Highly Selective and Considerable Subcritical Butane Extraction To

Total Page:16

File Type:pdf, Size:1020Kb

Highly Selective and Considerable Subcritical Butane Extraction To Journal of Oleo Science Copyright ©2017 by Japan Oil Chemists’ Society doi : 10.5650/jos.ess16230 J. Oleo Sci. 66, (6) 623-632 (2017) Highly Selective and Considerable Subcritical Butane Extraction to Separate Abamectin in Green Tea Yating Zhang1, Lingbiao Gu1, Fei Wang2, Lingjun Kong1, Huili Pang1 and Guangyong Qin1* 1 School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, CHINA 2 School of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, CHINA Abstract: We specially carried out the subcritical butane extraction to separate abamectin from tea leaves. Four parameters, such as extraction temperature, extraction time, number of extraction cycles, and solid– liquid ratio were studied and optimized through the response surface methodology with design matrix developed by Box–Behnken. Seventeen experiments with three various factors and three variable levels were employed to investigate the effect of these parameters on the extraction of abamectin. Besides, catechins, theanine, caffeine, and aroma components were determined by both high-performance liquid chromatography and gas chromatography–mass spectrometry to evaluate the tea quality before and after the extraction. The results showed that the extraction temperature was the uppermost parameter compared with others. The optimal extraction conditions selected as follows: extraction temperature, 42℃; number of extraction cycles and extraction time, 1 and 30 min, respectively; and solid–liquid ratio, 1:10. Based on the above study, the separation efficiency of abamectin was up to 93.95%. It is notable that there has a quite low loss rate, including the negligible damage of aroma components, the bits reduce of catechins within the range of 0.7%–13.1%, and a handful lessen of caffeine and theanine of 1.81% and 2.6%, respectively. The proposed method suggested subcritical butane possesses solubility for lipid–soluble pesticides, and since most of the pesticides are attached to the surfaces of tea, thus the as-applied method was successfully effective to separate abamectin because of the so practical and promising method. Key words: subcritical butane extraction, response surface methodolog, abamectin 1 Introduction treat parasitic worms in vegetables, fruit trees, cottons and Tea, along with coffee and cocoa, belongs to the three flowers6). Moreover, abamectin is also classified as one of leading beverages in the world. Tea leaf contains a unique the highly toxic compounds by the World Health Organiza- series of natural chemicals, such as tea polyphenols, alka- tion. So, it has a negative impact on the environment and loid, vitamins, protein, and amino acid1). These nutrient organisms. Besides, abamectin can be transferred to organ- and medical components may help people fight with isms through the food chain and then affect the health of cancer, decrease cholesterol, resist radiation and ageing, human beings7). promote digestion, and so on2). So far, China has steadily A variety of reports have been published about the been the largest producer of tea in the world, and it has testing techniques of pesticide residues in tea8). However, become the mainspring to drive the global growth of tea only few report on the separation or extraction of these production3). Unfortunately, the export decreased in recent residues. Current approaches to separate such materials years, because of the pesticide residues in tea4). Thus, from plants include hydrostatic pressure9), microbial deg- more attention should be paid to the quality and safety of radation10), ultraviolet degradation11), ozonation degrada- tea5). tion12), and chemical degradation13). For instance, sodium Abamectin, a novel and efficient biological pesticide, carbonate can facilitate the degradation of organophospho- separated from streptomyces avermitilis, is widely used to rus pesticides14). A study by Wu and coworkers15)indicated *Correspondence to: Guangyong Qin, School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, CHINA E-mail: [email protected] Accepted February 6, 2017 (received for review December 9, 2016) Journal of Oleo Science ISSN 1345-8957 print / ISSN 1347-3352 online http://www.jstage.jst.go.jp/browse/jos/ http://mc.manusriptcentral.com/jjocs 623 Y. Zhang, L. Gu and F. Wang et al. that the degradation of pyrethroid in tea increased when ising for extracting trace amounts of pesticide from nature the dose of irradiation was raised. Zhan & Tian16)found that plants. the captan in apples decreased gradually along with in- creasing the ozone concentration, treatment time, and re- action temperature. So the optimal technological condi- tions of degradation are as follows: the initial concentration 2 Materials and methods of ozone should be 6 mg/L, pH 11, reaction temperature 2.1 Sample 40℃, and reaction time 30 min. However, when consider- The tea leaves used in this study were picked from the ing the low degradation efficiency and limited processing tea plantation. In experimental processes, the working conditions, these methods were not widely acceptance. concentration of abamectin(100 g/L, Huozhou Oasis Chem- Since 1980s, supercritical fluid extraction(SFE)was uti- icals Co., LTD., in July 2014)was adjusted to twice the sug- lized to remove pesticide residue from plants. While the gested value. Three days after spraying the pesticide on supercritical fluid of CO2 was used to extract pesticide the tea trees, the tea leaves located at the top of the residue from plants at different pressures and tempera- branches were picked and then stir fried, then transferred tures17). Moreover, accelerated solvent extraction(ASE) to our laboratory within the same day at a temperature of was used to rapidly detect the contents of organochlorine 4℃. and organophosphorus on tea leaves18, 19). However, no matter SFE or ASE can cause a certain degree of damage 2.2 Apparatus to the plant samples. To make matters worse, both tech- Extractions were performed via a subcritical Fluid Ex- niques require a high working pressure, in the range of traction System(CBE-5L, Henan Subcritical Biological 7-50 Mpa20, 21), which can deal with only small sample quan- Technology Co., Ltd., Anyang, China). Abamectin in green tities, thereby preventing large-scale industrial application. tea was determined through an LC-MS/MS(Agilent1200/ Humbert and co-workers22)coupled ion-exchange resin and API4000, Santa Clara, California, USA). The chromato- activated carbon to remove pesticide residue and insoluble graphic analysis of tea aroma components was conducted organic chemicals from plants. Despite attaining high using a GC-MS(Agilent 7890-5795, Santa Clara, California, removal efficiency, this approach is so complicated that it USA). The dried tea samples were ground successively has strict requirements regarding the sample’s shape. It is with a herbal medicine grinder(DJ-04B, Dianjiu Traditional therefore not suitable for tasks in which the original shape Chinese Medicine Machinery Manufacturing Co. Ltd, of the tea leaves needs to be retained. Fortunately, the China), an ultrasonic cleaner(KH-500DE, Huyueming Sci- emergence of subcritical fluid extraction technology solved entific Instrument Co. Ltd., China), a rotary evaporator a series of problems. This technique uses a green organic (R-210, Buchi, Switzerland), a high-speed refrigerated solvent. It is relatively simple and rapid, and demands centrifuge(3K15, Steinheim, Germany), and a vortex mixer fewer instrumental devices than any other methods, (VX200, Labnet, NJ, USA). because it takes the advantages of low pressure(0.2~0.6 MPa)and temperature(0~60℃), high extraction efficien- 2.3 Reagent cy, suitability for loop extraction, ease of operation, low Acetonitrile, methanol, acetone, ethyl acetate, butane, energy consumption, and scalability for large-scale indus- hexane, etc., were of chromatographic grade and pur- trial extractions when compared with other extraction chased from J. T. Baker(NJ, USA). Anhydrous magnesium techniques. So it has been recognized, applied, and prac- sulfate, sodium chloride, citric acid, and sodium citrate ticed in large-scale industrial productions. Currently, it is dibasic sesquihydrate were of analytical grade and acquired mostly used for extracting flavors and fragrances23, 24), es- from the North Reagent Company(Tianjin, China). A salt- pecially for functional edible oils25), natural pigments26), ing-out reagent kit(Supelco, PA, USA)was used consisting and medicinal compositions27). of 4 g anhydrous magnesium sulfate, 1 g sodium chloride, 1 In this study, abamectin was separated by a subcritical g sodium citrate, and 0.5 g sodium citrate dibasic. Primary– fluid with butane as solvent. The extraction conditions secondary amine(PSA)sorbent was purchased from were surveyed with a three-variable, three-level experi- Supelco(PA, USA). Water(18.2 MΩ cm)was purified using ment designed by Box–Behnken, which was based on the Milli-Q system equipment(Billerica, MA, USA). response surface methodology(RSM). The separation effi- ciency of abamectin were assessed by high-performance 2.4 Standard substances liquid chromatography(HPLC)tandem mass spectrometry Abamectin(≥ 99%), phenethyl acetate(≥ 99%), and (LC-MS/MS)analysis. Finally, the catechins, caffeine, the- isazofos(≥ 95%)were purchased from Dr. Ehrenstorfer anine, and main aroma components were analyzed by Company(Germany). Six kinds of catechins, caffeine, and HPLC and GC-MS. The results demonstrated that the sub- theanine were received from Aladdin Company(Shanghai,
Recommended publications
  • Catalytic Pyrolysis of Plastic Wastes for the Production of Liquid Fuels for Engines
    Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2019 Supporting information for: Catalytic pyrolysis of plastic wastes for the production of liquid fuels for engines Supattra Budsaereechaia, Andrew J. Huntb and Yuvarat Ngernyen*a aDepartment of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand. E-mail:[email protected] bMaterials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand Fig. S1 The process for pelletization of catalyst PS PS+bentonite PP ) t e PP+bentonite s f f o % ( LDPE e c n a t t LDPE+bentonite s i m s n HDPE a r T HDPE+bentonite Gasohol 91 Diesel 4000 3500 3000 2500 2000 1500 1000 500 Wavenumber (cm-1) Fig. S2 FTIR spectra of oil from pyrolysis of plastic waste type. Table S1 Compounds in oils (%Area) from the pyrolysis of plastic wastes as detected by GCMS analysis PS PP LDPE HDPE Gasohol 91 Diesel Compound NC C Compound NC C Compound NC C Compound NC C 1- 0 0.15 Pentane 1.13 1.29 n-Hexane 0.71 0.73 n-Hexane 0.65 0.64 Butane, 2- Octane : 0.32 Tetradecene methyl- : 2.60 Toluene 7.93 7.56 Cyclohexane 2.28 2.51 1-Hexene 1.05 1.10 1-Hexene 1.15 1.16 Pentane : 1.95 Nonane : 0.83 Ethylbenzen 15.07 11.29 Heptane, 4- 1.81 1.68 Heptane 1.26 1.35 Heptane 1.22 1.23 Butane, 2,2- Decane : 1.34 e methyl- dimethyl- : 0.47 1-Tridecene 0 0.14 2,2-Dimethyl- 0.63 0 1-Heptene 1.37 1.46 1-Heptene 1.32 1.35 Pentane,
    [Show full text]
  • Synthetic Turf Scientific Advisory Panel Meeting Materials
    California Environmental Protection Agency Office of Environmental Health Hazard Assessment Synthetic Turf Study Synthetic Turf Scientific Advisory Panel Meeting May 31, 2019 MEETING MATERIALS THIS PAGE LEFT BLANK INTENTIONALLY Office of Environmental Health Hazard Assessment California Environmental Protection Agency Agenda Synthetic Turf Scientific Advisory Panel Meeting May 31, 2019, 9:30 a.m. – 4:00 p.m. 1001 I Street, CalEPA Headquarters Building, Sacramento Byron Sher Auditorium The agenda for this meeting is given below. The order of items on the agenda is provided for general reference only. The order in which items are taken up by the Panel is subject to change. 1. Welcome and Opening Remarks 2. Synthetic Turf and Playground Studies Overview 4. Synthetic Turf Field Exposure Model Exposure Equations Exposure Parameters 3. Non-Targeted Chemical Analysis Volatile Organics on Synthetic Turf Fields Non-Polar Organics Constituents in Crumb Rubber Polar Organic Constituents in Crumb Rubber 5. Public Comments: For members of the public attending in-person: Comments will be limited to three minutes per commenter. For members of the public attending via the internet: Comments may be sent via email to [email protected]. Email comments will be read aloud, up to three minutes each, by staff of OEHHA during the public comment period, as time allows. 6. Further Panel Discussion and Closing Remarks 7. Wrap Up and Adjournment Agenda Synthetic Turf Advisory Panel Meeting May 31, 2019 THIS PAGE LEFT BLANK INTENTIONALLY Office of Environmental Health Hazard Assessment California Environmental Protection Agency DRAFT for Discussion at May 2019 SAP Meeting. Table of Contents Synthetic Turf and Playground Studies Overview May 2019 Update .....
    [Show full text]
  • The Enthalpy of Formation of Organic Compounds with “Chemical Accuracy”
    chemengineering Article Group Contribution Revisited: The Enthalpy of Formation of Organic Compounds with “Chemical Accuracy” Robert J. Meier Pro-Deo Consultant, 52525 Heinsberg, North-Rhine Westphalia, Germany; [email protected] Abstract: Group contribution (GC) methods to predict thermochemical properties are of eminent importance to process design. Compared to previous works, we present an improved group contri- bution parametrization for the heat of formation of organic molecules exhibiting chemical accuracy, i.e., a maximum 1 kcal/mol (4.2 kJ/mol) difference between the experiment and model, while, at the same time, minimizing the number of parameters. The latter is extremely important as too many parameters lead to overfitting and, therewith, to more or less serious incorrect predictions for molecules that were not within the data set used for parametrization. Moreover, it was found to be important to explicitly account for common chemical knowledge, e.g., geminal effects or ring strain. The group-related parameters were determined step-wise: first, alkanes only, and then only one additional group in the next class of molecules. This ensures unique and optimal parameter values for each chemical group. All data will be made available, enabling other researchers to extend the set to other classes of molecules. Keywords: enthalpy of formation; thermodynamics; molecular modeling; group contribution method; quantum mechanical method; chemical accuracy; process design Citation: Meier, R.J. Group Contribution Revisited: The Enthalpy of Formation of Organic Compounds with “Chemical Accuracy”. 1. Introduction ChemEngineering 2021, 5, 24. To understand chemical reactivity and/or chemical equilibria, knowledge of thermo- o https://doi.org/10.3390/ dynamic properties such as gas-phase standard enthalpy of formation DfH gas is a necessity.
    [Show full text]
  • Measurements of Higher Alkanes Using NO Chemical Ionization in PTR-Tof-MS
    Atmos. Chem. Phys., 20, 14123–14138, 2020 https://doi.org/10.5194/acp-20-14123-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Measurements of higher alkanes using NOC chemical ionization in PTR-ToF-MS: important contributions of higher alkanes to secondary organic aerosols in China Chaomin Wang1,2, Bin Yuan1,2, Caihong Wu1,2, Sihang Wang1,2, Jipeng Qi1,2, Baolin Wang3, Zelong Wang1,2, Weiwei Hu4, Wei Chen4, Chenshuo Ye5, Wenjie Wang5, Yele Sun6, Chen Wang3, Shan Huang1,2, Wei Song4, Xinming Wang4, Suxia Yang1,2, Shenyang Zhang1,2, Wanyun Xu7, Nan Ma1,2, Zhanyi Zhang1,2, Bin Jiang1,2, Hang Su8, Yafang Cheng8, Xuemei Wang1,2, and Min Shao1,2 1Institute for Environmental and Climate Research, Jinan University, 511443 Guangzhou, China 2Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, 511443 Guangzhou, China 3School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), 250353 Jinan, China 4State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 510640 Guangzhou, China 5State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 100871 Beijing, China 6State Key Laboratory of Atmospheric Boundary Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese
    [Show full text]
  • Supporting Information for Modeling the Formation and Composition Of
    Supporting Information for Modeling the Formation and Composition of Secondary Organic Aerosol from Diesel Exhaust Using Parameterized and Semi-explicit Chemistry and Thermodynamic Models Sailaja Eluri1, Christopher D. Cappa2, Beth Friedman3, Delphine K. Farmer3, and Shantanu H. Jathar1 1 Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA, 80523 2 Department of Civil and Environmental Engineering, University of California Davis, Davis, CA, USA, 95616 3 Department of Chemistry, Colorado State University, Fort Collins, CO, USA, 80523 Correspondence to: Shantanu H. Jathar ([email protected]) Table S1: Mass speciation and kOH for VOC emissions profile #3161 3 -1 - Species Name kOH (cm molecules s Mass Percent (%) 1) (1-methylpropyl) benzene 8.50×10'() 0.023 (2-methylpropyl) benzene 8.71×10'() 0.060 1,2,3-trimethylbenzene 3.27×10'(( 0.056 1,2,4-trimethylbenzene 3.25×10'(( 0.246 1,2-diethylbenzene 8.11×10'() 0.042 1,2-propadiene 9.82×10'() 0.218 1,3,5-trimethylbenzene 5.67×10'(( 0.088 1,3-butadiene 6.66×10'(( 0.088 1-butene 3.14×10'(( 0.311 1-methyl-2-ethylbenzene 7.44×10'() 0.065 1-methyl-3-ethylbenzene 1.39×10'(( 0.116 1-pentene 3.14×10'(( 0.148 2,2,4-trimethylpentane 3.34×10'() 0.139 2,2-dimethylbutane 2.23×10'() 0.028 2,3,4-trimethylpentane 6.60×10'() 0.009 2,3-dimethyl-1-butene 5.38×10'(( 0.014 2,3-dimethylhexane 8.55×10'() 0.005 2,3-dimethylpentane 7.14×10'() 0.032 2,4-dimethylhexane 8.55×10'() 0.019 2,4-dimethylpentane 4.77×10'() 0.009 2-methylheptane 8.28×10'() 0.028 2-methylhexane 6.86×10'()
    [Show full text]
  • Vapor Pressures and Vaporization Enthalpies of the N-Alkanes from 2 C21 to C30 at T ) 298.15 K by Correlation Gas Chromatography
    BATCH: je1a04 USER: jeh69 DIV: @xyv04/data1/CLS_pj/GRP_je/JOB_i01/DIV_je0301747 DATE: October 17, 2003 1 Vapor Pressures and Vaporization Enthalpies of the n-Alkanes from 2 C21 to C30 at T ) 298.15 K by Correlation Gas Chromatography 3 James S. Chickos* and William Hanshaw 4 Department of Chemistry and Biochemistry, University of MissourisSt. Louis, St. Louis, Missouri 63121 5 6 The temperature dependence of gas chromatographic retention times for n-heptadecane to n-triacontane 7 is reported. These data are used to evaluate the vaporization enthalpies of these compounds at T ) 298.15 8 K, and a protocol is described that provides vapor pressures of these n-alkanes from T ) 298.15 to 575 9 K. The vapor pressure and vaporization enthalpy results obtained are compared with existing literature 10 data where possible and found to be internally consistent. Sublimation enthalpies for n-C17 to n-C30 are 11 calculated by combining vaporization enthalpies with fusion enthalpies and are compared when possible 12 to direct measurements. 13 14 Introduction 15 The n-alkanes serve as excellent standards for the 16 measurement of vaporization enthalpies of hydrocarbons.1,2 17 Recently, the vaporization enthalpies of the n-alkanes 18 reported in the literature were examined and experimental 19 values were selected on the basis of how well their 20 vaporization enthalpies correlated with their enthalpies of 21 transfer from solution to the gas phase as measured by gas 22 chromatography.3 A plot of the vaporization enthalpies of 23 the n-alkanes as a function of the number of carbon atoms 24 is given in Figure 1.
    [Show full text]
  • Table 2. Chemical Names and Alternatives, Abbreviations, and Chemical Abstracts Service Registry Numbers
    Table 2. Chemical names and alternatives, abbreviations, and Chemical Abstracts Service registry numbers. [Final list compiled according to the National Institute of Standards and Technology (NIST) Web site (http://webbook.nist.gov/chemistry/); NIST Standard Reference Database No. 69, June 2005 release, last accessed May 9, 2008. CAS, Chemical Abstracts Service. This report contains CAS Registry Numbers®, which is a Registered Trademark of the American Chemical Society. CAS recommends the verification of the CASRNs through CAS Client ServicesSM] Aliphatic hydrocarbons CAS registry number Some alternative names n-decane 124-18-5 n-undecane 1120-21-4 n-dodecane 112-40-3 n-tridecane 629-50-5 n-tetradecane 629-59-4 n-pentadecane 629-62-9 n-hexadecane 544-76-3 n-heptadecane 629-78-7 pristane 1921-70-6 n-octadecane 593-45-3 phytane 638-36-8 n-nonadecane 629-92-5 n-eicosane 112-95-8 n-Icosane n-heneicosane 629-94-7 n-Henicosane n-docosane 629-97-0 n-tricosane 638-67-5 n-tetracosane 643-31-1 n-pentacosane 629-99-2 n-hexacosane 630-01-3 n-heptacosane 593-49-7 n-octacosane 630-02-4 n-nonacosane 630-03-5 n-triacontane 638-68-6 n-hentriacontane 630-04-6 n-dotriacontane 544-85-4 n-tritriacontane 630-05-7 n-tetratriacontane 14167-59-0 Table 2. Chemical names and alternatives, abbreviations, and Chemical Abstracts Service registry numbers.—Continued [Final list compiled according to the National Institute of Standards and Technology (NIST) Web site (http://webbook.nist.gov/chemistry/); NIST Standard Reference Database No.
    [Show full text]
  • Thermodynamic Modelling of Hydrocarbon-Chains and Light-Weight Supercritical Solvents
    Thermodynamic modelling of hydrocarbon-chains and light-weight supercritical solvents by James Edward Lombard Thesis presented in partial fulfilment of the requirements for the Degree of MASTER OF ENGINEERING (CHEMICAL ENGINEERING) in the Faculty of Engineering at Stellenbosch University Supervisor Prof. J.H. Knoetze Co-Supervisor/s Dr. C.E. Schwarz March 2015 Stellenbosch University https://scholar.sun.ac.za DECLARATION By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. James Lombard February 2015 ………………………. ………………………. Signature Date Copyright © 2015 Stellenbosch University All rights reserved i Stellenbosch University https://scholar.sun.ac.za ABSTRACT Long-chain hydrocarbons are of value to numerous lucrative industries. Due to the low volatility and close melting and boiling points of these solutes, traditional fractionation methods lack the required selectivity for separation and cause thermal degradation of the product. This project investigates the feasibility of Supercritical Fluid Extraction (SFE) for processing these systems, with the primary objective of modelling the high-pressure vapour-liquid equilibrium (VLE) properties of hydrocarbon solutes with a light-weight solvent using a semi- empirical equation of state (EOS). Pure component vapour pressures and saturated liquid volumes are also investigated. A thorough investigation into the phase behaviour of the n-alkanes, 1-alcohols, carboxylic acids and esters in light weight supercritical solvents CO2, ethane and propane revealed that the solute structure and temperature largely influence the solute solubility and process feasibility.
    [Show full text]
  • Journal of Pharmaceutical and Pharmacological Sciences Samuel P, Et Al., J Pharma Pharma Sci: JPPS-138
    Journal of Pharmaceutical and Pharmacological Sciences Samuel P, et al., J Pharma Pharma Sci: JPPS-138. Research Article DOI:10.29011/2574-7711/100038 Bioprospecting of Salicornia europaeaL. a Marine Halophyte and Evaluation of Its Biological Potential with Special Refer- ence to Anticancer Activity Samuel P1*, Vijaya J Kumar1, Deena R Dhayalan1, Amirtharaj K1, Sudarmani DNP2 1Department of Biotechnology, Ayya Nadar Janaki Ammal College(Autonomous), Sivakasi, TN, India 2Department of Zoology (PG), Ayya Nadar Janaki Ammal College (Autonomous), Sivakasi, TN, India *Corresponding author: Samuel P, Assistant Professor, Department of Biotechnology, Ayya Nadar Janaki Ammal College (Autono- mous), Sivakasi, TN, India. Tel: +919025559994; Email: [email protected] Citation: Samuel P, Kumar VJ, Dhayalan DR, Amirtharaj K, Sudarmani DNP (2017) Bioprospecting of Salicornia europaea L. a Marine Halophyte and Evaluation of Its Biological Potential with Special Reference to Anticancer Activity. J Pharma Pharma Sci: JPPS-138. DOI:10.29011/2574-7711/100038 Received Date: 02 August, 2017; Accepted Date: 25 August, 2017; Published Date: 02 September, 2017 Abstract The present study was initiated with an intention to bring outthe phytochemical profile of the marine halophyte Salicornia europaeaL., the chemical finger print of the halophyte was made by GC-MS.The phytochemicalsin the crude extract was evalu- ated for cytotoxic study against MCF7. The marine halophytes were collected, washedand chopped in to 5cm long and shade dried for 20-25 days in a dark room. The dried and grounded plant materials were subjected to Soxhlet extraction.Two solvents vizmethanol and ethyl acetate were used to prepare decoction of the plant.The extracts were screened using GC-MS and dried us- ing rotary vacuum evaporator.
    [Show full text]
  • ABSTRACT RUDD, HAYDEN. Assessing the Vulnerability Of
    ABSTRACT RUDD, HAYDEN. Assessing the Vulnerability of Coastal Plain Groundwater to Flood Water Intrusion using High Resolution Mass Spectrometry. (Under the direction of Dr. Elizabeth Guthrie Nichols). Communities in the North Carolina Coastal Plain (NCCP) depend on safe and reliable groundwater for private well use, agriculture, industry, and livelihoods. Although storm intensity and frequency are predicted to increase in coastal areas, the risk of surficial and confined aquifer contamination from extreme storms is not understood. In September 2018, Hurricane Florence caused extensive flooding across the NCCP for several weeks. The North Carolina Department of Environmental Quality (NCDEQ) Groundwater Management Branch had just completed sampling of some wells in their monitoring network when Hurricane Florence made landfall. NCDEQ returned to these wells, particularly those flooded by Hurricane Florence, for post-flood sampling. These groundwater samples were analyzed by NCDEQ for regulated semi-volatile organics with few to any detections of regulated organic contaminants. NCDEQ provided NC State the same sample extracts for analysis by high resolution mass spectrometry (HRMS). This research reports on the non-targeted and suspect-screening HRMS analyses of groundwater from nested monitoring wells. Some monitoring well sites experienced flooding during the study period, and some did not. The goal of this research was to advance our understanding of coastal aquifer susceptibility to flooding by producing the first comprehensive organic chemical profiles of coastal aquifers and by determining if aquifers have distinct organic chemical profiles that change after flooding events. This study used HRMS analyses to produce the first comprehensive organic chemical profiles of 11 aquifers in the coastal plain.
    [Show full text]
  • Characteristic List (PDF)
    State of Alaska, Environmental Conservation Water Info Mgt 907-465-5153 Substance/Characteristic Name EPA Substance Registry ID (-)-cis-Permethrin 963314 (-)-trans-Permethrin 963322 (3-Bromopropyl)benzene 65862 2-Chloro-1-phenylethanol 961524 .alpha.,.alpha.-Dimethylphenethylamine 32128 .alpha.-Chlordene 694141 .alpha.-Endosulfan 75333 .alpha.-Hexachlorocyclohexane 42184 .alpha.-Methylstyrene 18317 .alpha.-Nitrotoluene 961201 .alpha.-Terpineol 18127 .beta.-Chlordene 694158 .beta.-Endosulfan 263996 .beta.-Hexachlorocyclohexane 42192 .delta.-Hexachlorocyclohexane 42200 .gamma.-Butyrolactone 16873 .gamma.-Chlordene 694174 Acetovanillone 48074 1,1,1,2-Tetrachloroethane 65102 1,1,1-Trichloro-2-propanone 650242 1,1,1-Trichloroethane 4796 CFC-113a 43570 1,1,2,2-Tetrabromoethane 7716 1,1,2,2-Tetrachloroethane 7773 1,1,2-Trichloroethane 7518 1,1'-Binaphthalene 58701 1,1-Dichloroethane 5520 1,1-Dichloroethylene 5538 1,1-Dichloropropane 7500 1,1-Dichloropropanone 650184 1,1-Dichloropropene 54676 1,1-Dimethylcyclopropane 961516 1,1'-Oxybis[3-chloropropane] 64733 1,2,3,4,5,6-Hexachlorocyclohexane 59220 1,2,3,4,6,7,8,9-Octachlorodibenzofuran 278218 1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin 113837 1,2,3,4,6,7,8-Heptachlorodibenzofuran 358382 1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin 270140 1,2,3,4,7,8,9-Heptachlorodibenzofuran 304782 1,2,3,4,7,8-Hexachlorodibenzofuran 525212 1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin 711986 1,2,3,4-Tetrachlorobenzene 65441 1,2,3,4-Tetrahydronaphthalene 30783 1,2,3,4-Tetramethylbenzene 47365 1,2,3,5-Tetrachlorobenzene 65458
    [Show full text]
  • Plasma Assisted Decomposition of Methane and Propane and Cracking of Liquid Hexadecane
    PLASMA ASSISTED DECOMPOSITION OF METHANE AND PROPANE AND CRACKING OF LIQUID HEXADECANE A thesis submitted for the degree of Doctor of Philosophy by Irma Aleknaviciute School of Engineering and Design Brunel University, Uxbridge April, 2013 Abstract Non-thermal plasmas are considered to be very promising for the initiation of chemical reactions and a vast amount of experimental work has been dedicated to plasma assisted hydrocarbon conversion processes, which are reviewed in the fourth chapter of the thesis. However, current knowledge and experimental data available in the literature on plasma assisted liquid hydrocarbon cracking and gaseous hydrocarbon decomposition is very limited. The experimental methodology is introduced in the chapter that follows the literature review. It includes the scope and objectives section reflecting the information presented in the literature review and the rationale of this work. This is followed by a thorough description of the design and construction of the experimental plasma reformer and the precise experimental procedures, the set-up of hydrocarbon characterization equipment and the development of analytical methods. The methodology of uncertainty analysis is also described. In this work we performed experiments in attempt the cracking of liquid hexadecane into smaller liquid hydrocarbons, which was not successful. The conditions tested and the problems encountered are described in detail. In this project we performed a parametric study for methane and propane decomposition under a corona discharge for CO x free hydrogen generation. For methane and propane a series of experiments were performed for a positive corona discharge at a fixed inter-electrode distance (15 mm) to study the effects of discharge power (range of 14 - 20 W and 19 – 35 W respectively) and residence time (60 - 240 s and 60 – 303 s respectively).
    [Show full text]