machineries and their co-chaperone regulators. Encircled numbers in the figure represent chapters of the thesis. II Abstract Under optimal non-physiological Hsp110 collaborated with Hsp70 in the conditions of low concentrations and low disaggregation of stable protein aggregates in temperatures, proteins may spontaneously fold to which Hsp70 and Hsp110 acted as equal partners the native state, as all the information for folding that synergistically combined their individual lies in the amino acid sequence of the polypeptide. ATP-consuming polypeptide unfoldase activities However, under conditions of stress or high to reactivate the misfolded/aggregated proteins protein crowding as inside cells, a polypeptide may (Chapter 3). Using FT-rhodanese as substrate, we misfold and enter an aggregation pathway resulting found that chaperonins (GroEL and CCT) could in the formation of misfolded conformers and catalytically reactivate misfolded rhodanese fibrils, which can be toxic and lead to monomers in the absence of ATP. Also, our results neurodegenerative illnesses, such as Alzheimer’s, suggested that encaging of an unfolding Parkinson’s or Huntington’s diseases and aging in polypeptide inside the GroEL cavity under a general. To avert and revert protein misfolding and GroES cap was not an obligatory step as generally aggregation, cells have evolved a set of proteins thought (Chapter 4). Further, we investigated the called molecular chaperones. Here, I focussed on role of Hsp40, a J-protein co-chaperone of Hsp70, the human cytosolic chaperones Hsp70 (DnaK) in targeting misfolded polypeptides substrates onto and Hsp110, and co-chaperone Hsp40 (DnaJ), and Hsp70 for unfolding. We found that even a large the chaperonin CCT (GroEL). The cytosolic excess of monomeric unfolded α-synuclein did not molecular chaperones Hsp70s/Hsp110s and the inhibit DnaJ, whereas, in contrast, stable misfolded chaperonins are highly upregulated in bacterial and α-synuclein oligomers strongly inhibited the human cells under different stresses and are DnaK-mediated chaperone reaction by way of involved both in the prevention and the reversion sequestering the DnaJ co-chaperone. This work of protein misfolding and aggregation. Hsp70 revealed that DnaJ could specifically distinguish, works in collaboration with Hsp40 to reactivate and bind potentially toxic stably aggregated misfolded or aggregated proteins in a strict ATP species, such as soluble α-synuclein oligomers dependent manner. Chaperonins (CCT and GroEL) involved in Parkinson’s disease, and with the help also unfold and reactivate stably misfolded of DnaK and ATP convert them into from proteins but we found that it needed to use the harmless natively unfolded α-synuclein monomers energy of ATP hydrolysis in order to evict over- (chapter 5). Finally, our meta-analysis of sticky misfolded intermediates that inhibited the microarray data of plant and animal tissues treated unfoldase catalytic sites. with various chemicals and abiotic stresses, revealed possible co-expressions between core In this study, we initially characterized a chaperone machineries and their co-chaperone particular type of inactive misfolded monomeric regulators. It clearly showed that protein luciferase and rhodanese species that were misfolding in the cytosol elicits a different obtained by repeated cycles of freeze-thawing response, consisting of upregulating the synthesis (FT). These stable misfolded monomeric mainly of cytosolic chaperones, from protein conformers (FT-luciferase and FT-rhodanese) had misfolding in the endoplasmic reticulum (ER) that exposed hydrophobic residues and were enriched elicited a typical unfolded protein response (UPR), with wrong β-sheet structures (Chapter 2). Using consisting of upregulating the synthesis mainly of FT-luciferase as substrate, we found that the ER chaperones. We proposed that drugs that best Hsp70 orthologs, called Hsp110 (Sse in yeast), mimicked heat or UPR stress at increasing the acted similarly to Hsp70 as were bona fide ATP- chaperone load in the cytoplasm or ER fuelled polypeptide
Recommended publications
  • Computational Genome-Wide Identification of Heat Shock Protein Genes in the Bovine Genome [Version 1; Peer Review: 2 Approved, 1 Approved with Reservations]
    F1000Research 2018, 7:1504 Last updated: 08 AUG 2021 RESEARCH ARTICLE Computational genome-wide identification of heat shock protein genes in the bovine genome [version 1; peer review: 2 approved, 1 approved with reservations] Oyeyemi O. Ajayi1,2, Sunday O. Peters3, Marcos De Donato2,4, Sunday O. Sowande5, Fidalis D.N. Mujibi6, Olanrewaju B. Morenikeji2,7, Bolaji N. Thomas 8, Matthew A. Adeleke 9, Ikhide G. Imumorin2,10,11 1Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Nigeria 2International Programs, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA 3Department of Animal Science, Berry College, Mount Berry, GA, 30149, USA 4Departamento Regional de Bioingenierias, Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Queretaro, Mexico 5Department of Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria 6Usomi Limited, Nairobi, Kenya 7Department of Animal Production and Health, Federal University of Technology, Akure, Nigeria 8Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY, 14623, USA 9School of Life Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa 10School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30032, USA 11African Institute of Bioscience Research and Training, Ibadan, Nigeria v1 First published: 20 Sep 2018, 7:1504 Open Peer Review https://doi.org/10.12688/f1000research.16058.1 Latest published: 20 Sep 2018, 7:1504 https://doi.org/10.12688/f1000research.16058.1 Reviewer Status Invited Reviewers Abstract Background: Heat shock proteins (HSPs) are molecular chaperones 1 2 3 known to bind and sequester client proteins under stress. Methods: To identify and better understand some of these proteins, version 1 we carried out a computational genome-wide survey of the bovine 20 Sep 2018 report report report genome.
    [Show full text]
  • Gene Targeting Therapies (Roy Alcalay)
    Recent Developments in Gene - Targeted Therapies for Parkinson’s Disease Roy Alcalay, MD, MS Alfred and Minnie Bressler Associate Professor of Neurology Division of Movement Disorders Columbia University Medical Center Disclosures Funding: Dr. Alcalay is funded by the National Institutes of Health, the DOD, the Michael J. Fox Foundation and the Parkinson’s Foundation. Dr. Alcalay receives consultation fees from Genzyme/Sanofi, Restorbio, Janssen, and Roche. Gene Localizations Identified in PD Gene Symbol Protein Transmission Chromosome PARK1 SNCA α-synuclein AD 4q22.1 PARK2 PRKN parkin (ubiquitin ligase) AR 6q26 PARK3 ? ? AD 2p13 PARK4 SNCA triplication α-synuclein AD 4q22.1 PARK5 UCH-L1 ubiquitin C-terminal AD 4p13 hydrolase-L1 PARK6 PINK1 PTEN-induced kinase 1 AR 1p36.12 PARK7 DJ-1 DJ-1 AR 1p36.23 PARK8 LRRK2 leucine rich repeat kinase 2 AD 12q12 PARK9 ATP13A2 lysosomal ATPase AR 1p36.13 PARK10 ? ? (Iceland) AR 1p32 PARK11 GIGYF2 GRB10-interacting GYF protein 2 AD 2q37.1 PARK12 ? ? X-R Xq21-q25 PARK13 HTRA2 serine protease AD 2p13.1 PARK14 PLA2G6 phospholipase A2 (INAD) AR 22q13.1 PARK15 FBXO7 F-box only protein 7 AR 22q12.3 PARK16 ? Discovered by GWAS ? 1q32 PARK17 VPS35 vacuolar protein sorting 35 AD 16q11.2 PARK18 EIF4G1 initiation of protein synth AD 3q27.1 PARK19 DNAJC6 auxilin AR 1p31.3 PARK20 SYNJ1 synaptojanin 1 AR 21q22.11 PARK21 DNAJC13 8/RME-8 AD 3q22.1 PARK22 CHCHD2 AD 7p11.2 PARK23 VPS13C AR 15q22 Gene Localizations Identified in PD Disorder Symbol Protein Transmission Chromosome PD GBA β-glucocerebrosidase AD 1q21 SCA2
    [Show full text]
  • Roles of Extracellular Hsps As Biomarkers in Immune Surveillance and Immune Evasion
    International Journal of Molecular Sciences Review Roles of Extracellular HSPs as Biomarkers in Immune Surveillance and Immune Evasion 1,2,3, 4, 1,5, , Eman A. Taha y, Kisho Ono y and Takanori Eguchi * y 1 Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; [email protected] 2 Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan 3 Department of Biochemistry, Ain Shams University Faculty of Science, Cairo 11566, Egypt 4 Department of Oral and Maxillofacial Surgery, Okayama University Hospital, Okayama 700-0914, Japan; [email protected] 5 Advanced Research Center for Oral and Craniofacial Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan * Correspondence: [email protected]; Tel.: +81-86-235-6662 These authors contributed equally to this work. y Received: 16 August 2019; Accepted: 14 September 2019; Published: 17 September 2019 Abstract: Extracellular heat shock proteins (ex-HSPs) have been found in exosomes, oncosomes, membrane surfaces, as well as free HSP in cancer and various pathological conditions, also known as alarmins. Such ex-HSPs include HSP90 (α, β, Gp96, Trap1), HSP70, and large and small HSPs. Production of HSPs is coordinately induced by heat shock factor 1 (HSF1) and hypoxia-inducible factor 1 (HIF-1), while matrix metalloproteinase 3 (MMP-3) and heterochromatin protein 1 are novel inducers of HSPs. Oncosomes released by tumor cells are a major aspect of the resistance-associated secretory phenotype (RASP) by which immune evasion can be established.
    [Show full text]
  • Genomic Identification, Evolution and Sequence Analysis of the Heat
    G C A T T A C G G C A T genes Article Genomic Identification, Evolution and Sequence Analysis of the Heat-Shock Protein Gene Family in Buffalo 1, 2, 3 4 1 Saif ur Rehman y, Asif Nadeem y , Maryam Javed , Faiz-ul Hassan , Xier Luo , Ruqayya Bint Khalid 3 and Qingyou Liu 1,* 1 State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; [email protected] (S.u.R.); [email protected] (X.L.) 2 Department of Biotechnology, Virtual University of Pakistan, Lahore-54000, Pakistan; [email protected] 3 Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore-54000, Pakistan; [email protected] (M.J.); [email protected] (R.B.K.) 4 Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad-38040, Pakistan; [email protected] * Correspondence: [email protected]; Tel.: +86-138-7880-5296 These authors contributed equally to this manuscript. y Received: 26 October 2020; Accepted: 18 November 2020; Published: 23 November 2020 Abstract: Heat-shock proteins (HSP) are conserved chaperones crucial for protein degradation, maturation, and refolding. These adenosine triphosphate dependent chaperones were classified based on their molecular mass that ranges between 10–100 kDA, including; HSP10, HSP40, HSP70, HSP90, HSPB1, HSPD, and HSPH1 family. HSPs are essential for cellular responses and imperative for protein homeostasis and survival under stress conditions. This study performed a computational analysis of the HSP protein family to better understand these proteins at the molecular level.
    [Show full text]
  • Identification of Candidate Parkinson Disease Genes by Integrating Genome-Wide Association Study, Expression, and Epigenetic Data Sets
    Research JAMA Neurology | Original Investigation Identification of Candidate Parkinson Disease Genes by Integrating Genome-Wide Association Study, Expression, and Epigenetic Data Sets Demis A. Kia, MBBS; David Zhang, MSc; Sebastian Guelfi, PhD; Claudia Manzoni, PhD; Leon Hubbard, PhD; Regina H. Reynolds, MSc; Juan Botía, PhD; Mina Ryten, MD; Raffaele Ferrari, PhD; Patrick A. Lewis, PhD; Nigel Williams, PhD; Daniah Trabzuni, PhD; John Hardy, PhD; Nicholas W. Wood, PhD; for the United Kingdom Brain Expression Consortium (UKBEC) and the International Parkinson’s Disease Genomics Consortium (IPDGC) Supplemental content IMPORTANCE Substantial genome-wide association study (GWAS) work in Parkinson disease (PD) has led to the discovery of an increasing number of loci shown reliably to be associated with increased risk of disease. Improved understanding of the underlying genes and mechanisms at these loci will be key to understanding the pathogenesis of PD. OBJECTIVE To investigate what genes and genomic processes underlie the risk of sporadic PD. DESIGN AND SETTING This genetic association study used the bioinformatic tools Coloc and transcriptome-wide association study (TWAS) to integrate PD case-control GWAS data published in 2017 with expression data (from Braineac, the Genotype-Tissue Expression [GTEx], and CommonMind) and methylation data (derived from UK Parkinson brain samples) to uncover putative gene expression and splicing mechanisms associated with PD GWAS signals. Candidate genes were further characterized using cell-type specificity, weighted gene coexpression networks, and weighted protein-protein interaction networks. MAIN OUTCOMES AND MEASURES It was hypothesized a priori that some genes underlying PD loci would alter PD risk through changes to expression, splicing, or methylation.
    [Show full text]
  • High Constitutive Cytokine Release by Primary Human Acute Myeloid Leukemia Cells Is Associated with a Specific Intercellular Communication Phenotype
    Supplementary Information High Constitutive Cytokine Release by Primary Human Acute Myeloid Leukemia Cells Is Associated with a Specific Intercellular Communication Phenotype Håkon Reikvam 1,2,*, Elise Aasebø 1, Annette K. Brenner 2, Sushma Bartaula-Brevik 1, Ida Sofie Grønningsæter 2, Rakel Brendsdal Forthun 2, Randi Hovland 3,4 and Øystein Bruserud 1,2 1 Department of Clinical Science, University of Bergen, 5020, Bergen, Norway 2 Department of Medicine, Haukeland University Hospital, 5021, Bergen, Norway 3 Department of Medical Genetics, Haukeland University Hospital, 5021, Bergen, Norway 4 Institute of Biomedicine, University of Bergen, 5020, Bergen, Norway * Correspondence: [email protected]; Tel.: +55-97-50-00 J. Clin. Med. 2019, 8, x 2 of 36 Figure S1. Mutational studies in a cohort of 71 AML patients. The figure shows the number of patients with the various mutations (upper), the number of mutations in for each patient (middle) and the number of main classes with mutation(s) in each patient (lower). 2 J. Clin. Med. 2019, 8, x; doi: www.mdpi.com/journal/jcm J. Clin. Med. 2019, 8, x 3 of 36 Figure S2. The immunophenotype of primary human AML cells derived from 62 unselected patients. The expression of the eight differentiation markers CD13, CD14, CD15, CD33, CD34, CD45, CD117 and HLA-DR was investigated for 62 of the 71 patients included in our present study. We performed an unsupervised hierarchical cluster analysis and identified four patient main clusters/patient subsets. The mutational profile for each f the 62 patients is also given (middle), no individual mutation of main class of mutations showed any significant association with any of the for differentiation marker clusters (middle).
    [Show full text]
  • Protein Homeostasis, Second Edition
    This is a free sample of content from Protein Homeostasis, Second Edition. Click here for more information on how to buy the book. Index A overview of diseases, 13, 41–43 Abf2, 160 polyphosphate AD. See Alzheimer’s disease amyloidogenic protein interactions, 393–395 AFG3L2, 162 cytotoxicity amelioration, 396–397 Africa swine fever virus (ASFV), 468 prospects for study, 52, 55 Aging protein homeostasis context, 48–49 heat shock factors, 431 structure–activity relationship, 14–15 proteostasis network regulation, 450–452 therapeutic intervention, 50–52 Ago2, 335, 467 toxicity, 47–48 Aha1, 333, 335, 338–339, 504 Amyotrophic lateral sclerosis (ALS), 214, 262, 264, AIRAP, 267 290–291, 293, 404, 409, 524, 532 AIRAPL, 267–268 ApoB, 135 AKT, 274, 467 ASFV. See Africa swine fever virus ALK, 503 ATAD1, 104 ALMC2, 487 ATF4, 79, 88, 182, 186, 189, 445–446 ALP. See Autophagy lysosome pathway ATF5, 182, 186, 189 a-Synuclein, 375, 522 ATF6, 60, 62–64, 79, 445–446, 481–482, 484–489 ALS. See Amyotrophic lateral sclerosis ATFS-1, 99, 180–181, 185, 188–189, 445–446 Alzheimer’s disease (AD), 186, 519 Atg7, 293 autophagy lysosomal pathway, 290–291 Atg32, 167 chaperone studies, 213–214, 216–217, 222 ATM, 313 Hsp90 studies, 337 ATR, 313 polyphosphate studies, 392, 394–395, 399 Atropine, 501 AMPK, 444 ATXN2, 524 Amyloid Autophagy lysosome pathway (ALP) chaperone modulation chaperone-mediated autophagy, 288–289 aggregation prevention, 217–222 history of study, 285 degradation of amyloid-forming proteins, 225–227 macroautophagy, 287–288 disaggregation of amyloids,
    [Show full text]
  • The HSP70 Chaperone Machinery: J Proteins As Drivers of Functional Specificity
    REVIEWS The HSP70 chaperone machinery: J proteins as drivers of functional specificity Harm H. Kampinga* and Elizabeth A. Craig‡ Abstract | Heat shock 70 kDa proteins (HSP70s) are ubiquitous molecular chaperones that function in a myriad of biological processes, modulating polypeptide folding, degradation and translocation across membranes, and protein–protein interactions. This multitude of roles is not easily reconciled with the universality of the activity of HSP70s in ATP-dependent client protein-binding and release cycles. Much of the functional diversity of the HSP70s is driven by a diverse class of cofactors: J proteins. Often, multiple J proteins function with a single HSP70. Some target HSP70 activity to clients at precise locations in cells and others bind client proteins directly, thereby delivering specific clients to HSP70 and directly determining their fate. In their native cellular environment, polypeptides are participates in such diverse cellular functions. Their constantly at risk of attaining conformations that pre- functional diversity is remarkable considering that vent them from functioning properly and/or cause them within and across species, HSP70s have high sequence to aggregate into large, potentially cytotoxic complexes. identity. They share a single biochemical activity: an Molecular chaperones guide the conformation of proteins ATP-dependent client-binding and release cycle com- throughout their lifetime, preventing their aggregation bined with client protein recognition, which is typi- by protecting interactive surfaces against non-productive cally rather promiscuous. This apparent conundrum interactions. Through such inter actions, molecular chap- is resolved by the fact that HSP70s do not work alone, erones aid in the folding of nascent proteins as they are but rather as ‘HSP70 machines’, collaborating with synthesized by ribosomes, drive protein transport across and being regulated by several cofactors.
    [Show full text]
  • Drosophila and Human Transcriptomic Data Mining Provides Evidence for Therapeutic
    Drosophila and human transcriptomic data mining provides evidence for therapeutic mechanism of pentylenetetrazole in Down syndrome Author Abhay Sharma Institute of Genomics and Integrative Biology Council of Scientific and Industrial Research Delhi University Campus, Mall Road Delhi 110007, India Tel: +91-11-27666156, Fax: +91-11-27662407 Email: [email protected] Nature Precedings : hdl:10101/npre.2010.4330.1 Posted 5 Apr 2010 Running head: Pentylenetetrazole mechanism in Down syndrome 1 Abstract Pentylenetetrazole (PTZ) has recently been found to ameliorate cognitive impairment in rodent models of Down syndrome (DS). The mechanism underlying PTZ’s therapeutic effect is however not clear. Microarray profiling has previously reported differential expression of genes in DS. No mammalian transcriptomic data on PTZ treatment however exists. Nevertheless, a Drosophila model inspired by rodent models of PTZ induced kindling plasticity has recently been described. Microarray profiling has shown PTZ’s downregulatory effect on gene expression in fly heads. In a comparative transcriptomics approach, I have analyzed the available microarray data in order to identify potential mechanism of PTZ action in DS. I find that transcriptomic correlates of chronic PTZ in Drosophila and DS counteract each other. A significant enrichment is observed between PTZ downregulated and DS upregulated genes, and a significant depletion between PTZ downregulated and DS dowwnregulated genes. Further, the common genes in PTZ Nature Precedings : hdl:10101/npre.2010.4330.1 Posted 5 Apr 2010 downregulated and DS upregulated sets show enrichment for MAP kinase pathway. My analysis suggests that downregulation of MAP kinase pathway may mediate therapeutic effect of PTZ in DS. Existing evidence implicating MAP kinase pathway in DS supports this observation.
    [Show full text]
  • HSP90-Incorporating Chaperome Networks As Biosensor for Disease-Related Pathways in Patient- Specific Midbrain Dopamine Neurons
    ARTICLE DOI: 10.1038/s41467-018-06486-6 OPEN HSP90-incorporating chaperome networks as biosensor for disease-related pathways in patient- specific midbrain dopamine neurons Sarah Kishinevsky1,2,3,4, Tai Wang3, Anna Rodina3, Sun Young Chung1,2, Chao Xu3, John Philip5, Tony Taldone3, Suhasini Joshi3, Mary L. Alpaugh3,14, Alexander Bolaender3, Simon Gutbier6, Davinder Sandhu7, Faranak Fattahi1,2, Bastian Zimmer1,2, Smit K. Shah3, Elizabeth Chang5, Carmen Inda3,15, John Koren 3rd3,16, Nathalie G. Saurat1,2, Marcel Leist 6, Steven S. Gross7, Venkatraman E. Seshan8, Christine Klein9, Mark J. Tomishima1,2,10, Hediye Erdjument-Bromage11,12, Thomas A. Neubert 11,12, Ronald C. Henrickson5, 1234567890():,; Gabriela Chiosis3,13 & Lorenz Studer1,2 Environmental and genetic risk factors contribute to Parkinson’s Disease (PD) pathogenesis and the associated midbrain dopamine (mDA) neuron loss. Here, we identify early PD pathogenic events by developing methodology that utilizes recent innovations in human pluripotent stem cells (hPSC) and chemical sensors of HSP90-incorporating chaperome networks. We show that events triggered by PD-related genetic or toxic stimuli alter the neuronal proteome, thereby altering the stress-specific chaperome networks, which produce changes detected by chemical sensors. Through this method we identify STAT3 and NF-κB signaling activation as examples of genetic stress, and phospho-tyrosine hydroxylase (TH) activation as an example of toxic stress-induced pathways in PD neurons. Importantly, pharmacological inhibition of the stress chaperome network reversed abnormal phospho- STAT3 signaling and phospho-TH-related dopamine levels and rescued PD neuron viability. The use of chemical sensors of chaperome networks on hPSC-derived lineages may present a general strategy to identify molecular events associated with neurodegenerative diseases.
    [Show full text]
  • And Chemically Upregulated Chaperone Genes in Plant and Human Cells
    Cell Stress and Chaperones (2011) 16:15–31 DOI 10.1007/s12192-010-0216-8 ORIGINAL PAPER Meta-analysis of heat- and chemically upregulated chaperone genes in plant and human cells Andrija Finka & Rayees U. H. Mattoo & Pierre Goloubinoff Received: 18 June 2010 /Revised: 16 July 2010 /Accepted: 19 July 2010 /Published online: 9 August 2010 # Cell Stress Society International 2010 Abstract Molecular chaperones are central to cellular protein Keywords Chaperone network . Heat shock proteins . homeostasis. In mammals, protein misfolding diseases and Foldase . NSAID . Cellular stress response . aging cause inflammation and progressive tissue loss, in Unfolded protein response correlation with the accumulation of toxic protein aggregates and the defective expression of chaperone genes. Bacteria and non-diseased, non-aged eukaryotic cells effectively respond Introduction to heat shock by inducing the accumulation of heat-shock proteins (HSPs), many of which molecular chaperones The term “heat-shock proteins” (HSPs) was first used to involved in protein homeostasis, in reducing stress damages describe Drosophila melanogaster proteins that and promoting cellular recovery and thermotolerance. We massively accumulate during heat stress (Tissieres et al. performed a meta-analysis of published microarray data and 1974). When subject to a sharp increase in temperature, compared expression profiles of HSP genes from mammalian prokaryotes and eukaryotes alike transiently reallocate and plant cells in response to heat or isothermal treatments their general house-keeping protein synthesis machinery with drugs. The differences and overlaps between HSP and to the specific accumulation of a small subset of highly chaperone genes were analyzed, and expression patterns were conserved Hsps, initially named according to their clustered and organized in a network.
    [Show full text]
  • Prognostic and Functional Significant of Heat Shock Proteins (Hsps)
    biology Article Prognostic and Functional Significant of Heat Shock Proteins (HSPs) in Breast Cancer Unveiled by Multi-Omics Approaches Miriam Buttacavoli 1,†, Gianluca Di Cara 1,†, Cesare D’Amico 1, Fabiana Geraci 1 , Ida Pucci-Minafra 2, Salvatore Feo 1 and Patrizia Cancemi 1,2,* 1 Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; [email protected] (M.B.); [email protected] (G.D.C.); [email protected] (C.D.); [email protected] (F.G.); [email protected] (S.F.) 2 Experimental Center of Onco Biology (COBS), 90145 Palermo, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-091-2389-7330 † These authors contributed equally to this work. Simple Summary: In this study, we investigated the expression pattern and prognostic significance of the heat shock proteins (HSPs) family members in breast cancer (BC) by using several bioinfor- matics tools and proteomics investigations. Our results demonstrated that, collectively, HSPs were deregulated in BC, acting as both oncogene and onco-suppressor genes. In particular, two different HSP-clusters were significantly associated with a poor or good prognosis. Interestingly, the HSPs deregulation impacted gene expression and miRNAs regulation that, in turn, affected important bio- logical pathways involved in cell cycle, DNA replication, and receptors-mediated signaling. Finally, the proteomic identification of several HSPs members and isoforms revealed much more complexity Citation: Buttacavoli, M.; Di Cara, of HSPs roles in BC and showed that their expression is quite variable among patients. In conclusion, G.; D’Amico, C.; Geraci, F.; we elaborated two panels of HSPs that could be further explored as potential biomarkers for BC Pucci-Minafra, I.; Feo, S.; Cancemi, P.
    [Show full text]