Bit Patterned Magnetic Recording: Theory, Media Fabrication, and Recording Performance
1 Bit Patterned Magnetic Recording: Theory, Media Fabrication, and Recording Performance Thomas R. ALBRECHT, Hitesh ARORA, Vipin AYANOOR-VITIKKATE, Jean-Marc BEAUJOUR, Daniel BEDAU, David BERMAN, Alexei L. BOGDANOV, Yves-Andre CHAPUIS, Julia CUSHEN, Elizabeth E. DOBISZ, Gregory DOERK, He GAO, Michael GROBIS, Bruce GURNEY, Fellow, IEEE, Weldon HANSON, Olav HELLWIG, Toshiki HIRANO, Pierre-Olivier JUBERT, Dan KERCHER, Jeffrey LILLE, Zuwei LIU, C. Mathew MATE, Yuri OBUKHOV, Kanaiyalal C. PATEL, Kurt RUBIN, Ricardo RUIZ, Manfred SCHABES, Lei WAN, Dieter WELLER, Tsai-Wei WU, and En YANG HGST, a Western Digital Company, San Jose, California, USA Bit Patterned Media (BPM) for magnetic recording provides a route to thermally stable data recording at >1 Tb/in2 and circumvents many of the challenges associated with extending conventional granular media technology. Instead of recording a bit on an ensemble of random grains, BPM is comprised of a well ordered array of lithographically patterned isolated magnetic islands, each of which stores one bit. Fabrication of BPM is viewed as the greatest challenge for its commercialization. In this article we describe a BPM fabrication method which combines rotary-stage e-beam lithography, directed self-assembly of block copolymers, self-aligned double patterning, nanoimprint lithography, and ion milling to generate BPM based on CoCrPt alloy materials at densities up to 1.6 Td/in2 (teradot/inch2). This combination of novel fabrication technologies achieves feature sizes of <10 nm, which is significantly smaller than what conventional nanofabrication methods used in semiconductor manufacturing can achieve. In contrast to earlier work which used hexagonal close- packed arrays of round islands, our latest approach creates BPM with rectangular bitcells, which are advantageous for integration of BPM with existing hard disk drive technology.
[Show full text]