Mónia Andreia Rodrigues Martins Estudos Para O

Total Page:16

File Type:pdf, Size:1020Kb

Mónia Andreia Rodrigues Martins Estudos Para O Universidade de Aveiro Departamento de Química 2017 MÓNIA ANDREIA ESTUDOS PARA O DESENVOLVIMENTO DE NOVOS RODRIGUES MARTINS PROCESSOS DE SEPARAÇÃO COM TERPENOS E SUA DISTRIBUIÇÃO AMBIENTAL STUDIES FOR THE DEVELOPMENT OF NEW SEPARATION PROCESSES WITH TERPENES AND THEIR ENVIRONMENTAL DISTRIBUTION Universidade de Aveiro Departamento de Química 2017 MÓNIA ANDREIA ESTUDOS PARA O DESENVOLVIMENTO DE NOVOS RODRIGUES MARTINS PROCESSOS DE SEPARAÇÃO COM TERPENOS E SUA DISTRIBUIÇÃO AMBIENTAL STUDIES FOR THE DEVELOPMENT OF NEW SEPARATION PROCESSES WITH TERPENES AND THEIR ENVIRONMENTAL DISTRIBUTION Tese apresentada à Universidade de Aveiro para cumprimento dos requisitos necessários à obtenção do grau de Doutor em Engenharia Química, realizada sob a orientação científica do Professor Doutor João Manuel da Costa e Araújo Pereira Coutinho, Professor Catedrático do Departamento de Química da Universidade de Aveiro, e do Professor Doutor Simão Pedro de Almeida Pinho, Professor Coordenador da Escola Superior de Tecnologia e Gestão do Instituto Politécnico de Bragança. Apoio financeiro da FCT e do FSE no âmbito do III Quadro Comunitário de Apoio (SFRH/BD/87084/2012). Aos meus pais. o júri presidente Prof. Doutor Joaquim Manuel Vieira professor catedrático no Departamento de Engenharia Cerâmica e do Vidro da Universidade de Aveiro Prof. Doutora Isabel Maria Almeida Fonseca professora associada com agregação da Faculdade de Ciências e Tecnologia da Universidade de Coimbra Prof. Doutor Héctor Rodríguez Martínez professor associado do Departamento de Engenharia Química da Universidade de Santiago de Compostela Prof. Doutor Luís Manuel das Neves Belchior Faia dos Santos professor associado da Faculdade de Ciências da Universidade do Porto Prof. Doutor Simão Pedro de Almeida Pinho professor coordenador na Escola Superior de Tecnologia e Gestão do Instituto Politécnico de Bragança Prof. Doutora Maria Olga de Amorim e Sá Ferreira professora adjunta na Escola Superior de Tecnologia e Gestão do Instituto Politécnico de Bragança agradecimentos Prof. João Coutinho pela oportunidade, conhecimentos e muita paciência Prof. Simão Pinho pelo desafio, confiança, ideias e palavras amigas Prof. Urszula Domańska for the opportunity and friendship Prof. Guilherme Máximo pela enorme paciência e grande amizade Prof.ª Mariana Costa por toda a ajuda e disponibilidade Bernd Schröder, danke für deine Ratschläge, offenes Ohr und Freundschaft Catarina pela amizade, por estar sempre lá e pelas imensas gargalhadas Pedro Manuel por bromas, asesoramiento y ayuda preciosa Tany pela amizade, disponibilidade e enorme companheirismo Kiki for being special, unique, and super friend Ranyere por todos os momentos de pura felicidade Marta pela amizade, preocupação e afeto Sarita pela amizade e pelos passeios de descapotável Lipa pela amizade e confiança (mesmo sem me conhecer) Carlitos pelas imensas gargalhadas e momentos únicos Flávia pelos conselhos, conversas e amizade Andreia pelas loucuras e confidências Chica Maria pelas muitas saídas, alegrias e companheirismo Ana Maria, Helena e Manu pelos bons momentos e conversas Vanessa Vieira pelas alegrias e boa disposição Lilis pela amizade, confiança e ótimo trabalho Emanuel pelas piadas nerds e companheirismo André pelo companheirismo e cumplicidade Rita Costa pela amizade, conselhos e motivação Ferrão pelos copos e bons momentos Jonathan pela confiança, amizade e ‘aqueles’ abraços Rita Teles pela paciência do ‘preciso mesmo’ e pela disponibilidade Pathfamily pela união, ajudas e alegrias Vanessa Oliveira pela companhia, conversas e amizade Ana Caloto por los viajes, la compañía, la conversación y la amistad Estela pelas aventuras, viagens e conversas Paulinha pela amizade, ajuda e constante preocupação Martin, danke, dass Du mich zum Lachen bringst Dear por seres especial e verdadeira, pela tua amizade infinita Marta pelo ombro amigo e afinidade Amigos de sempre pela presença, apoio e amizade Pai, Irmão, Avô por acreditarem, pelo grande amor e muito afeto Aos que já partiram, por terem ajudado a ser quem sou Mãe pela vida, amor, confiança e toda a paciência nas longas ausências palavras-chave Terpenos, terpenoides, óleos essenciais, líquidos iónicos, solventes eutécticos profundos, coeficientes de atividade a diluição infinita, equilíbrio líquido-líquido, equilíbrio sólido-líquido, propriedades críticas. resumo Os terpenos pertencem ao que é provavelmente a maior e mais diversificada classe de produtos naturais com aplicações em vários setores devido aos seus sabores e fragrâncias. O seu elevado número, variedade de estruturas e complexidade química, fazem deles uma classe de compostos onde há ainda muitos estudos a serem realizados e questões a serem respondidas tanto sobre as suas propriedades termofísicas e equilíbrio de fases como sobre o seu impacto nos processos de extração e purificação e no ambiente. Ambos são relevantes para o desenvolvimento de biorrefinarias, onde estes compostos podem desempenhar um papel importante dada a sua ubiquidade, valor económico e variedade de aplicações. Esta tese está relacionada com a extração de terpenos de fontes naturais e a sua posterior separação e purificação. Além do desenvolvimento de novos métodos experimentais para medir propriedades termodinâmicas e equilíbrios de fases, algumas abordagens teóricas foram também consideradas para o mesmo fim. Inicialmente, de forma a criar novas aplicações para estes compostos e tirando vantagem da sua baixa solubilidade em água, tal como demonstrado por novas e precisas determinações experimentais, os terpenos são utilizados para preparar solventes hidrofóbicos sustentáveis e de baixo custo, no âmbito dos solventes eutécticos profundos. Depois, com base nos coeficientes de atividade a diluição infinita e previsões do COSMO-RS, foi feita uma seleção de líquidos iónicos com potencial para o fracionamento de terpenos. Mais ainda, visando o desenvolvimento de novos processos de separação de terpenos, foram também formulados e caracterizados solventes eutécticos profundos compostos por sais de amónio e ácidos monocarboxílicos. Finalmente, e com o objetivo de desenvolver modelos precisos para o destino dos terpenos no ambiente, uma série de propriedades físico-químicas essenciais foi medida e modelada. keywords Terpenes, terpenoids, essential oils, ionic liquids, deep eutectic solvents, activity coefficients at infinite dilution, liquid-liquid equilibria, solid-liquid equilibria, critical properties. abstract Terpenes belong to what is probably the largest and most diverse class of natural products with applications in several industries due to their flavor, and fragrance. Their high number, variety of structures and chemical complexity, make of them a class of compounds for which there are still many studies to be carried out and questions to be answered both concerning their thermophysical properties and phase equilibria and their impact in their extraction and purification processes and on their environmental impact. Both are relevant for the development of the biorefinery where these compounds may play an important role given their ubiquity, economic value and variety of applications. This thesis is related to terpenes extraction from natural sources and their subsequent separation and purification. Besides to the development of new experimental procedures for thermodynamic properties and equilibrium measurements, some theoretical approaches were also applied to this end. First, to create new applications for this compounds, and taking advantage of their very low solubility in water as shown by new and accurate experimental determinations, terpenes are used to prepare sustainable and cheap hydrophobic solvents within the deep eutectic solvents framework. After, based on the activity coefficients at infinite dilution measurements and COSMO-RS predictions a selection of ILs was made with potential for terpenes fractionation. Yet, and aiming at the development of new separation processes of terpenes, deep eutectic solvents composed of ammonium salts and monocarboxylic acids were also formulated and characterized. Finally, and targeting the development of accurate models for the fate of terpenes in the environment, a range of essential physicochemical properties of terpenes were measured and modelled. Contents List of Figures ..................................................................................................................................... vi List of Tables ...................................................................................................................................... xii Nomenclature ................................................................................................................................... xv Chapter 1 – General Introduction ....................................................................................................... 1 1.1. General context .......................................................................................................................... 3 1.1.1. Terpenes ............................................................................................................................. 3 Properties and applications ....................................................................................................... 7 Production and deterpenation .................................................................................................12 Environmental impact ..............................................................................................................16
Recommended publications
  • Terpenoids [Compatibility Mode].Pdf
    Terpenoids Dr. Amol Kharat Objectives • To study the Terpenoids in the form of Meaning, Different types Properties, occurrences, uses Isolation Method General Biogenetic Pathway Pharmacognostic account of different drug con taining important constituents Terpenoids. INTRODUCTION Terpenoids are the secondary metabolites synthesized by plants, marine organisms and fungi by head to tail joining of isoprene units . They are also found to occur in rocks, fossils and animal kingdom. Isoprene The terpenoids , sometimes referred to as isoprenoids , are a large and diverse class of naturally-occurring organic chemicals similar to terpenes, derived from five-carbon isoprene units assembled and modified in thousands of ways. Most are multicyclic structures that differ from one another not only in functional groups but also in their basic carbon skeletons . These lipids can be found in all classes of living things, and are the largest group of natural products. CALASSFICATION TYPE OF NUMBER OF ISOPRENE TERPENOIDS CARBON ATOMS UNITS hemiterpene C5 one monoterpenoid C10 two sesquiterpenoid C15 three diterpenoid C20 four sesterterpenoid C25 five triterpenoid C30 six tetraterpenoid C40 eight NOTE hemi = half di = two : sesqui = one and a half tri = three tetra = four Mnonoterpenoids Monoterpenes are a class of terpenes that consist of two isoprene units and have the molecular formula C 10 H16 . Monoterpenes may be linear (acyclic) or contain rings. Biochemical modifications such as oxidation or rearrange- ment produce the related monoterpenoids. Mnonoterpenoids Acyclic monoterpenoid: Bicyclic monoterpenoid CHO CH 2 OH n e ro l g era n ia l ¦Â-m y r c e n e ¦Á ---ppp i nene Monocyclic monoterpenodi OH O OH O d-borneol l-menthol menthone cin eole Acyclic monoterpenoid Acyclic monoterpenoid Biosynthetically, isopentenyl pyrophosphate( 异戊烯 焦磷酸) and dimethylallyl pyrophosphate ( 二甲基丙烯焦 磷酸酯) are combined to form geranyl pyrophosphate (牻牛儿醇焦磷酸酯).
    [Show full text]
  • WO 2019/014310 Al O
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2019/014310 Al 17 January 2019 (17.01.2019) W !P O PCT (51) International Patent Classification: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C07H 21/04 (2006.01) C12N 9/02 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, C07K 14/415 (2006.01) CI2N 9/88 (2006.01) KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, C12N 1/16 (2006.01) CI2N 9/96 (2006.01) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, C12N 1/19 (2006.01) C12N 15/09 (2006.01) OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, CI2N 1/21 (2006.01) C12N 15/52 (2006.01) SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, C12N S/10 (2006.01) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (21) International Application Number: (84) Designated States (unless otherwise indicated, for every PCT/US2018/041579 kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (22) International Filing Date: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 11 July 2018 ( 11.07.2018) TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, (25) Filing Language: English EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, (26) Publication Language: English TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, (30) Priority Data: KM, ML, MR, NE, SN, TD, TG).
    [Show full text]
  • Molecular Electrostatic Potential of the Main Monoterpenoids Compounds Found in Oil Lemon Tahiti - (Citrus Latifolia Var Tahiti)
    Parana Journal of Science and Education, v.1, n.1, November 17, 2015 c Copyright PJSE, 2015 Molecular electrostatic potential of the main monoterpenoids compounds found in oil Lemon Tahiti - (Citrus Latifolia Var Tahiti) R. Gobato1, A. Gobato2 and D. F. G. Fedrigo3 Abstract The work is a study of the geometry of the molecules via molecular mechanics of the main monoterpenoids found in the oil of Lemon Tahiti. Lemon Tahiti is the result of grafting of Persia file on Rangpur lime and has no seeds. A computational study of the molecular geometry of the molecules through molecular mechanics of the main monoterpenoids compounds present in fruit oil is described in a computer simulation. The fruit has active terpenoids compounds: a-pinene, b-pinene, limonene and g-terpenine. The studied monotepernoides form two groups of distribution characteristics of fillers and similar electrical potentials between groups. Since a-pinene and limonene present, major and minor moment of electric dipoles, respectively. Keywords Citrus Latifolia, Citrus essential oil, Lemon Tahiti, Limonene, a-Pinene, b-Pinene, g-Terpinene, Molecular Geometry, Molecular Mechanics. 1Secretaria de Estado da Educac¸ao˜ do Parana´ (SEED/PR), Av. Maringa,´ 290, Jardim Dom Bosco, Londrina/PR, 86060-000, Brasil. 2Faculdade Pitagoras´ Londrina, Rua Edwy Taques de Araujo,´ 1100, Gleba Palhano, Londrina/PR, 86047-500, Brasil. 3Aeronautical Engineering Consulting Consultant in processes LOA/PBN RNAV, Rua Lu´ısa, 388s, ap. 05, Vila Portuguesa, Tangara´ da Serra/MT, 78300-000, Brasil. Corresponding authors: [email protected]; [email protected]; [email protected] Contents References9 Introduction1 Introduction 0.1 Tree................................2 0.2 Scientific classification...................2 Fruits Lemon Tahiti - Citrus Latifolia var Tahiti.
    [Show full text]
  • Copyrighted Material
    [INDEX [ A Acid-catalyzed dehydration, of alcohols, Addition reactions, 337–390 303–308 Absolute configuration, 229–231 of alkenes, 338–373 Acid-catalyzed esterification, 778–780 Absorption spectrum, 590 Adduct, 599 Acid-catalyzed halogenation, of aldehydes Acetals, 728–730 Adenosine diphosphate (ADP), 423 and ketones, 818 Adenosine triphosphate (ATP), 274, 423, Acetaldehyde, 10, 72, 76, 78, 372, 714 Acid-catalyzed hemiacetal formation, 967–968 Acetaldehyde enolate, 53 726–727 Adenylate cyclase, 1095 physical properties, 10 Acid-catalyzed hydration, of alkenes, 354, Adipic acid, 765 Acetic acid, 73–74, 76, 78, 113, 118–119, 496–497 Adipocytes, 1016 126–128, 147, 762 Acid chlorides, see Acyl chlorides Adrenaline, 273, 899 physical properties, 78 Acid derivatives, synthesis of, 775 Adrenocortical hormones, 1032 and pK , 114 a Acidic hydrolysis of a nitrile, 790–791 Adriamycin, see Doxorubicin Acetoacetic ester synthesis, 825–830 Acidity: Agent Orange, 643–644 acylation, 829–830 carboxylic acids vs. alcohols, 126–132 Aggregation compounds, 163 dialkylation, 826 effect of solvent on, 132 Aglycone, 974–975 substituted methyl ketones, 826–827 hybridization, 122–123 Alanine, 909, 1048, 1051 Acetone, 14, 57, 72, 79, 711 inductive effects, 123 isoelectric point of, 1051 Acetonides, 979, 1007–1008 relationships between structure and, titration curve for, 1052 Acetonitrile, 75 120–123 Albrecht, Walther, 608–609 Acetylcholine, 890–891, 900–901 Acidity constant (Ka), 113–114 Albuterol, 492 Acetylcholinesterase, 900, 1081 Acid strength, 113 Alcohols,
    [Show full text]
  • Computational Analysis, Visualization and Text Mining of Metabolic Networks
    COMPUTATIONAL ANALYSIS, VISUALIZATION AND TEXT MINING OF METABOLIC NETWORKS by XINJIAN QI Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Dissertation Advisor: Dr. Gültekin Özsoyoğlu Department of Electrical Engineering and Computer Science CASE WESTERN RESERVE UNIVERSITY January, 2014 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of ____Xinjian Qi____________________________________________ candidate for the Doctor of Philosophy___degree *. (signed) __Dr. Gültekin Özsoyoğlu__________________________ (chair of the committee) __________Dr. Andy Podgurski______________________________ __________Dr. M. Cenk Cavusoğlu__________________________ __________Dr. Nicola Lai___________________________________ __________Dr. Z. Meral Özsoyoğlu__________________________ ___________________________________________________________ (date) _____June 24, 2013____ *We also certify that written approval has been obtained for any proprietary material contained therein. Table of Contents Table of Contents ................................................................................................................ 1 List of Tables ...................................................................................................................... 6 List of Figures ..................................................................................................................... 7 Acknowledgements ..........................................................................................................
    [Show full text]
  • Copyrighted Material
    [ INDEX ] A Brønsted–Lowry acids and bases, Acyl substitution, 771, 784–786, 822 Absolute configuration, 228–230 105–106 by nucleophilic addition–elimination, Absorption spectrum, 599 opposite charges attract, 135 784–786 Acetaldehyde, 10, 72, 76, 78, 372, 723 predicting the outcome of, 118–120 Acyl transfer reactions, 784 Acetaldehyde enolate, 53 and the synthesis of deuterium and Acylation, 839–840 physical properties, 10 tritium-labeled compounds, Acylation reaction, 678 Acetals, 738–740 134–135 Acylium ions, 437 Acetic acid, 73–74, 76, 78, 113, 118–119, water solubility as the result of salt Adamantane, 180 126, 128, 145, 772 formation, 119–120 Addition polymers, 483, 808 physical properties, 78 Acidic hydrolysis of a nitrile, 801 Addition reaction, 337–390 Acidity: and pKa , 114 of alkenes, 338–340 Acetoacetic ester synthesis, 835–840 effect of solvent on, 130 Adduct, 608 acylation, 839–840 effect of the solvent on, 130 Adenosine diphosphate (ADP), 431 dialkylation, 836 hybridization, 122–123 Adenosine triphosphate (ATP), 273, 431, substituted methyl ketones, 836–837 inductive effects, 123 981–982 Acetone, 14, 57, 72, 79, 720 relationships between structure and, Adenylate cyclase, 1110 Acetonides, 993, 1023 120–123 Adipic acid, 776 Acetonitrile, 75 Acidity constant (Ka ), 113–114 Adipocytes, 1032 Acetyl-coenzyme A, 784 Acids: Adrenaline, 273, 906 Acetyl group, 722 alcohols as, 509 Adrenocortical hormones, 1046 Brønsted–Lowry, 105–106, 137 Acetylcholine, 897–898, 908 Adriamycin, See Doxorubicin Lewis, 102–104 Acetylcholinesterase,
    [Show full text]