Genetic and Morphologic Variation of the Pecos

Total Page:16

File Type:pdf, Size:1020Kb

Genetic and Morphologic Variation of the Pecos Hydrobiologia (2007) 579:317-335 DOI 10.1007/S10750-006-0473-9 .PRIMARY RESEARCH PAPER Genetic and morphologic variation of the Pecos assiminea, an endangered moUusk of the Rio Grande region, United States and Mexico (Caenogastropoda: Rissooidea: Assimineidae) Robert Hershler • Hsiu-Ping Liu • B. K. Lang Received: 23 May 2006 / Revised: 1 November 2006 / Accepted: 11 November 2006/ Published online: 13 January 2007 © Springer Science+Business Media B.V. 2007 Abstract Assiminea pecos is an endangered of A. pecos, which was consistently depicted as a species of amphibious gastropod that occupies monophyletic unit nested within or sister to the four widely separated portions of the Rio Grande shallowly structured group comprised of Ameri- region in the southwestern United States (Pecos can members of this species. Consistent with our River basin) and northeastern Mexico (Cuatro findings, we describe the Mexican population as a Cienegas basin). Our statistical and discriminant new species, which is provisionally placed in the function analyses of shell variation among the large, worldwide genus Assiminea pending fur- disjunct populations of this species indicate that ther study of the phylogentic relationships of the Mexican specimens differ in their morphometry North American assimineids. Our molecular data from those of the United States and can be suggest that the Rio Grande region assimineids, diagnosed by several characters. We also ana- which are among the few inland members of the lyzed variation in the mitochondrial genome by otherwise estuarine subfamily Assimineinae, di- sequencing 658 bp of mitochondrial COI from verged from coastal progenitors in the late Mio- populations of A. pecos, representatives of the cene, with subsequent Pleistocene vicariance of other three North American species of Assiminea, Mexican and American species perhaps associ- and several outgroups. Our results indicated ated with development of the modern, lower substantial divergence of the Mexican population course of the Rio Grande. Handling editor: K. Martens Keywords Assiminea • Gastropoda • North America • Systematics • Biogeography • R. Hershler (El) Conservation Department of Invertebrate Zoology, Smithsonian Institution, NHB W-305, MRC 163, P.O. Box 37012, Washington, DC 20013-7012, USA Introduction e-mail: [email protected] H.-P. Liu The Assimineidae is a diverse family of small, Department of Biological Sciences, University of amphibious and terrestrial caenogastropods found Denver, Denver, CO 80208, USA in tropical and temperate regions throughout much of the world (Abbott, 1958; Ponder & DeKeyzer, B. K. Lang New Mexico Department of Game and Fish, 1998). The North American fauna consists of four One Wildlife Way, Santa Fe, NM 87507, USA amphibious species currently assigned to the large. ^ Springer 318 Hydrobiologia (2007) 579:317-335 cosmopolitan genus Assiminea, and referable to Pecos assiminea, although several additional the informal nitida-convpX&x (sensu Abbott, 1958). populations have been reported from the Roswell Two of these species share the brackish coastal and Ft. Stockton areas, and another isolated habitats typical of other members of the subfamily segment of Pecos River drainage near Balmo- Assimineinae (Fukuda & Ponder, 2003) and rhea, Texas (USFWS, 2002, 2005). have extremely broad ranges along the Pacific As currently envisaged, the Pecos assiminea is (A. californica [Tryon]) and Atlantic-Gulf of composed of four groups of populations separated Mexico {A. succinea [Pfeiffer]) margins (Abbott, from each other by ca. 75-760 km (Fig. 1). Given 1974). The other two live in spring-riparian settings its tight linkage with aquatic habitats, A. pecos is in Death Valley {A. infima Berry) and the Rio likely incapable of dispersing long distances within Grande region {A. pecos Taylor) and are among the highly fragmented drainage of the arid Rio the few representatives of this subfamily associ- Grande region and consequently its broadly dis- ated with inland aquatic habitats (Fukuda & junct populations are probably not exchanging Ponder, 2003). Both of these "land-locked" spe- genes at present. The fossil record of the Pecos cies are thought to have been derived from coastal assiminea consists of a few Holocene collections progenitors that dispersed inland during the late from sites closely proximal to extant colonies Tertiary (Berry, 1947; Taylor, 1985) and conse- (Taylor, 1987) and does not provide insight into quently are of biogeographic interest. They have the timing of population isolation. Taylor (1985), also become a focus of conservation attention however, speculated that this snail (which was then because of threats to their fragile, groundwater- undescribed) evolved from Gulf Coastal progen- reliant habitats - both have critically imperiled itors that dispersed along a hypothesized brackish (Gl) global heritage rankings (NatureServe, 2006) paleodrainage in the Rio Grande Valley, with and A. pecos was recently listed as endangered by isolation of inland, salt-adapted populations occur- the USWFS (2005). However, despite the compel- ring upon inception of the modern, freshwater ling and important features of the North American lower Rio Grande during the Pleistocene. If this assimineids, these snails are poorly known taxo- hypothesis is correct, Mexican (Cuatro Cienegas) nomically and additional studies are needed to and American (Pecos River basin) populations better clarify their species limits and assess their separated by the putative Rio Grande barrier have phylogenetic relationships. long been isolated and may represent divergent Assiminea pecos, commonly known as the conspecific subunits, or separate species. Pecos assiminea (Turgeon et al., 1998), was In this paper we survey morphological and described from a small number of sites in the mitochondrial DNA variation of A. pecos popu- upper Pecos River basin near Roswell, New lations, and assess their evolutionary relationships Mexico (including the type locality); lower seg- using molecular evidence. We use our results to ment of this watershed near Fort Stockton, Texas; re-evaluate the current taxonomic treatment of and Cuatro Cienegas basin, Coahuila (Mexico), these populations as a single species and test which drains (in part) to the Rio Grande (Taylor, Taylor's (1985) hypothesis of the biogeographic 1987). Taylor (1987) clearly differentiated A. history of assimineids in the Rio Grande region. pecos from its North American congeners on Additionally, we discuss the implications of our the basis of its strongly rounded shell whorls, findings for ongoing efforts to recover the endan- deep suture, absence of a subsutural thread, and gered Pecos assiminea (NMDGF, 2004). broad umbilicus. However, conspecificity of the widely separated populations assigned to A. pecos was not convincingly demonstrated in this study Materials and methods as the only (shell) morphological data provided were from topotypes and all but one of the Genetics figured specimens were also from the type locality (Taylor, 1987: Table 1, Fig. 2a-d). There have Samples from seven populations of A. pecos been no subsequent taxonomic studies of the spread across its entire geographic range were & Springer Hydrobiologia (2007) 579:317-335 319 Fig. 1 Map showing the four disjunct areas in the Rio Grande region, United States and Mexico, which comprise the geographic range of Assiminea pecos collected between 2000-2004, preserved in 90% species. Locality and other data for all samples ethanol, and used for sequencing of mitochon- are provided in Table 1. drial DNA. Two to seven animals were analyzed Genomic DNA was isolated from individual for each population, totaling 30 specimens. We snails using a CTAB protocol (Bucklin, 1992). Six also analyzed small samples (three-five speci- hundred fifty-eight base pairs (bp) of mitochon- mens) of each of the other three North American drial cytochrome c oxidase subunit I were ampli- species of Assiminea. Inasmuch as the phyloge- fied and sequenced with primers COIL1490 and netic relationships of the North American assi- COIH2198 (Folmer et al., 1994) fohowing proto- mineids have never been studied, we used as cols of Liu et al. (2003). Sequences were deter- outgroups two members of the family from mined for both strands and then edited and geographically distant Taiwan—Paludinella tai- aligned using Sequencher• version 3.1.1. New wanensis Habe, Pseudomphala latericea (H. & A. sequences were deposited in GenBank (Acces- Adams)—and rooted our trees with the latter sion numbers DQ533841-533866). ^ Springer 320 Hydrobiologia (2007) 579:317-335 m o m ^ >i> o m -* IT) ^ fTi m ^ \D 00 00 oo 00 00 00 OO m <n m m <n m en m m m m <n m en oiri oIT) om om om o<n om Q Q ^ <M 0)0 Q Q i~~ 00 Q ^ CM Q mm " m m ^ ^ 00 1^ (N ON 00 00 •* 00 m T-H m oo oo ON 00 00 <n ^ NO ^ ^ -* ^ <r) <r) ^ m <n -* m r*^ r*^ <n rn rn NO NO NO c 00 00 00 00 <n <n 00 m 00 00 00 m m 00 m m 00 oo 00 <n m m <n m m m <n m m c^ m m m <n <n <n m m ffl CO c IS m o o o O OD Q oQ Q o o O Q Q Q Q Q Q Q Q Q Q Q Q I—r I—I >I—I > O > > >^ > > > HH KT t." ^ rt o o s ° O O s >^ :z O •o A ^ S73&^ w in _ ;- a m NW M O ON tS HH NO a O vj o ^ NO o So.. ^ z >,oo o d NWR, m *j D NO o ^. •^ E X •- 3 o^ 00 ^ s o t2« USNM USNM Lake 2 H 00 :^ H 3 DH IN orthwest 1069820 o o ke >; g Q r d 'Q r H 00 ttm S "JSSSS „ o _: O Eoj 8 MO g oo'O ; .5 o o ^ ^ ^ g .^ z; •c o O ^ dj 6Z •3H 1° > •a <" " S ffl o o X r J- .-a O D tn o H O 60° ^ 00 ^ I ..2 z; O Q *:: o 2 -O C/3 73e^^^^s^ I.- S -* -a S |.T3 o" g pa s 2^ ._.
Recommended publications
  • New Freshwater Snails of the Genus Pyrgulopsis (Rissooidea: Hydrobiidae) from California
    THE VELIGER CMS, Inc., 1995 The Veliger 38(4):343-373 (October 2, 1995) New Freshwater Snails of the Genus Pyrgulopsis (Rissooidea: Hydrobiidae) from California by ROBERT HERSHLER Department of Invertebrate Zoology (Mollusks), National Museum of Natural History, Smithsonian Institution, Washington, DC. 20560, USA Abstract. Seven new species of Recent springsnails belonging to the large genus Pyrgulopsis are described from California. Pyrgulopsis diablensis sp. nov., known from a single site in the San Joaquin Valley, P. longae sp. nov., known from a single site in the Great Basin (Lahontan system), and P. taylori sp. nov., narrowly endemic in one south-central coastal drainage, are related to a group of previously known western species also having terminal and penial glands on the penis. Pyrgulopsis eremica sp. nov., from the Great Basin and other interior drainages in northeast California, and P. greggi sp. nov., narrowly endemic in the Upper Kern River basin, differ from all other described congeners in lacking penial glands, and are considered to be derived from a group of western species having a small distal lobe and weakly developed terminal gland. Pyrgulopsis gibba sp. nov., known from a few sites in extreme northeastern California (Great Basin), has a unique complement of penial ornament consisting of terminal gland, Dg3, and ventral gland. Pyrgulopsis ventricosa sp. nov., narrowly endemic in the Clear Lake basin, is related to two previously described California species also having a full complement of glands on the penis (Pg, Tg, Dgl-3) and an enlarged bursa copulatrix. INTRODUCTION in the literature (Hershler & Sada, 1987; Hershler, 1989; Hershler & Pratt, 1990).
    [Show full text]
  • Suterilla Fluviatilis Fukuda, Ponder & Marshall, 2006
    Suterilla fluviatilis Fukuda, Ponder & Marshall, 2006 Diagnostic features Shell globose to ovate-conic, up to 1.9 mm in length, thick, opaque, uniformly yellow-brown (white in some specimens); with narrow, open umbilicus. Teleoconch whorls convex, suture distinctly Distribution of Suterilla fluviatilis. Suterilla fluviatilis (adult size 1.6-1.9 mm) impressed; spire about equal to aperture in length; whorls smooth except for fine growth lines, fine spiral striae present or absent; aperture with thin outer lip and thick, wide columellar lip, inner lip thin across parietal area; aperture not extending across umbilicus; no varix. Operculum simple, pyriform , paucispiral, horny, translucent, yellowish. Head with short, narrow, cephalic tentacles approximately equal to half width of head with the eyes situated near central part of bases of these tentacles. A distinct transverse crease at posterior end of snout and confluent with anterior edges of tentacle bases. Omniphoric grooves distinct. Anterior pedal mucous gland along entire edge of foot, as many small, slender cells opening beneath inconspicuous propodial flap. Foot short and broad, sole slender, flat, smooth when foot extended. Mantle cavity with only two rudimentary gill filaments. The main differences between S. fluviatilis and other species of Suterilla (all of which are marine) are anatomical. They include the S-shaped rectum, lack of a flange on the penis, the albumen gland being markedly shorter than the capsule gland, a large bursa copulatrix (also in S. neozelanica) and a wide, folded bursal duct that enters the bursa mid anteriorly. Classification Suterilla fluviatilis Fukuda, Ponder & Marshall, 2006 Class Gastropoda I nfraclass Caenogastropoda Order Littorinida Suborder Rissoidina Superfamily Truncatelloidea Family Assimineidae Subfamily: Omphalotropidinae Genus Suterilla Thiele, 1927 (Type species Cirsonella neozelanica Murdoch, 1899).
    [Show full text]
  • The Assimineidae of the Atlantic-Mediterranean Seashores
    B72(4-6)_totaal-backup_corr:Basteria-basis.qxd 15-9-2008 10:35 Pagina 165 BASTERIA, 72: 165-181, 2008 The Assimineidae of the Atlantic-Mediterranean seashores J.J. VAN AARTSEN National Museum of Natural History, P.O.Box 9517, 2300 RA Leiden, The Netherlands. A study of the Atlantic – and Mediterranean marine species of the genera Assiminea and Paludinella revealed several new species. The species Assiminea gittenbergeri spec. nov. is estab- lished in the Mediterranean. Assiminea avilai spec. nov. and Assiminea rolani spec. nov. have been found in Terceira, Azores and in Madeira respectively. A species from the Atlantic coast of France, cited as Assiminea eliae Paladilhe, 1875 by Thiele, is described as Paludinella glaubrechti spec. nov. A. eliae cannot be identified today as no type material is known. The name , howev- er, is used for several different species as documented herein. Assiminea ostiorum (Bavay, 1920) is here considered a species in its own right. Paludinella sicana ( Brugnone, 1876), until now con- sidered an exclusively Mediterranean species, has been detected along the Atlantic coast at Laredo ( Spain) in the north as well as at Agadir ( Morocco) in the south. Keywords: Gastropoda, Caenogastropoda, Assimineidae, Assiminea, Paludinella, systematics, Atlantic Ocean east coast, Mediterranean. INTRODUCTION The Assimineidae H. & A. Adams, 1856 are a group of mollusks living worldwide in brackish water, in freshwater as well as terrestrial habitats. In Europe there are only a few species known. They live in usually more or less brackish conditions high in the tidal zone, frequently along tidal mudflats. The two genera recognized to date are Paludinella Pfeiffer, 1841 with Paludinella littorina (Delle Chiaje, 1828) and Paludinella sicana (Brugnone, 1876) and the type-genus Assiminea Leach in Fleming, 1828, with the type- species Assiminea grayana (Fleming, 1828) as well as Assiminea eliae Paladilhe, 1875.
    [Show full text]
  • Gastropoda, Prosobranchia)
    BASTERIA, 64: 151-163, 2000 The genus Alzoniella Giusti & Bodon, 1984, in France. 1 West European Hydrobiidae, 9 (Gastropoda, Prosobranchia) Hans+D. Boeters Karneidstrasse 8, D 81545 Munchen, Germany In France the genusAlzoniella Giusti & Bodon, 1984, is represented with two subgenera, viz. its nominate subgenus and Navarriella subgen. nov. The nominate subgenus comprises six three species, ofwhich are described as viz. A. haicabia A. new, (A.) spec. nov., (A.) junqua spec. A. nov. and A. (A.) provincialis spec. nov., next to (A.) navarrensis Boeters, 1999, A. (A.) perrisii and A. (Dupuy, 1851) (A.) pyrenaica (Boeters, 1983). The new subgenus is proposed for A. (Navarriella) elliptica (Paladilhe, 1874) only. A. (A.) perrisii (Dupuy, 1851) [Hydrobia], the first of this became known from is redefined and species genus that France, described here with two viz. A. and A. subspecies, (A.) p. perrisii (A.) p. irubensis subspec. nov. Key words: Gastropoda, Prosobranchia, Hydrobiidae, Alzoniella (Alzoniella) and Alzoniella (Navarriella), France. INTRODUCTION Giusti & Bodon (1984: 169) described Alzoniella for three eyeless, subterranean, hy- drobiid species from Italy, that might have evolved from small populations that locally survived the Quaternary glaciations. It turned out that Alzoniella is also represented in where mountain inhabited France, regions are that have partially been subject to gla- ciations, viz. the Pyrenees and the MediterraneanAlps. In these regions too, populations ofancestral have Alzoniella might survived locally by invading subterranean waters. This development apparently went less far than in for example Bythiospeum Bourguignat, 1882, andMoitessieria Bourguignat, 1863. Species of these two genera, which are eyeless stygobionts, occur not only in karstic waters, but also in the interstitium and in subter- ranean waters bordering river valleys such as that of the Rhone river (Boeters & Miiller be found 1992).
    [Show full text]
  • Early Ontogeny and Palaeoecology of the Mid−Miocene Rissoid Gastropods of the Central Paratethys
    Early ontogeny and palaeoecology of the Mid−Miocene rissoid gastropods of the Central Paratethys THORSTEN KOWALKE and MATHIAS HARZHAUSER Kowalke, T. and Harzhauser, M. 2004. Early ontogeny and palaeoecology of the Mid−Miocene rissoid gastropods of the Central Paratethys. Acta Palaeontologica Polonica 49 (1): 111–134. Twenty−six species of Rissoidae (Caenogastropoda: Littorinimorpha: Rissooidea) are described from the Badenian and Early Sarmatian of 14 localities in Austria and the Czech Republic (Molasse Basin, Styrian Basin, Vienna Basin) and from the Badenian of Coştei (Romania). For the first time, the early ontogenetic skeletal characters of these gastropods are de− scribed. Based on these features an indirect larval development with a planktotrophic veliger could be reconstructed for all investigated Mid−Miocene species. The status of Mohrensterniinae as a subfamily of the Rissoidae is confirmed by the mor− phology of the low conical protoconch, consisting of a fine spirally sculptured embryonic shell and a larval shell which is smooth except for growth lines. Transitions from embryonic shells to larval shells and from larval shells to teleoconchs are slightly thickened and indistinct. Whilst representatives of the subfamily Rissoinae characterise the marine Badenian assem− blages, Mohrensterniinae predominate the Early Sarmatian faunas. We hypothesize that this take−over by the Mohren− sterniinae was triggered by changes in the water chemistry towards polyhaline conditions. Consequently, the shift towards hypersaline conditions in the Late Sarmatian is mirrored by the abrupt decline of the subfamily. Four new species Rissoa costeiensis (Rissoinae) from the Badenian and Mohrensternia hollabrunnensis, Mohrensternia pfaffstaettensis,and Mohrensternia waldhofensis (Mohrensterniinae) from the Early Sarmatian are introduced.
    [Show full text]
  • Zootaxa, (Mollusca: Caenogastropoda: Rissooidea: Hydrobiidae
    ZOOTAXA 1074 A radiation of hydrobiid snails in the caves and streams at Precipitous Bluff, southwest Tasmania, Australia (Mollusca: Caenogastropoda: Rissooidea: Hydrobiidae s.l.) W. F. PONDER, S. A. CLARK, S. EBERHARD & J. B. STUDDERT Magnolia Press Auckland, New Zealand W. F. PONDER, S. A. CLARK, S. EBERHARD & J. B. STUDDERT A radiation of hydrobiid snails in the caves and streams at Precipitous Bluff, southwest Tasmania, Australia (Mollusca: Caenogastropoda: Rissooidea: Hydrobiidae s.l.) (Zootaxa 1074) 66 pp.; 30 cm. 1 Nov. 2005 ISBN 1-877407-32-1 (paperback) ISBN 1-877407-33-X (Online edition) FIRST PUBLISHED IN 2005 BY Magnolia Press P.O. Box 41383 Auckland 1030 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2005 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) Zootaxa 1074: 1–66 (2005) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1074 Copyright © 2005 Magnolia Press ISSN 1175-5334 (online edition) A radiation of hydrobiid snails in the caves and streams at Precipitous Bluff, southwest Tasmania, Australia (Mollusca: Caenogastropoda: Rissooidea: Hydrobiidae s.l.) W. F. PONDER1, S. A. CLARK2, S. EBERHARD3 & J. B. STUDDERT1 1 Australian Museum, 6 College Street, Sydney, NSW, 2010, Australia.
    [Show full text]
  • Ein Beitrag Zur Anatomie Von Bythiospeum Tschapecki (CLESSIN, 1878) (Moll., Gastropoda, Prosobranchia)
    ©Landesmuseum Joanneum Graz, Austria, download unter www.biologiezentrum.at Mitt. Abt. Zool. Landesmus. Joanneum Heft 30 S. 79—82 Graz 1983 Ein Beitrag zur Anatomie von Bythiospeum tschapecki (CLESSIN, 1878) (Moll., Gastropoda, Prosobranchia) Von Peter L. REISCHÜTZ Mit 2 Abbildungen Eingelangt am 27. Mai 1983 Inhalt: Die Genitalmorphologie von Vitretta tschapecki CLESSIN, 1878 wurde erstmals untersucht und die Zugehörigkeit dieser Art zur Gattung Bythiospeum BOURGUIGNAT, 1882. festgestellt. Abstract: The genital morphology of Vitretta tschapecki CLESSIN, 1878 has been examined for the first time and this has proven that this species belongs to the genus Bythiospeum BOURGUIGNAT, 1882. Die Buchkogelhöhle bei St. Martin bei Graz ( = Bründlhöhle, Höhlenkat. Nr. 2793/1) ist locus typicus eines kaum bekannten stygobionten Süßwasser-Proso- branchiers: Vitrella tschapecki CLESSIN, 1878. Bei einer Exkursion mit Dr. E. KREISSL zum locus typicus konnten mehrere Exemplare dieser Art gesammelt und drei anatomisch untersucht werden. Die systematische Stellung der Art war bisher sehr unsicher, da die anatomischen Verhältnisse unbekannt waren. CLESSIN, 1878 beschrieb Vitrella tschapecki mit einem falschen Fundort (Sanriack in Kärnten). Dies wurde später korrigiert (CLESSIN, 1882 und 1887). BOURGUIGNAT, 1882 stellte diese Art zu seiner Gattung Bythiospeum, da Vitrella CLESSIN, 1877 synonym zu Vitrella SWAINSON, 1840 ist. WESTERLUND, 1886 stellte sie in die Gattung Paludinella L. PFEIFFER, 1841, GEYER, 1909 zur Gattung Lartetia BOURGUIGNAT, 1869, FUCHS, 1929 in die Gattung Paladilhiopsis PAVLOVIC, 1913. KLEMM, i960 betrachtete Paladilhiopsis als Untergattung von Paladilhia BOURGUIGNAT. Da die bisherige Gliederung nur auf konchyologischen Merkmalen beruhte (FUCHS, 1925 und 1929, MAHLER, 1949, STOJASPAL, 1978 und REISCHÜTZ, 1981 und 1983), sollte möglichst umfangreiches Material aus dem österreichischen Unter- suchungsgebiet untersucht werden.
    [Show full text]
  • Species Distinction and Speciation in Hydrobioid Gastropoda: Truncatelloidea)
    Andrzej Falniowski, Archiv Zool Stud 2018, 1: 003 DOI: 10.24966/AZS-7779/100003 HSOA Archives of Zoological Studies Review inhabit brackish water habitats, some other rivers and lakes, but vast Species Distinction and majority are stygobiont, inhabiting springs, caves and interstitial hab- itats. Nearly nothing is known about the biology and ecology of those Speciation in Hydrobioid stygobionts. Much more than 1,000 nominal species have been de- Mollusca: Caeno- scribed (Figure 1). However, the real number of species is not known, Gastropods ( in fact. Not only because of many species to be discovered in the fu- gastropoda ture, but mostly since there are no reliable criteria, how to distinguish : Truncatelloidea) a species within the group. Andrzej Falniowski* Department of Malacology, Institute of Zoology and Biomedical Research, Jagiellonian University, Poland Abstract Hydrobioids, known earlier as the family Hydrobiidae, represent a set of truncatelloidean families whose members are minute, world- wide distributed snails inhabiting mostly springs and interstitial wa- ters. More than 1,000 nominal species bear simple plesiomorphic shells, whose variability is high and overlapping between the taxa, and the soft part morphology and anatomy of the group is simplified because of miniaturization, and unified, as a result of necessary ad- aptations to the life in freshwater habitats (osmoregulation, internal fertilization and eggs rich in yolk and within the capsules). The ad- aptations arose parallel, thus represent homoplasies. All the above facts make it necessary to use molecular markers in species dis- crimination, although this should be done carefully, considering ge- netic distances calibrated at low taxonomic level. There is common Figure 1: Shells of some of the European representatives of Truncatelloidea: A believe in crucial place of isolation as a factor shaping speciation in - Ecrobia, B - Pyrgula, C-D - Dianella, E - Adrioinsulana, F - Pseudamnicola, G long-lasting completely isolated habitats.
    [Show full text]
  • The Freshwater Snails (Mollusca: Gastropoda) of Mexico: Updated Checklist, Endemicity Hotspots, Threats and Conservation Status
    Revista Mexicana de Biodiversidad Revista Mexicana de Biodiversidad 91 (2020): e912909 Taxonomy and systematics The freshwater snails (Mollusca: Gastropoda) of Mexico: updated checklist, endemicity hotspots, threats and conservation status Los caracoles dulceacuícolas (Mollusca: Gastropoda) de México: listado actualizado, hotspots de endemicidad, amenazas y estado de conservación Alexander Czaja a, *, Iris Gabriela Meza-Sánchez a, José Luis Estrada-Rodríguez a, Ulises Romero-Méndez a, Jorge Sáenz-Mata a, Verónica Ávila-Rodríguez a, Jorge Luis Becerra-López a, Josué Raymundo Estrada-Arellano a, Gabriel Fernando Cardoza-Martínez a, David Ramiro Aguillón-Gutiérrez a, Diana Gabriela Cordero-Torres a, Alan P. Covich b a Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av.Universidad s/n, Fraccionamiento Filadelfia, 35010 Gómez Palacio, Durango, Mexico b Institute of Ecology, Odum School of Ecology, University of Georgia, 140 East Green Street, Athens, GA 30602-2202, USA *Corresponding author: [email protected] (A. Czaja) Received: 14 April 2019; accepted: 6 November 2019 Abstract We present an updated checklist of native Mexican freshwater gastropods with data on their general distribution, hotspots of endemicity, threats, and for the first time, their estimated conservation status. The list contains 193 species, representing 13 families and 61 genera. Of these, 103 species (53.4%) and 12 genera are endemic to Mexico, and 75 species are considered local endemics because of their restricted distribution to very small areas. Using NatureServe Ranking, 9 species (4.7%) are considered possibly or presumably extinct, 40 (20.7%) are critically imperiled, 30 (15.5%) are imperiled, 15 (7.8%) are vulnerable and only 64 (33.2%) are currently stable.
    [Show full text]
  • Gastropod Fauna of the Cameroonian Coasts
    Helgol Mar Res (1999) 53:129–140 © Springer-Verlag and AWI 1999 ORIGINAL ARTICLE Klaus Bandel · Thorsten Kowalke Gastropod fauna of the Cameroonian coasts Received: 15 January 1999 / Accepted: 26 July 1999 Abstract Eighteen species of gastropods were encoun- flats become exposed. During high tide, most of the tered living near and within the large coastal swamps, mangrove is flooded up to the point where the influence mangrove forests, intertidal flats and the rocky shore of of salty water ends, and the flora is that of a freshwater the Cameroonian coast of the Atlantic Ocean. These re- regime. present members of the subclasses Neritimorpha, With the influence of brackish water, the number of Caenogastropoda, and Heterostropha. Within the Neriti- individuals of gastropod fauna increases as well as the morpha, representatives of the genera Nerita, Neritina, number of species, and changes in composition occur. and Neritilia could be distinguished by their radula Upstream of Douala harbour and on the flats that lead anatomy and ecology. Within the Caenogastropoda, rep- to the mangrove forest next to Douala airport the beach resentatives of the families Potamididae with Tympano- is covered with much driftwood and rubbish that lies on tonos and Planaxidae with Angiola are characterized by the landward side of the mangrove forest. Here, Me- their early ontogeny and ecology. The Pachymelaniidae lampus liberianus and Neritina rubricata are found as are recognized as an independent group and are intro- well as the Pachymelania fusca variety with granulated duced as a new family within the Cerithioidea. Littorini- sculpture that closely resembles Melanoides tubercu- morpha with Littorina, Assiminea and Potamopyrgus lata in shell shape.
    [Show full text]
  • Department of the Interior Fish and Wildlife Service
    Tuesday, August 9, 2005 Part III Department of the Interior Fish and Wildlife Service 50 CFR Part 17 Endangered and Threatened Wildlife and Plants; Listing Roswell springsnail, Koster’s springsnail, Noel’s amphipod, and Pecos assiminea as Endangered With Critical Habitat; Final Rule VerDate jul<14>2003 18:26 Aug 08, 2005 Jkt 205001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\09AUR2.SGM 09AUR2 46304 Federal Register / Vol. 70, No. 152 / Tuesday, August 9, 2005 / Rules and Regulations DEPARTMENT OF THE INTERIOR SUPPLEMENTARY INFORMATION: in coastal brackish waters or along tropical and temperate seacoasts Background Fish and Wildlife Service worldwide (Taylor 1987). Inland species It is our intent to discuss only those of the genus Assiminea are known from 50 CFR Part 17 topics directly relevant to this final around the world, and in North America listing determination. For more RIN 1018–AI15 they occur in California (Death Valley information on the four invertebrates, National Monument), Utah, New Endangered and Threatened Wildlife refer to the February 12, 2002, proposed Mexico, Texas (Pecos and Reeves and Plants; Listing Roswell rule (67 FR 6459). However, some of Counties), and Mexico (Bolso´n de springsnail, Koster’s springsnail, this information is discussed in our Cuatro Cı´enegas). Noel’s amphipod, and Pecos analyses below, such as the summary of The Roswell springsnail and Koster’s assiminea as Endangered With Critical factors affecting the species. springsnail are aquatic species. These Habitat Springsnails snails have lifespans of 9 to 15 months and reproduce several times during the AGENCY: Fish and Wildlife Service, The Permian Basin of the spring through fall breeding season Interior.
    [Show full text]
  • Coastal Vegetated Shingle
    Natural England Commissioned Report NECR054 Coastal Vegetated Shingle Development of an evidence base of the extent and quality of shingle habitats in England to improve targeting and delivery of the coastal vegetated shingle HAP First published 17 December 2010 www.naturalengland.org.uk Foreword Natural England commission a range of reports from external contractors to provide evidence and advice to assist us in delivering our duties. This work was jointly funded by the National Trust, Defra and managed by Natural England with support of a project steering group. The views in this report are those of the authors and do not necessarily represent those of Natural England. Background Vegetated shingle is a Biodiversity Action Plan assessment, especially related to long-term climate priority habitat because it is so rare and so valuable change and sea level rise. for wildlife. All the major examples of the habitat and The data and other products will also be used by many of the minor ones have been notified for their Natural England and partner organisations in other wildlife value. To help identify restoration targets and contexts, such as the evaluation of shingle resources monitor the habitat we need to know what there is, within flood risk management applications; where it is, its geomorphology and the activities incorporating the scales of change that have been taking place that could affect it. observed and allowing assessment of options for This study was commissioned to provide a spatial longer term adaptation to climate change. Whilst dataset of the inventory for coastal vegetated shingle recognising the limitations of the work, this will inform in England.
    [Show full text]