SARS-Cov-2 3Clpro Whole Human Proteome Cleavage
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Computational Genome-Wide Identification of Heat Shock Protein Genes in the Bovine Genome [Version 1; Peer Review: 2 Approved, 1 Approved with Reservations]
F1000Research 2018, 7:1504 Last updated: 08 AUG 2021 RESEARCH ARTICLE Computational genome-wide identification of heat shock protein genes in the bovine genome [version 1; peer review: 2 approved, 1 approved with reservations] Oyeyemi O. Ajayi1,2, Sunday O. Peters3, Marcos De Donato2,4, Sunday O. Sowande5, Fidalis D.N. Mujibi6, Olanrewaju B. Morenikeji2,7, Bolaji N. Thomas 8, Matthew A. Adeleke 9, Ikhide G. Imumorin2,10,11 1Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Nigeria 2International Programs, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA 3Department of Animal Science, Berry College, Mount Berry, GA, 30149, USA 4Departamento Regional de Bioingenierias, Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Queretaro, Mexico 5Department of Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria 6Usomi Limited, Nairobi, Kenya 7Department of Animal Production and Health, Federal University of Technology, Akure, Nigeria 8Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY, 14623, USA 9School of Life Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa 10School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30032, USA 11African Institute of Bioscience Research and Training, Ibadan, Nigeria v1 First published: 20 Sep 2018, 7:1504 Open Peer Review https://doi.org/10.12688/f1000research.16058.1 Latest published: 20 Sep 2018, 7:1504 https://doi.org/10.12688/f1000research.16058.1 Reviewer Status Invited Reviewers Abstract Background: Heat shock proteins (HSPs) are molecular chaperones 1 2 3 known to bind and sequester client proteins under stress. Methods: To identify and better understand some of these proteins, version 1 we carried out a computational genome-wide survey of the bovine 20 Sep 2018 report report report genome. -
Human Rotavirus Structure, Specific Immunity And
STUDIES OF HUMAN ROTAVIRUS CANDIDATE NON-REPLICATING VACCINES AND INNATE IMMUNITY IN A GNOTOBIOTIC PIG MODEL OF HUMAN ROTAVIRUS DISEASE DISSERTATION Presented as Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Ana María González, M.D * * * * The Ohio State University 2007 Dissertation Committee Approved by Distinguished University Professor Linda J. Saif, Adviser ________________________ Adviser Adjunct Assistant Professor Lijuan Yuan Graduate Program of Veterinary Preventive Associate Professor Kenneth W. Theil Medicine Professor Caroline Whitacre ABSTRACT Rotavirus is the major cause of severe dehydrating diarrhea in children and young infants worldwide. The mortality rates reach 600,000 annually, mainly in developing countries and vaccination is an important preventive measure. The first two objectives of my PhD research were to produce and test a combination of replicating and non-replicating human rotavirus (HRV) vaccines or non-replicating HRV vaccines in the gnotobiotic pig model to minimize or avoid the use of more reactogenic live HRV vaccines. The third objective was to assess the mucosal and systemic dendritic cell responses after RV infection because these responses are largely uncharacterized but are important in understanding immunity induced after infection and for design of vaccines. The neonatal gnotobiotic pig is susceptible to HRV for more than 8 weeks and their gnotobiotic status assures that wild type rotavirus infection does not occur during vaccination. Additionally gnotobiotic pigs are optimal for the study of innate immune responses to HRV in-vivo by excluding any confounding factors (e.g. commensal flora. other pathogens etc). For the first objective, gnotobiotic pigs were vaccinated priming with a peroral (PO) live attenuated human rotavirus (AttHRV) and boosting (2x) with a non-replicating 2/6 virus-like particles (VLPs) intranasally (IN) using ISCOM as adjuvant. -
Gene Targeting Therapies (Roy Alcalay)
Recent Developments in Gene - Targeted Therapies for Parkinson’s Disease Roy Alcalay, MD, MS Alfred and Minnie Bressler Associate Professor of Neurology Division of Movement Disorders Columbia University Medical Center Disclosures Funding: Dr. Alcalay is funded by the National Institutes of Health, the DOD, the Michael J. Fox Foundation and the Parkinson’s Foundation. Dr. Alcalay receives consultation fees from Genzyme/Sanofi, Restorbio, Janssen, and Roche. Gene Localizations Identified in PD Gene Symbol Protein Transmission Chromosome PARK1 SNCA α-synuclein AD 4q22.1 PARK2 PRKN parkin (ubiquitin ligase) AR 6q26 PARK3 ? ? AD 2p13 PARK4 SNCA triplication α-synuclein AD 4q22.1 PARK5 UCH-L1 ubiquitin C-terminal AD 4p13 hydrolase-L1 PARK6 PINK1 PTEN-induced kinase 1 AR 1p36.12 PARK7 DJ-1 DJ-1 AR 1p36.23 PARK8 LRRK2 leucine rich repeat kinase 2 AD 12q12 PARK9 ATP13A2 lysosomal ATPase AR 1p36.13 PARK10 ? ? (Iceland) AR 1p32 PARK11 GIGYF2 GRB10-interacting GYF protein 2 AD 2q37.1 PARK12 ? ? X-R Xq21-q25 PARK13 HTRA2 serine protease AD 2p13.1 PARK14 PLA2G6 phospholipase A2 (INAD) AR 22q13.1 PARK15 FBXO7 F-box only protein 7 AR 22q12.3 PARK16 ? Discovered by GWAS ? 1q32 PARK17 VPS35 vacuolar protein sorting 35 AD 16q11.2 PARK18 EIF4G1 initiation of protein synth AD 3q27.1 PARK19 DNAJC6 auxilin AR 1p31.3 PARK20 SYNJ1 synaptojanin 1 AR 21q22.11 PARK21 DNAJC13 8/RME-8 AD 3q22.1 PARK22 CHCHD2 AD 7p11.2 PARK23 VPS13C AR 15q22 Gene Localizations Identified in PD Disorder Symbol Protein Transmission Chromosome PD GBA β-glucocerebrosidase AD 1q21 SCA2 -
Emerging Roles for Lipid Droplets in Immunity and Host-Pathogen Interactions
CB28CH16-Valdivia ARI 5 September 2012 17:10 Emerging Roles for Lipid Droplets in Immunity and Host-Pathogen Interactions Hector Alex Saka and Raphael Valdivia Department of Molecular Genetics and Microbiology and Center for Microbial Pathogenesis, Duke University Medical Center, Durham, North Carolina 27710; email: [email protected] Annu. Rev. Cell Dev. Biol. 2012. 28:411–37 Keywords First published online as a Review in Advance on eicosanoids, interferon, autophagy May 11, 2012 The Annual Review of Cell and Developmental Abstract Biology is online at cellbio.annualreviews.org Lipid droplets (LDs) are neutral lipid storage organelles ubiquitous to Access provided by Duke University on 10/14/19. For personal use only. This article’s doi: eukaryotic cells. It is increasingly recognized that LDs interact exten- 10.1146/annurev-cellbio-092910-153958 sively with other organelles and that they perform functions beyond Annu. Rev. Cell Dev. Biol. 2012.28:411-437. Downloaded from www.annualreviews.org Copyright c 2012 by Annual Reviews. passive lipid storage and lipid homeostasis. One emerging function for All rights reserved LDs is the coordination of immune responses, as these organelles par- 1081-0706/12/1110-0411$20.00 ticipate in the generation of prostaglandins and leukotrienes, which are important inflammation mediators. Similarly, LDs are also beginning to be recognized as playing a role in interferon responses and in antigen cross presentation. Not surprisingly, there is emerging evidence that many pathogens, including hepatitis C and Dengue viruses, Chlamydia, and Mycobacterium, target LDs during infection either for nutritional purposes or as part of an anti-immunity strategy. -
Lessons Learned from Ebola Virus
membranes Review SARS-CoV-2 Cellular Infection and Therapeutic Opportunities: Lessons Learned from Ebola Virus Jordana Muñoz-Basagoiti 1,†, Daniel Perez-Zsolt 1,†, Jorge Carrillo 1 , Julià Blanco 1,2 , Bonaventura Clotet 1,2,3 and Nuria Izquierdo-Useros 1,* 1 IrsiCaixa AIDS Research Institute, Germans Trias I Pujol Research Institute (IGTP), Can Ruti Campus, 08916 Badalona, Spain; [email protected] (J.M.-B.); [email protected] (D.P.-Z.); [email protected] (J.C.); [email protected] (J.B.); [email protected] (B.C.) 2 Infectious Diseases and Immunity Department, Faculty of Medicine, University of Vic (UVic-UCC), 08500 Vic, Spain 3 Infectious Diseases Department, Germans Trias i Pujol Hospital, 08916 Badalona, Spain * Correspondence: [email protected] † These authors contribution is equally to this work. Abstract: Viruses rely on the cellular machinery to replicate and propagate within newly infected individuals. Thus, viral entry into the host cell sets up the stage for productive infection and disease progression. Different viruses exploit distinct cellular receptors for viral entry; however, numerous viral internalization mechanisms are shared by very diverse viral families. Such is the case of Ebola virus (EBOV), which belongs to the filoviridae family, and the recently emerged coronavirus SARS- CoV-2. These two highly pathogenic viruses can exploit very similar endocytic routes to productively infect target cells. This convergence has sped up the experimental assessment of clinical therapies against SARS-CoV-2 previously found to be effective for EBOV, and facilitated their expedited clinical testing. Here we review how the viral entry processes and subsequent replication and egress strategies of EBOV and SARS-CoV-2 can overlap, and how our previous knowledge on antivirals, Citation: Muñoz-Basagoiti, J.; antibodies, and vaccines against EBOV has boosted the search for effective countermeasures against Perez-Zsolt, D.; Carrillo, J.; Blanco, J.; the new coronavirus. -
A SARS-Cov-2-Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug-Repurposing
A SARS-CoV-2-Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug-Repurposing Supplementary Information Supplementary Discussion All SARS-CoV-2 protein and gene functions described in the subnetwork appendices, including the text below and the text found in the individual bait subnetworks, are based on the functions of homologous genes from other coronavirus species. These are mainly from SARS-CoV and MERS-CoV, but when available and applicable other related viruses were used to provide insight into function. The SARS-CoV-2 proteins and genes listed here were designed and researched based on the gene alignments provided by Chan et. al. 1 2020 . Though we are reasonably sure the genes here are well annotated, we want to note that not every protein has been verified to be expressed or functional during SARS-CoV-2 infections, either in vitro or in vivo. In an effort to be as comprehensive and transparent as possible, we are reporting the sub-networks of these functionally unverified proteins along with the other SARS-CoV-2 proteins. In such cases, we have made notes within the text below, and on the corresponding subnetwork figures, and would advise that more caution be taken when examining these proteins and their molecular interactions. Due to practical limits in our sample preparation and data collection process, we were unable to generate data for proteins corresponding to Nsp3, Orf7b, and Nsp16. Therefore these three genes have been left out of the following literature review of the SARS-CoV-2 proteins and the protein-protein interactions (PPIs) identified in this study. -
Roles of Extracellular Hsps As Biomarkers in Immune Surveillance and Immune Evasion
International Journal of Molecular Sciences Review Roles of Extracellular HSPs as Biomarkers in Immune Surveillance and Immune Evasion 1,2,3, 4, 1,5, , Eman A. Taha y, Kisho Ono y and Takanori Eguchi * y 1 Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; [email protected] 2 Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan 3 Department of Biochemistry, Ain Shams University Faculty of Science, Cairo 11566, Egypt 4 Department of Oral and Maxillofacial Surgery, Okayama University Hospital, Okayama 700-0914, Japan; [email protected] 5 Advanced Research Center for Oral and Craniofacial Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan * Correspondence: [email protected]; Tel.: +81-86-235-6662 These authors contributed equally to this work. y Received: 16 August 2019; Accepted: 14 September 2019; Published: 17 September 2019 Abstract: Extracellular heat shock proteins (ex-HSPs) have been found in exosomes, oncosomes, membrane surfaces, as well as free HSP in cancer and various pathological conditions, also known as alarmins. Such ex-HSPs include HSP90 (α, β, Gp96, Trap1), HSP70, and large and small HSPs. Production of HSPs is coordinately induced by heat shock factor 1 (HSF1) and hypoxia-inducible factor 1 (HIF-1), while matrix metalloproteinase 3 (MMP-3) and heterochromatin protein 1 are novel inducers of HSPs. Oncosomes released by tumor cells are a major aspect of the resistance-associated secretory phenotype (RASP) by which immune evasion can be established. -
Functional Studies of the Coronavirus Nonstructural Proteins Yanglin QIU and Kai XU*
REVIEW ARTICLE Functional studies of the coronavirus nonstructural proteins Yanglin QIU and Kai XU* Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China. *Correspondence: [email protected] https://doi.org/10.37175/stemedicine.v1i2.39 ABSTRACT Coronaviruses, including SARS-CoV, SARS-CoV-2, and MERS-CoV, have caused contagious and fatal respiratory diseases in humans worldwide. Notably, the coronavirus disease 19 (COVID-19) caused by SARS-CoV-2 spread rapidly in early 2020 and became a global pandemic. The nonstructural proteins of coronaviruses are critical components of the viral replication machinery. They function in viral RNA transcription and replication, as well as counteracting the host innate immunity. Studies of these proteins not only revealed their essential role during viral infection but also help the design of novel drugs targeting the viral replication and immune evasion machinery. In this review, we summarize the functional studies of each nonstructural proteins and compare the similarities and differences between nonstructural proteins from different coronaviruses. Keywords: Coronavirus · SARS-CoV-2 · COVID-19 · Nonstructural proteins · Drug discovery Introduction genes (18). The first two major ORFs (ORF1a, ORF1ab) The coronavirus (CoV) outbreaks among human are the replicase genes, and the other four encode viral populations have caused three major epidemics structural proteins that comprise the essential protein worldwide, since the beginning of the 21st century. These components of the coronavirus virions, including the spike are the epidemics of the severe acute respiratory syndrome surface glycoprotein (S), envelope protein (E), matrix (SARS) in 2003 (1, 2), the Middle East respiratory protein (M), and nucleocapsid protein (N) (14, 19, 20). -
Genomic Identification, Evolution and Sequence Analysis of the Heat
G C A T T A C G G C A T genes Article Genomic Identification, Evolution and Sequence Analysis of the Heat-Shock Protein Gene Family in Buffalo 1, 2, 3 4 1 Saif ur Rehman y, Asif Nadeem y , Maryam Javed , Faiz-ul Hassan , Xier Luo , Ruqayya Bint Khalid 3 and Qingyou Liu 1,* 1 State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530005, China; [email protected] (S.u.R.); [email protected] (X.L.) 2 Department of Biotechnology, Virtual University of Pakistan, Lahore-54000, Pakistan; [email protected] 3 Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore-54000, Pakistan; [email protected] (M.J.); [email protected] (R.B.K.) 4 Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad-38040, Pakistan; [email protected] * Correspondence: [email protected]; Tel.: +86-138-7880-5296 These authors contributed equally to this manuscript. y Received: 26 October 2020; Accepted: 18 November 2020; Published: 23 November 2020 Abstract: Heat-shock proteins (HSP) are conserved chaperones crucial for protein degradation, maturation, and refolding. These adenosine triphosphate dependent chaperones were classified based on their molecular mass that ranges between 10–100 kDA, including; HSP10, HSP40, HSP70, HSP90, HSPB1, HSPD, and HSPH1 family. HSPs are essential for cellular responses and imperative for protein homeostasis and survival under stress conditions. This study performed a computational analysis of the HSP protein family to better understand these proteins at the molecular level. -
Identification of Candidate Parkinson Disease Genes by Integrating Genome-Wide Association Study, Expression, and Epigenetic Data Sets
Research JAMA Neurology | Original Investigation Identification of Candidate Parkinson Disease Genes by Integrating Genome-Wide Association Study, Expression, and Epigenetic Data Sets Demis A. Kia, MBBS; David Zhang, MSc; Sebastian Guelfi, PhD; Claudia Manzoni, PhD; Leon Hubbard, PhD; Regina H. Reynolds, MSc; Juan Botía, PhD; Mina Ryten, MD; Raffaele Ferrari, PhD; Patrick A. Lewis, PhD; Nigel Williams, PhD; Daniah Trabzuni, PhD; John Hardy, PhD; Nicholas W. Wood, PhD; for the United Kingdom Brain Expression Consortium (UKBEC) and the International Parkinson’s Disease Genomics Consortium (IPDGC) Supplemental content IMPORTANCE Substantial genome-wide association study (GWAS) work in Parkinson disease (PD) has led to the discovery of an increasing number of loci shown reliably to be associated with increased risk of disease. Improved understanding of the underlying genes and mechanisms at these loci will be key to understanding the pathogenesis of PD. OBJECTIVE To investigate what genes and genomic processes underlie the risk of sporadic PD. DESIGN AND SETTING This genetic association study used the bioinformatic tools Coloc and transcriptome-wide association study (TWAS) to integrate PD case-control GWAS data published in 2017 with expression data (from Braineac, the Genotype-Tissue Expression [GTEx], and CommonMind) and methylation data (derived from UK Parkinson brain samples) to uncover putative gene expression and splicing mechanisms associated with PD GWAS signals. Candidate genes were further characterized using cell-type specificity, weighted gene coexpression networks, and weighted protein-protein interaction networks. MAIN OUTCOMES AND MEASURES It was hypothesized a priori that some genes underlying PD loci would alter PD risk through changes to expression, splicing, or methylation. -
Emergence of Human G2P[4] Rotaviruses in the Post-Vaccination Era in South Korea: Footprints of Multiple Interspecies Re-Assortm
www.nature.com/scientificreports OPEN Emergence of Human G2P[4] Rotaviruses in the Post-vaccination Era in South Korea: Footprints Received: 6 November 2017 Accepted: 5 April 2018 of Multiple Interspecies Re- Published: xx xx xxxx assortment Events Hien Dang Thanh1, Van Trung Tran1, Inseok Lim2 & Wonyong Kim1 After the introduction of two global rotavirus vaccines, RotaTeq in 2007 and Rotarix in 2008 in South Korea, G1[P8] rotavirus was the major rotavirus genotype in the country until 2012. However, in this study, an emergence of G2P[4] as the dominant genotype during the 2013 to 2015 season has been reported. Genetic analysis revealed that these viruses had typical DS-1-like genotype constellation and showed evidence of re-assortment in one or more genome segments, including the incorporation of NSP4 genes from strains B-47/2008 from a cow and R4/Haryana/2007 from a bufalo in India, and the VP1 and VP3 genes from strain GO34/1999 from a goat in Bangladesh. Compared to the G2 RotaTeq vaccine strain, 17–24 amino acid changes, specifcally A87T, D96N, S213D, and S242N substitutions in G2 epitopes, were observed. These results suggest that multiple interspecies re-assortment events might have contributed to the emergence of G2P[4] rotaviruses in the post-vaccination era in South Korea. Group A rotavirus (RVA) is the etiological agent primarily responsible for gastroenteritis in young humans and many other animal species. RVA, a member of the Reoviridae family, is an infectious virion that consists of a triple-layered icosahedral capsid containing a genome of 11 segments of double-stranded RNA in it. -
High Constitutive Cytokine Release by Primary Human Acute Myeloid Leukemia Cells Is Associated with a Specific Intercellular Communication Phenotype
Supplementary Information High Constitutive Cytokine Release by Primary Human Acute Myeloid Leukemia Cells Is Associated with a Specific Intercellular Communication Phenotype Håkon Reikvam 1,2,*, Elise Aasebø 1, Annette K. Brenner 2, Sushma Bartaula-Brevik 1, Ida Sofie Grønningsæter 2, Rakel Brendsdal Forthun 2, Randi Hovland 3,4 and Øystein Bruserud 1,2 1 Department of Clinical Science, University of Bergen, 5020, Bergen, Norway 2 Department of Medicine, Haukeland University Hospital, 5021, Bergen, Norway 3 Department of Medical Genetics, Haukeland University Hospital, 5021, Bergen, Norway 4 Institute of Biomedicine, University of Bergen, 5020, Bergen, Norway * Correspondence: [email protected]; Tel.: +55-97-50-00 J. Clin. Med. 2019, 8, x 2 of 36 Figure S1. Mutational studies in a cohort of 71 AML patients. The figure shows the number of patients with the various mutations (upper), the number of mutations in for each patient (middle) and the number of main classes with mutation(s) in each patient (lower). 2 J. Clin. Med. 2019, 8, x; doi: www.mdpi.com/journal/jcm J. Clin. Med. 2019, 8, x 3 of 36 Figure S2. The immunophenotype of primary human AML cells derived from 62 unselected patients. The expression of the eight differentiation markers CD13, CD14, CD15, CD33, CD34, CD45, CD117 and HLA-DR was investigated for 62 of the 71 patients included in our present study. We performed an unsupervised hierarchical cluster analysis and identified four patient main clusters/patient subsets. The mutational profile for each f the 62 patients is also given (middle), no individual mutation of main class of mutations showed any significant association with any of the for differentiation marker clusters (middle).